Skip to main content

Modulation of the Neuronal Activity and Neurotransmitter Release by 5-HT1A and 5-HT1B/1D Receptors

  • Chapter
  • 1941 Accesses

Part of the book series: The Receptors ((REC))

Abstract

The 5-HT1A and 5-HT1B/1D receptors are major determinants of the activity of serotonergic cells and of serotonin, 5-hydroxytrytamine (5-HT), release because of their role as somatodendritic and terminal autoreceptors, respectively. As such, their physiological role is to limit unwanted increases in serotonergic activity and 5-HT release and play an important role in the action of drugs used to treat psychiatric diseases, like anxiety or depression. Additionally, those receptors are located postsynaptically to serotonergic axons, in cortical, limbic, and hypothalamic areas (5-HT1A receptors), and in the basal ganglia (5-HT1B receptors). 5-HT, acting on those postsynaptic receptors, is involved in cognition, mood, impulse control, and motor functions by modulating the activity of different neuronal types and inhibiting the release of various neurotransmitters, such as glutamate, GABA, acetylcholine, and dopamine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999;38:1083–1152.

    PubMed  CAS  Google Scholar 

  2. Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. PhysiolRev 1992;72:165–229.

    CAS  Google Scholar 

  3. Adell A, Celada P, Abellán MT, Artigas F. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 2002;39:154–180.

    PubMed  CAS  Google Scholar 

  4. Chalmers DT, Watson SJ. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain: a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 1991;561:51–60.

    PubMed  CAS  Google Scholar 

  5. Kia HK, Miquel MC, Brisorgueil MJ, et al. Immunocytochemical localization of serotonin(1A) receptors in the rat central nervous system. J Comp Neurol 1996;365:289–305.

    PubMed  CAS  Google Scholar 

  6. Pompeiano M, Palacios JM, Mengod G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 1992;12:440–453.

    PubMed  CAS  Google Scholar 

  7. Miquel MC, Doucet E, Boni C, et al. Central 5-HT1A receptors respectivedistributions of encoding messenger RNA, receptor protein and binding sites by in situ hybridization histochemistry, radioimmunohistochemistry and autoradiographic mapping in the rat brain. Neurochem Int 1991;19:453–465.

    CAS  Google Scholar 

  8. Sotelo C, Cholley B, El Mestikawy S, Gozlan H, Hamon M. Direct immunohistochemical evidence of the existence of 5-HT autoreceptors on serotonergic neurons in the midbrain raphe nuclei. Eur J Neurosci 1990;2:1144–1154.

    PubMed  Google Scholar 

  9. Kia HK, Brisorgueil MJ, Hamon M, Calas A, Vergé D. Ultrastructural localization of 5-hydroxytryptamine(1A) receptors in the rat brain. J Neurosci Res 1996;46:697–708.

    PubMed  CAS  Google Scholar 

  10. Riad M, Garcia S, Watkins KC, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 2000;417:181–194.

    PubMed  CAS  Google Scholar 

  11. De Felipe J, Arellano JI, Gomez A, Azmitia EC, Mu~noz A. Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 2001;433:148–155.

    Google Scholar 

  12. Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K. Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 2003;989:42–51.

    PubMed  CAS  Google Scholar 

  13. Cruz DA, Eggan SM, Azmitia EC, Lewis DA. Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. Am J Psychiatry 2004;161:739–742.

    PubMed  Google Scholar 

  14. Innis RB, Nestler EJ, Aghajanian GK. Evidence for G protein mediation of serotonin-and GABAB- induced hyperpolarization of rat dorsal raphe neurons. Brain Res 1988;459:27–36.

    PubMed  CAS  Google Scholar 

  15. Innis RB, Aghajanian GK. Pertussis toxin blocks 5-HT1A and GABAB receptor-mediated inhibition of serotonergic neurons. Eur J Pharmacol 1987;143:195–204.

    PubMed  CAS  Google Scholar 

  16. Andrade R, Malenka RC, Nicoll RA. A G protein couples serotonin and GABAB receptors to the same channel in hippocampus. Science 1986;234:1261–1265.

    PubMed  CAS  Google Scholar 

  17. Clarke WP, Yocca FD, Maayani S. Lack of 5-hydroxytryptamine(1A)-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. J Pharmacol ExpTher 1996;277:1259–1266.

    CAS  Google Scholar 

  18. Aghajanian GK, Lakoski JM. Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res 1984;305:181–185.

    PubMed  CAS  Google Scholar 

  19. Sinton CM, Fallon SL. Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 1988;157:173–181.

    PubMed  CAS  Google Scholar 

  20. Sprouse JS, Aghajanian GK. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol 1986;128: 295–298.

    PubMed  CAS  Google Scholar 

  21. Sprouse JS, Aghajanian GK. Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1987;1:3–9.

    PubMed  CAS  Google Scholar 

  22. VanderMaelen CP, Matheson GK, Wilderman RC, Patterson LA. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol 1986;129: 123–130.

    PubMed  CAS  Google Scholar 

  23. Adell A, Artigas F. A microdialysis study of the in vivo release of 5-HT in the median raphe nucleus of the rat. Br J Pharmacol 1998;125:1361–1367.

    PubMed  CAS  Google Scholar 

  24. Adell A, Carceller A, Artigas F. In vivo brain dialysis study of the somatodendritic release of serotonin in the raphe nuclei of the rat. Effects of 8-hydroxy-2-(di-n-propylamino)tetralin. J Neurochem 1993;60:1673–1681.

    PubMed  CAS  Google Scholar 

  25. Bosker F, Klompmakers A, Westenberg H. Extracellular 5-hydroxytryptamine in median raphe nucleus of the conscious rat is decreased by nanomolar concentrations of 8-hydroxy-2-(di-n-propylamino) tetralin and is sensitive to tetrodotoxin. J Neurochem 1994;63:2165–2171.

    PubMed  CAS  Google Scholar 

  26. Casanovas JM, Lésourd M, Artigas F. The effect of the selective 5-HT1A agonists alnespirone (S-20499) and 8-OH-DPAT on extracellular 5-hydroxytryptamine in different regions of rat brain. Br J Pharmacol 1997;122:733–741.

    PubMed  CAS  Google Scholar 

  27. Portas CM, Thakkar M, Rainnie D, McCarley RW. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 1996;16:2820–2828.

    PubMed  CAS  Google Scholar 

  28. Bonvento G, Scatton B, Claustre Y, Rouquier L. Effect of local injection of 8-OH-DPAT into the dorsal or median raphe nuclei on extracellular levels of serotonin in serotonergic projection areas in the rat brain. Neurosci Lett 1992;137: 101–104.

    PubMed  CAS  Google Scholar 

  29. Hutson PH, Sarna GS, O’Connell MT, Curzon G. Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OH-DPAT into the nucleus raphe dorsalis. Neurosci Lett 1989;100:276–280.

    PubMed  CAS  Google Scholar 

  30. Sharp T, Bramwell SR, Clark D, Grahame-Smith DG. In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem 1989;53:234–240.

    PubMed  CAS  Google Scholar 

  31. Blier P, Serrano A, Scatton B. Differential responsiveness of the rat dorsal and median raphe 5-HT systems to 5-HT1 receptor agonists and p-chloroamphetamine. Synapse 1990;5:120–133.

    PubMed  CAS  Google Scholar 

  32. Hajós M, Gartside SE, Sharp T. Inhibition of median and dorsal raphe neurones following administration of the selective serotonin reuptake inhibitor paroxetine. Naunyn-Schmiedebergs Arch Pharmacol 1995;351:624–629.

    PubMed  Google Scholar 

  33. Casanovas JM, Berton O, Celada P, Artigas F. In vivo actions of the selective 5-HT1A receptor agonist BAY × 3702 on serotonergic cell firing and release. Naunyn-Schmiedebergs Arch Pharmacol 2000;362:248–254.

    PubMed  CAS  Google Scholar 

  34. Casanovas JM, Artigas F. Differential effects of ipsapirone on 5-HT release in the dorsal and median raphe neuronal pathways. J Neurochem 1996;67: 1945–1952.

    PubMed  CAS  Google Scholar 

  35. Casanovas JM, Hervás I, Artigas F. Postsynaptic 5-HT1A receptors control 5-HT release in the rat medial prefrontal cortex. Neuroreport 1999;10:1441–1445.

    PubMed  CAS  Google Scholar 

  36. Blier P, de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1987;1:470–480.

    PubMed  CAS  Google Scholar 

  37. Casanovas JM, Vilaró MT, Mengod G, Artigas F. Differential regulation of soma-todendritic serotonin 5-HT1A receptors by 2-week treatments with the selective agonists alnespirone (S-20499) and 8-hydroxy-2-(di-n-propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J Neurochem 1999;72: 262–272.

    PubMed  CAS  Google Scholar 

  38. Schechter LE, Bola~nos FJ, Gozlan H, et al. Alterations of central serotoninergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J Pharmacol Exp Ther 1990;255: 1335–1347.

    PubMed  CAS  Google Scholar 

  39. Le Poul E, Laaris N, Doucet E, et al. Chronic alnespirone-induced desensitization of somatodendritic 5-HT1A autoreceptors in the rat dorsal raphe nucleus. Eur J Pharmacol 1999;365:165–173.

    PubMed  Google Scholar 

  40. Blier P, de Montigny C, Chaput Y. Modifications of the serotonin system by antidepressant treatment: implications for the therapeutic response in major depression. J Clin Psychopharmacol 1987;7:24S–35S.

    PubMed  CAS  Google Scholar 

  41. Hervás I, Vilaró MT, Romero L, Scorza MC, Mengod G, Artigas F. Desensitization of 5-HT(1A) autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY-100635. Neuropsychopharmacology 2001;24:11–20.

    PubMed  Google Scholar 

  42. Invernizzi R, Bramante M, Samanin R. Chronic treatment with citalopramfacilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur J Pharmacol 1994;260:243–246.

    PubMed  CAS  Google Scholar 

  43. Le Poul E, Laaris N, Doucet E, Laporte AM, Hamon M, Lanfumey L. Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn-Schmiedebergs Arch Pharmacol 1995;352:141–148.

    PubMed  Google Scholar 

  44. Haddjeri N, Blier P de Montigny C. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 1998;18: 10,150–10,156.

    PubMed  CAS  Google Scholar 

  45. Gur E, Dremencov E, Van de Kar LD, Lerer B, Newman ME. Effects of chronically administered venlafaxine on 5-HT receptor activity in rat hippocampus and hypothalamus. Eur J Pharmacol 2002;436:57–65.

    PubMed  CAS  Google Scholar 

  46. Riad M, Watkins KC, Doucet E, Hamon M, Descarries L. Agonist-induced internalization of serotonin-1A receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). J Neurosci 2001;21:8378–8386.

    PubMed  CAS  Google Scholar 

  47. Bosker FJ, Dewinter TYCE, Klompmakers AA, Westenberg HGM. Flesinoxan dose-dependently reduces extracellular 5-hydroxytryptamine (5-HT) in rat median raphe and dorsal hippocampus through activation of 5-HT1A receptors. J Neurochem 1996;66:2546–2555.

    PubMed  CAS  Google Scholar 

  48. Moret C, Briley M. 5-HT autoreceptors in the regulation of 5-HT release from guinea pig raphe nucleus and hypothalamus. Neuropharmacology 1997;36: 1713–1723.

    PubMed  CAS  Google Scholar 

  49. Roberts C, Allen L, Langmead CJ, Hagan JJ, Middlemiss DN, Price GW. The effect of SB-26,9970, a 5-HT7 receptor antagonist, on 5-HT release from serotonergic terminals and cell bodies. Brit. J Pharmacol 2001;132:1574–1580.

    CAS  Google Scholar 

  50. Roberts C, Price GW. Interaction of serotonin autoreceptor antagonists in the rat dorsal raphe nucleus: an in vitro fast cyclic voltammetry study. Neurosci Lett 2001;300:45–48.

    PubMed  CAS  Google Scholar 

  51. Ase AR, Reader TA, Hen R, Riad M, Descarries L. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT1A or 5-HT1B receptor knock out mice. J Neurochem 2000;75:2415–2426.

    PubMed  CAS  Google Scholar 

  52. Ramboz S, Oosting R, Amara DA, et al. Serotonin receptor1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 1998;95:14,476–14,481.

    PubMed  CAS  Google Scholar 

  53. Richer M, Hen R, Blier P. Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur J Pharmacol 2002;435:195–203.

    PubMed  CAS  Google Scholar 

  54. Bortolozzi A, Amargós-Bosch M, Toth M, Artigas F, Adell A. In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem 2004;88:1373–1379.

    PubMed  CAS  Google Scholar 

  55. Amargós-Bosch M, Bortolozzi A, Puig MV, et al. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 2004;14:281–299.

    PubMed  Google Scholar 

  56. Hajós M, Hoffmann WE, Tetko IV, Hyland B, Sharp T, Villa AE. Different tonic regulation of neuronal activity in the rat dorsal raphe and medial prefrontal cortex via 5-HT(1A) receptors. Neurosci Lett 2001;304:129–132.

    PubMed  Google Scholar 

  57. Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A) glutamate receptors. J Neurosci 2001;21:9917–9929.

    PubMed  CAS  Google Scholar 

  58. Williams JT, Colmers WF, Pan ZZ. Voltage-and Ligand-Activated inwardly rectifying currents in dorsal raphe neurons in vivo. J Neurosci 1988;8: 3499–3506.

    PubMed  CAS  Google Scholar 

  59. Andrade R, Nicoll RA. Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J Physiol 1987;394: 99–124.

    PubMed  CAS  Google Scholar 

  60. Bayliss DA, Li YW, Talley EM. Effects of serotonin on caudal raphe neurons: Activation of an inwardly rectifying potassium conductance. J Neurophysiol 1997;77:1349–1361.

    PubMed  CAS  Google Scholar 

  61. Colino A, Halliwell JV. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 1987;328:73–77.

    PubMed  CAS  Google Scholar 

  62. Ishibashi H, Kuwano K, Takahama K. Inhibition of the 5-HT1A receptor-mediated inwardly rectifying K+ current by dextromethorphan in rat dorsal raphe neurones. Neuropharmacology 2000;39:2302–2308.

    PubMed  CAS  Google Scholar 

  63. Jin YH, Akaike N. Tandospirone-induced K+ current in acutely dissociated rat dorsal raphe neurones. Br J Pharmacol 1998;124:897–904.

    PubMed  CAS  Google Scholar 

  64. Bobker DH, Williams JT. The serotonergic inhibitory postsynaptic potential in prepositus hypoglossi is mediated by two potassium currents. J Neurosci. 1995;15:223–229.

    PubMed  CAS  Google Scholar 

  65. Penington NJ, Kelly JS. Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 1990;4:751–758.

    PubMed  CAS  Google Scholar 

  66. Penington NJ, Kelly JS, Fox AP. A study of the mechanism of Ca2+ current inhibition produced by serotonin in rat dorsal raphe neurons. J Neurosci 1991;11:3594–3609.

    PubMed  CAS  Google Scholar 

  67. Rhee JS, Ishibashi H, Akaike N. Serotonin modulates high-voltage-activated Ca2+ channels in rat ventromedial hypothalamic neurons. Neuropharmacology 1996;35: 1093–1100.

    PubMed  CAS  Google Scholar 

  68. Del Mar LP, Cardenas CG, Scroggs RS. Serotonin inhibits high-threshold Ca2+ channel currents in capsaicin-sensitive acutely isolated adult rat DRG neurons. J Neurophysiol 1994;72:2551–2554.

    PubMed  Google Scholar 

  69. Cardenas CG, Del Mar LP, Scroggs RS. Two parallel signaling pathways couple 5HT1A receptors to N-and L-type calcium channels in C-like rat dorsal root ganglion cells. J Neurophysiol 1997;77:3284–3296.

    PubMed  CAS  Google Scholar 

  70. Bayliss DA, Umemiya M, Berger AJ. Inhibition of N-and P-type calcium currents and the after-hyperpolarization in rat motoneurones by serotonin. J Physiol 1995;485:635–647.

    PubMed  CAS  Google Scholar 

  71. Bayliss DA, Li YW, Talley EM. Effects of serotonin on caudal raphe neurons: Inhibition of N-and P/Q-type calcium channels and the afterhyperpolarization. J Neurophysiol 1997;77:1362–1374.

    PubMed  CAS  Google Scholar 

  72. Beck SG. 5-Carboxyamidotryptamine mimics only the 5-HT elicited hyperpolaritzation of hippocampal pyramidal cells via 5-HT receptor. Neurosci Lett 1989;99:101–106.

    PubMed  CAS  Google Scholar 

  73. Davies MF, Deisz RA, Prince DA, Peroutka SJ. Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 1987;423:347–352.

    PubMed  CAS  Google Scholar 

  74. Tanaka E, North RA. Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 1993;69:1749–1757.

    PubMed  CAS  Google Scholar 

  75. Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 1991;40:399–412.

    PubMed  CAS  Google Scholar 

  76. Corradetti R, Lepoul E, Laaris N, Hamon M, Lanfumey L. Electrophysiological effects of N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclo-hexane carboxamide (WAY 100635) on dorsal raphe serotonergic neurons and CA1 hippocampal pyramidal cells in vitro. J Pharmacol Exp Ther 1996;278: 679–688.

    PubMed  CAS  Google Scholar 

  77. Sprouse JS, Aghajanian GK. Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology 1988;27:707–715.

    PubMed  CAS  Google Scholar 

  78. Aghajanian GK, Haigler HJ, Bloom FE. Lysergic acid diethylamide and serotonin: direct actions on serotonin-containing neurons in rat brain. Life Sci 1972;11:615–622.

    CAS  Google Scholar 

  79. Blier P, Steinberg S, Chaput Y, de Montigny C. Electrophysiological assessment of putative antagonists of 5-hydroxytryptamine receptors: a single-cell study in the rat dorsal raphe nucleus. Can J Physiol Pharmacol 1989;67:98–105.

    PubMed  CAS  Google Scholar 

  80. Arborelius L, Hook BB, Hacksell U, Svensson TH. The 5-HT(1A) receptor antagonist (S)-UH-301 blocks the (R)-8-OH-DPAT-induced inhibition of serotonergic dorsal raphe cell firing in the rat. J Neural Transm Gen Sect 1994;96: 179–186.

    PubMed  CAS  Google Scholar 

  81. Craven R, Grahame-Smith D, Newberry N. WAY-100635 and GR127935: effects on 5-hydroxytryptamine-containing neurones. Eur J Pharmacol 1994;271:R1–R3.

    PubMed  CAS  Google Scholar 

  82. Krnjevic K, Phillis JW. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol 1963;165:274–304.

    PubMed  CAS  Google Scholar 

  83. Roberts MH, Straughan DW. Excitation and depression of cortical neurones by 5-hydroxytryptamine. J Physiol 1967;193:269–294.

    PubMed  CAS  Google Scholar 

  84. Reader TA, Ferron A, Descarries L, Jasper HH. Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Res 1979;160: 217–229.

    CAS  Google Scholar 

  85. Ashby CR, Edwards E, Wang RY. Electrophysiological evidence for a functional interaction between 5-HT(1A) and 5-HT(2A) receptors in the rat medial pre-frontal cortex: An iontophoretic study. Synapse 1994;17:173–181.

    PubMed  CAS  Google Scholar 

  86. Zhang JY, Ashby CR, Wang RY. Effect of pertussis toxin on the response of rat medial prefrontal cortex cells to the iontophoresis of serotonin receptor agonists. J Neural Transm-Gen Sect 1994;95:165–172.

    PubMed  CAS  Google Scholar 

  87. Behbehani MM, Liu HY, Jiang MR, Pun RYK, Shipley MT. Activation of serotonin(1A) receptors inhibits midbrain periaqueductal gray neurons of the rat. Brain Res 1993;612:56–60.

    PubMed  CAS  Google Scholar 

  88. Blier P, Lista A, de Montigny C. Differential properties of pre-and postsynaptic 5-hydroxytryptamine receptors in the dorsal raphe and hippocampus: II.effect of pertussis and cholera toxins. J Pharmacol Exp Ther 1993;265:16–23.

    PubMed  CAS  Google Scholar 

  89. Chaput Y, de Montigny C. Effects of the 5-hydroxytryptamine receptor antagonist BMY 7378, on 5-hydroxytryptamine neurotransmission: electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 1988;246: 359–370.

    PubMed  CAS  Google Scholar 

  90. Tada K, Kasamo K, Ueda N, Suzuki T, Kojima T, Ishikawa K. Anxiolytic 5-hydroxytryptamine1A agonists suppress firing activity of dorsal hippocampus CA1 pyramidal neurons through a postsynaptic mechanism: single-unit study in unanesthetized, unrestrained rats. J Pharmacol Exp Ther 1999;288:843–848.

    PubMed  CAS  Google Scholar 

  91. Hadrava V, Blier P, Dennis T, Ortemann C, de Montigny C. Characterization of 5-hydroxytryptamine(1A) properties of flesinoxan: In vivo electrophysiology and hypothermia study. Neuropharmacology 1995;34:1311–1326.

    PubMed  CAS  Google Scholar 

  92. Beck SG, Choi KC, List TJ. Comparison of 5-hydroxytryptamine1A-mediated hyperpolarization in CA1 and CA3 hippocampal pyramidal cells. J Pharmacol Exp Ther 1992;263:350–359.

    PubMed  CAS  Google Scholar 

  93. Meller E, Goldstein M, Bohmaker K. Receptor reserve for 5-hydroxytryptamine-mediated inhibition of serotonin synthesis: possible relationship to anxiolytic properties of 5-hydroxytriptamine agonists. Mol Pharmacol 1990;37:231–237.

    PubMed  CAS  Google Scholar 

  94. Cox RF, Meller E, Waszczak BL. Electrophysiological evidence for a large receptor reserve for inhibition of dorsal raphe neuronal firing by 5-HT(1A) agonists. Synapse 1993;14:297–304.

    PubMed  CAS  Google Scholar 

  95. Wang RY, Aghajanian GK. Antidromically identified serotonergic neurons in the rat midbrain raphe: evidence for collateral inhibition. Brain Res. 1977;132:186–193.

    PubMed  CAS  Google Scholar 

  96. Park MR, Imai H, Kitai ST. Morphology and intracellular responses of an identified dorsal raphe projection neuron. Brain Res 1982;240:321–326.

    PubMed  CAS  Google Scholar 

  97. Yoshimura M, Higashi H. 5-Hydroxytryptamine mediates inhibitory postsynaptic potentials in rat dorsal raphe neurons. Neurosci Lett 1985;53:69–74.

    PubMed  CAS  Google Scholar 

  98. Scuvée-Moreau J, Dresse A. Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons of the rat. Eur J Pharmacol 1979;57:219–225.

    PubMed  Google Scholar 

  99. Quinaux N, Scuvée-Moreau J, Dresse A. Inhibition of in vitro and ex vivo uptake of noradrenaline and 5-hydroxytryptamine by five antidepressants;correlation with reduction of spontaneous firing rate of central monoaminergic neurones. Naunyn-Schmiedebergs Arch Pharmacol 1982;319:66–70.

    PubMed  CAS  Google Scholar 

  100. Blier P, de Montigny C, Azzaro AJ. Modification of serotonergic and noradrener-gic neurotransmissions by repeated administration of monoamine oxidase inhibitors: Electrophysiological studies in the rat central nervous system. J Pharmacol Exp Ther 1986;237:987–994.

    PubMed  CAS  Google Scholar 

  101. Blier P, de Montigny C, Tardif D. Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: single-cell studies in the rat. Psychopharmacology 1984;84:242–249.

    PubMed  CAS  Google Scholar 

  102. Adell A, Artigas F. Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo microdialysis study. Naunyn-Schmiedebergs Arch Pharmacol 1991;343:237–244.

    PubMed  CAS  Google Scholar 

  103. Bel N, Artigas F. Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 1992;229:101–103.

    PubMed  CAS  Google Scholar 

  104. Celada P, Artigas F. Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat. Naunyn-Schmiedebergs Arch Pharmacol 1993;347:583–590.

    PubMed  CAS  Google Scholar 

  105. Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci 1994;15:220–226.

    PubMed  CAS  Google Scholar 

  106. Aghajanian GK, Wang RY. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 1977;122:229–242.

    PubMed  CAS  Google Scholar 

  107. Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unla-beled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 1992;320:145–160.

    PubMed  CAS  Google Scholar 

  108. Hajós M, Richards CD, Szekely AD, Sharp T. An electrophysiological and neu-roanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 1998;87:95–108.

    PubMed  Google Scholar 

  109. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 1998;82:443–468.

    PubMed  CAS  Google Scholar 

  110. Varga V, Szekely AD, Csillag A, Sharp T, Hajós M. Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience 2001;106:783–792.

    PubMed  CAS  Google Scholar 

  111. Jankowski MP, Sesack SR. Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. J Comp Neurol 2004;468:518–529.

    PubMed  CAS  Google Scholar 

  112. Vertes RP. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004;51:32–58.

    PubMed  CAS  Google Scholar 

  113. Pan ZZ, Williams JT. GABA-and glutamate-mediated synaptic potentials in rat dorsal raphe neurons in vitro. J Neurophysiol 1989;61:719–726.

    PubMed  CAS  Google Scholar 

  114. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 2004;14:281–299.

    Google Scholar 

  115. Haddjeri N, Seletti B, Gilbert F, de Montigny C, Blier P. Effect of ergotamine on serotonin-mediated responses in the rodent and human brain. Neuropsychophar-macology 1998;19:365–380.

    CAS  Google Scholar 

  116. Blier P, Lista A, de Montigny C. Differential properties of presynaptic and post-synaptic 5-hydroxytryptamine(1A) receptors in the dorsal raphe and hippocam-pus1. Effect of spiperone. J Pharmacol Exp Ther 1993;265:7–15.

    PubMed  CAS  Google Scholar 

  117. Hajós M, Gartside SE, Varga V, Sharp T. In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology 2003;45:72–81.

    PubMed  Google Scholar 

  118. Puig MV, Artigas F, Celada P. Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 2005;15:1–14.

    PubMed  Google Scholar 

  119. Puig MV, Celada P, Diaz-Mataix L, Artigas F. In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 2003;13:870–882.

    PubMed  Google Scholar 

  120. Willins DL, Deutch AY, Roth BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 1997;27:79–82.

    PubMed  CAS  Google Scholar 

  121. Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine(2A) serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 1998;95:735–740.

    PubMed  CAS  Google Scholar 

  122. Martin-Ruiz R, Puig MV, Celada P, et al. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 2001;21:9856–9866.

    PubMed  CAS  Google Scholar 

  123. Aghajanian GK, Marek GJ. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 1997;36: 589–599.

    PubMed  CAS  Google Scholar 

  124. Azmitia EC, Gannon PJ, Kheck NM, Whitakerazmitia PM. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharma-cology 1996;14:35–46.

    CAS  Google Scholar 

  125. Jankowski MP, Sesack SR. Electron microscopic analysis of the GABA projection from the dorsal raphe nucleus to the prefrontal cortex in the rat. Soc Neurosci Abstr 587.8.

    Google Scholar 

  126. Carr DB, Sesack SR. GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 2000;38:114–123.

    PubMed  CAS  Google Scholar 

  127. Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 2000;20:3864–3873.

    PubMed  CAS  Google Scholar 

  128. Macor JE, Burkhart CA, Heym JH, et al. 3-(1,2,5,6-Tetrahydropyrid-4-yl) pyrrolo[3,2-b]pyrid-5-one: a potent and selective serotonin (5-HT1B) agonist and rotationally restricted phenolic analogue of 5-methoxy-3-(1,2,5,6-tetrahydroprid-4-yl)indole. J Med Chem 1990;33:2087–2093.

    PubMed  CAS  Google Scholar 

  129. Koe BK, Lebel LA, Fox CB, Macor JE. Binding and uptake studies with [3H]CP-93,129, a radiolabeled selective 5-HT1B receptor ligand. Drug Dev Res 1992;25:67–74.

    CAS  Google Scholar 

  130. Koe BK, Lebel LA, Fox CB, Macor JE. Characterization of [3H]CP-96,501 as a selective radioligand for the serotonin 5-HT1B receptor: binding studies in rat brain membranes. J Neurochem 1992;58:1268–1276.

    PubMed  CAS  Google Scholar 

  131. Koe BK, Nielsen JA, Macor JE, Heym J. Biochemical and behavioral studies of the 5-HT1B receptor agonist CP-94,253. Drug Dev Res 1992;26:241–250.

    CAS  Google Scholar 

  132. Gomez-Merino D, Bequet F, Berthelot M, Chennaoui M, Guezennec CY. Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neurosci Lett 2001;301:143–146.

    PubMed  CAS  Google Scholar 

  133. Roberts C, Belenguer A, Middlemiss DN, Routledge C. Differential effects of 5-HT1B/1D receptor antagonists in dorsal and median raphe innervated brain regions. Eur J Pharmacol 1998;346:175–180.

    PubMed  CAS  Google Scholar 

  134. Berg S, Larsson LG, Renyi L, et al. (r)-(+)-2-[[[3-(morpholinomethyl)-2h-chromen-8-yl]oxy]methyl]morpholine methanesulfonate: a new selective rat 5-hydroxytryptamine(1B) receptor antagonist. J Med Chem 1998;41:1934–1942.

    PubMed  CAS  Google Scholar 

  135. Stenfors C, Yu H, Ross SB. Enhanced 5-HT metabolism and synthesis rate by the new selective r5-HT1B receptor antagonist NAS-181 in the rat brain. Neurophar-macology 2000;39:553–560.

    CAS  Google Scholar 

  136. MacLeod AM, Street LJ, Reeve AJ, et al. Selective, orally active 5-HT1D receptor agonists as potential antimigraine agents. J Med Chem 1997;40:3501–3503.

    PubMed  CAS  Google Scholar 

  137. Price GW, Burton MJ, Collin LJ, et al. SB-216641 and BRL-15572—compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors.Naunyn-Schmiedebergs Arch Pharmacol 1997;356:312–320.

    PubMed  CAS  Google Scholar 

  138. Pazos A, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 1985;346:205–230.

    PubMed  CAS  Google Scholar 

  139. Offord SJ, Ordway GA, Frazer A. Application of (125I)iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J Pharmacol Exp Ther 1988;244:144–153.

    PubMed  CAS  Google Scholar 

  140. Hartig PR, Hoyer D, Humphrey PPA, Martin GR. Alignment of receptor nomenclature with the human genome: Classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 1996;17:103–105.

    PubMed  CAS  Google Scholar 

  141. Adham N, Romanienko P, Hartig P, Weinshank RL, Branchek T. The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxy-tryptamine1D beta receptor. Mol Pharmacol 1992;41:1–7.

    PubMed  CAS  Google Scholar 

  142. Vergé D, Daval G, Marckinkiewicz M, et al. Quantitative autoradiography of multiple 5-HT receptor subtypes in the brain of control and 5,7-dihydroxytryptamine-treated-rats. J Neurosci 1986;6:3474–3482.

    PubMed  Google Scholar 

  143. Bonaventure P, Voorn P, Luyten WHML, Jurzak M, Schotte A, Leysen JE. Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function. Neuroscience 1998;82:469–484.

    PubMed  CAS  Google Scholar 

  144. Bruinvels AT, Landwehrmeyer B, Gustafson EL, et al. Localization of 5-HT(1B), 5-HT(1D alpha), 5-HT(1E) and 5-HT(1F), receptor messenger RNA in rodent and primate brain. Neuropharmacology 1994;33:367–386.

    PubMed  CAS  Google Scholar 

  145. Doucet E, Pohl M, Fataccini CM, Adrien J, El Mestikawi S, Hamon M. In situ hybridization evidence for the synthesis of 5-HT1B receptor in serotoninergic Neurons of anterior raphe nyuclei in the rat brain. Synapse 1995;19:18–28.

    PubMed  CAS  Google Scholar 

  146. Voigt MM, Laurie DJ, Seeburg PH, Bach A. Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J 1991;10:4017–4023.

    PubMed  CAS  Google Scholar 

  147. Boschert U, Amara DA, Segu L, Hen R. The mouse 5-hydroxytryptamine(1B) receptor is localized predominantly on axon terminals. Neuroscience 1994;58:167–182.

    PubMed  CAS  Google Scholar 

  148. Sari Y, Lefevre K, Bancila M, et al. Light and electron microscopic immunocyto-chemical visualization of 5-HT1B receptors in the rat brain. Brain Res 1997;760: 281–286.

    PubMed  CAS  Google Scholar 

  149. Sari Y, Miquel MC, Brisorgueil MJ, et al. Cellular and subcellular localization of 5-hydroxytryptamine(1B) receptors in the rat central nervous system: immunocy-tochemical, autoradiographic and lesion studies. Neuroscience 1999;88:899–915.

    PubMed  CAS  Google Scholar 

  150. Compan V, Segu L, Buhot MC, Daszuta A. Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2Cbinding sites in adult rat basal ganglia following lesions of serotonergic neurons. Brain Res 1998;793:103–111.

    PubMed  CAS  Google Scholar 

  151. Manrique C, Francoisbellan AM, Segu L, et al. Impairment of serotoninergic transmission is followed by adaptive changes in 5HT(1B) binding sites in the rat suprachiasmatic nucleus. Brain Res 1994;663:93–100.

    PubMed  CAS  Google Scholar 

  152. Jolimay N, Franck L, Langlois X, Hamon M, Darmon M. Dominant role of the cytosolic C-terminal domain of the rat 5-HT1B receptor in axonal-apical targeting. J Neurosci 2001;20:9111–9118.

    Google Scholar 

  153. Bonaventure P, Langlois X, Leysen JE. Co-localization of 5-HT1B-and 5-HT1d receptor mRNA in serotonergic cell bodies in guinea pig dorsal raphe nucleus: a double labeling in situ hybridization histochemistry study. Neurosci Lett 1998;254:113–116.

    PubMed  CAS  Google Scholar 

  154. Stamford JA, Davidson C, Mclaughlin DP, Hopwood SE. Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 2000;23:459–465.

    PubMed  CAS  Google Scholar 

  155. Tao-Cheng JH, Zhou FC. Differential polarization of serotonin transporters in axons versus soma-dendrites: an immunogold electron microscopy study. Neuroscience 1999;94:821–830.

    PubMed  CAS  Google Scholar 

  156. Bouhelal R, Smounya L, Bockaert J. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol 1988;151: 189–196.

    PubMed  CAS  Google Scholar 

  157. Sari Y. Serotonin1B receptors from protein to physiological function and behavior.Neurosci Biobehav Rev 2004;28]565–582

    Google Scholar 

  158. Buhlen M, Fink K, Boing C, Göthert M. Evidence for presynaptic location of inhibitory 5-HT-like autoreceptors in the guinea-pig brain cortex. Naunyn-Schmiedebergs Arch Pharmacol 1996;353:281–289.

    PubMed  CAS  Google Scholar 

  159. Boulenguez P, Rawlins JNP, Chauveau J, Joseph MH, Mitchell SN, Gray JA. Modulation of dopamine release in the nucleus accumbens by 5-HT1B agonists: Involvement of the hippocampo-accumbens pathway. Neuropharmacology 1996;35:1521–1529.

    PubMed  CAS  Google Scholar 

  160. Sprouse JS, Reynolds L, Rollema H. Do 5-HT1B/1D autoreceptors modulate dorsal raphe cell firing? In vivo electrophysiological studies in guinea pigs with GR127935. Neuropharmacology 1997;36:559–567.

    PubMed  CAS  Google Scholar 

  161. Pin~eyro G, Castanon N, Hen R, Blier P. Regulation of [3H]5-HT release in raphe, frontal cortex and hippocampus of 5-HT1B knock-out mice. NeuroReport 1995;7: 353–359.

    CAS  Google Scholar 

  162. Evrard A, Laporte AM, Chastanet M, Hen R, Hamon M, Adrien J. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice. Eur J Neurosci 1999;11:3823–3831.

    PubMed  CAS  Google Scholar 

  163. Hertel P, Lindblom N, Nomikos GG, Svensson TH. Receptor-mediated regulation of serotonin output in the rat dorsal raphe nucleus: effects of risperidone. Psychopharmacology 2001;153:307–314.

    PubMed  CAS  Google Scholar 

  164. Adell A, Celada P, Artigas F. The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. J Neurochem 2001;79:172–182.

    PubMed  CAS  Google Scholar 

  165. Morikawa H, Manzoni OJ, Crabbe JC, Williams JT. Regulation of central synaptic transmission by 5-HT1B auto-and heteroreceptors. Mol Pharmacol 2000;58:1271–1278.

    PubMed  CAS  Google Scholar 

  166. Davidson C, Stamford JA. Evidence that 5-hydroxytryptamine release in rat dorsal raphe nucleus is controlled by 5-HT1A, 5-HT1B and 5-HT1D autoreceptors. BrJ Pharmacol 1995;114:1107–1109.

    CAS  Google Scholar 

  167. Hopwood SE, Stamford JA. Multiple 5-HT1 autoreceptor subtypes govern serotonin release in dorsal and median raphe nuclei. Neuropharmacology 2001;40:508–519.

    PubMed  CAS  Google Scholar 

  168. Pin~eyro G, de Montigny C, Blier P. 5-HTID receptors regulate 5-HT release in the rat raphe nuclei: in vivo voltammetry and in vitro superfusion studies. Neuropsychopharmacology 1995;13:249–260.

    CAS  Google Scholar 

  169. Pin~eyro G, de Montigny C, Weiss M, Blier P. Autoregulatory properties of dorsal raphe 5-HT neurons: possible role of electrotonic coupling and 5-HT1D receptors in the rat brain. Synapse 1996;22:54–62.

    CAS  Google Scholar 

  170. Middlemiss DN, Hutson PH. The 5-HT1B receptors. Ann N Y Acad Sci 1990;600:132–147.

    PubMed  CAS  Google Scholar 

  171. Starkey SJ, Skingle M. 5-HT(1D) as well as 5-HT(1A) autoreceptors modulate 5-HT release in the guinea-pig dorsal raphe nucleus. Neuropharmacology 1994;33:393–402.

    PubMed  CAS  Google Scholar 

  172. Moret C, Briley M. 5-HT autoreceptors in the regulation of 5-HT release from guinea pig raphe nucleus and hypothalamus. Neuropharmacology 1998;36: 1713–1723.

    Google Scholar 

  173. Stamford JA, Kruk ZL, Millar J. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data. Brain Res 1990;515:173–180.

    PubMed  CAS  Google Scholar 

  174. Sawyer SF, Tepper JM, Young SJ, Groves PM. Antidromic activation of dorsal raphe neurons from neostriatum: physiological characterization and effects of terminal autoreceptor activation. Brain Res 1985;332:15–28.

    PubMed  CAS  Google Scholar 

  175. Chaput Y, Blier P, de Montigny C. In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals. J Neurosci 1986;6: 2796–2801.

    PubMed  CAS  Google Scholar 

  176. Maura G, Raiteri M. Cholinergic terminals in rat hippocampus possess 5-HT1Breceptors mediating inhibition of acetylcholine release. Eur J Pharmacol 1986;129:333–337.

    PubMed  CAS  Google Scholar 

  177. Maura G, Fedele E, Raiteri M. Acetylcholine release from rat hippocampal slices is modulated by 5-hydroxytryptamine. Eur J Pharmacol 1989;165:173–179.

    PubMed  CAS  Google Scholar 

  178. Maura G, Roccatagliata E, Raiteri M. Serotonin autoreceptor in rat hippocampus: pharmacological characterization as a subtype of the 5-HT1 receptor. Naunyn-Schmiedebergs Arch Pharmacol 1986;334:323–326.

    PubMed  CAS  Google Scholar 

  179. Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 1995;69:1–41.

    PubMed  CAS  Google Scholar 

  180. Li Y, Bayliss DA. Presynaptic inhibition by 5-HT1B receptors of glutamatergic synaptic inputs onto serotonergic caudal raphe neurones in rat. J Physiol 1998;510:121–134.

    PubMed  CAS  Google Scholar 

  181. Bobker DH, Williams JT. Sertonin agonists inhibit synaptic potentials in the rat locus coeruleus in vitro via 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptors. J Pharmacol Exp Ther 1989;250:37–43.

    PubMed  CAS  Google Scholar 

  182. Boeijinga PH, Boddeke HWGM. Serotonergic modulation of neurotransmission in the rat subicular cortex in vitro: A role for 5-HT(1B) receptors. Naunyn-Schmiedebergs Arch Pharmacol 1993;348:553–557.

    PubMed  CAS  Google Scholar 

  183. Boeijinga PH, Boddeke HWGM. Activation of 5-HT1B receptors suppresses low but not high frequency synaptic transmission in the rat subicular cortex in vitro. Brain Res 1996;721:59–65.

    PubMed  CAS  Google Scholar 

  184. Mlinar B, Falsini C, Corradetti R. Pharmacological characterization of 5-HT(1B) receptor-mediated inhibition of local excitatory synaptic transmission in the CA1 region of rat hippocampus. Br J Pharmacol 2003;138:71–80.

    PubMed  CAS  Google Scholar 

  185. Mlinar B, Corradetti R. Endogenous 5-HT, released by MDMA through serotonin transporter-and secretory vesicle-dependent mechanisms, reduces hippocampal excitatory synaptic transmission by preferential activation of 5-HT1B receptors located on CA1 pyramidal neurons. Eur J Neurosci 2003;18:1559–1571.

    PubMed  Google Scholar 

  186. Sarhan H, Cloeztayarani I, Massot O, Fillion MP, Fillion G. 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes. Naunyn-Schmiedebergs Arch Pharmacol 1999;359:40–47.

    PubMed  CAS  Google Scholar 

  187. Sarhan H, Grimaldi B, Hen R, Fillion G. 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes: further evidence using 5-HT mod-uline, polyclonal 5-HT1B receptor antibodies and 5-HT1B receptor knock-out mice. Naunyn-Schmiedebergs Arch Pharmacol 2000;361:12–18.

    PubMed  CAS  Google Scholar 

  188. Benloucif S, Keegan MJ, Galloway MP. Serotonin-facilitated dopamine release in vivo: pharmacological characterization. J Pharmacol Exp Ther 1993;265: 373–377.

    PubMed  CAS  Google Scholar 

  189. De Groote L, Olivier B, Westenberg HG. Role of 5-HT1B receptors in the regulation of extracellular serotonin and dopamine in the dorsal striatum of mice. Eur J Pharmacol 2003;476:71–77.

    PubMed  Google Scholar 

  190. Johnson SW, Mercuri NB, North RA. 5-Hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci 1992;12: 2000–2006.

    PubMed  CAS  Google Scholar 

  191. Stanford IM, Lacey MG. Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 1998;16:7566–7573.

    Google Scholar 

  192. Chadha A, Sur C, Atack J, Duty S. The 5HT(1B) receptor agonist CP-93,129, inhibits [3H]-GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine-treated rat. Br J Pharmacol 2000;130:1927–1932.

    CAS  Google Scholar 

  193. Cameron DL, Williams JT. Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J Neurosci 1994;14:6763–6767.

    PubMed  CAS  Google Scholar 

  194. Hervás I, Artigas F. Effect of fluoxetine on extracellular 5-hydroxytryptamine in rat brain. Role of 5-HT autoreceptors. Eur J Pharmacol 1998;358:9–18.

    PubMed  Google Scholar 

  195. Romero L, Artigas F. Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors. J Neurochem 1997;68:2593–2603.

    PubMed  CAS  Google Scholar 

  196. Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378–383.

    PubMed  CAS  Google Scholar 

  197. Artigas F, Celada P, Laruelle M, Adell A. How does pindolol improve antidepressant action? Trends Pharmacol Sci 2001;22:224–228.

    PubMed  CAS  Google Scholar 

  198. Knobelman DA, Hen R, Lucki I. Genetic regulation of extracellular serotonin by 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) autoreceptors in different brain regions of the mouse. J Pharmacol Exp Ther 2001;298:1083–1091.

    PubMed  CAS  Google Scholar 

  199. Blier P, Ward NM. Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 2003;53:193–203.

    PubMed  CAS  Google Scholar 

  200. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY. 5-HT2A and D-2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001;76:1521–1531.

    PubMed  CAS  Google Scholar 

  201. Chou YH, Halldin C, Farde L. Occupancy of 5-HT1A receptors by clozapine in the primate brain: a PET study. Psychopharmacology (Berl) 2003;166:234–240.

    PubMed  CAS  Google Scholar 

  202. Millan MJ. Improving the treatment of schizophrenia: focus on serotonin 5-HT1Areceptors. J Pharmacol Exp Ther 2000;295:853–861.

    PubMed  CAS  Google Scholar 

  203. Misane I, Ögren SO. Selective 5-HT1A antagonists WAY 100635 and NAD-299 attenuate the impairment of passive avoidance caused by scopolamine in the rat. Neuropsychopharmacology 2003;28:253–264.

    PubMed  CAS  Google Scholar 

  204. Pitsikas N, Rigamonti AE, Cella SG, Muller EE. The 5-HT1A receptor antagonist WAY 100635 improves rats performance in different models of amnesia evaluated by the object recognition task. Brain Res 2003;983:215–222.

    PubMed  CAS  Google Scholar 

  205. Rollema H, Clarke T, Sprouse JS, Schulz DW. Combined administration of a 5-hydroxytryptamine (5-HT1D) antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J Neurochem 1996;67:2204–2207.

    PubMed  CAS  Google Scholar 

  206. Hervás I, Queiroz CM, Adell A, Artigas F. Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. Br J Pharmacol 2000;130:160–166.

    PubMed  Google Scholar 

  207. Buzzi MG, Moskowitz MA. Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine. Cephalalgia 1991;11: 165–168.

    PubMed  CAS  Google Scholar 

  208. Hoskin KL, Lambert GA, Donaldson C, Zagami AS. The 5-hydroxytryptamine1B/1D/1Freceptor agonists eletriptan and naratriptan inhibit trigeminovascular input to the nucleus tractus solitarius in the cat. Brain Res 2004;998:91–99.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Celada, P., Adell, A., Artigas, F. (2006). Modulation of the Neuronal Activity and Neurotransmitter Release by 5-HT1A and 5-HT1B/1D Receptors. In: Roth, B.L. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-080-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-080-5_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-568-2

  • Online ISBN: 978-1-59745-080-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics