Skip to main content

Molecular Biology and Genomic Organization of G Protein-Coupled Serotonin Receptors

  • Chapter
The Serotonin Receptors

Part of the book series: The Receptors ((REC))

Abstract

Among animals with nervous systems, serotonin (5-hydroxytryptamine; 5-HT) is a ubiquitous neurotransmitter, and numerous classes and subclasses of G protein-coupled 5-HT receptors have evolved to transduce extracellular 5-HT signals to the intracellular milieu. In this chapter, we summarize naturally occurring variation in serotonin receptor sequences. These sequences vary by species and by class and subclass and are further modified from their canonical sequences by RNA editing, alternative splicing, and the existence of single-nucleotide polymorphisms. By the presence of 5-HT receptors in such relatively simple organisms as Caenorhabditis elegans, it can be inferred that serotonergic signaling as a means of intracellular communication arose fairly early in evolutionary history. The multiple subclasses of 5-HT receptors and the various means to further modify receptor sequences, such as splicing and editing, presumably point to a biological requirement for very delicate “fine-tuning” of serotonergic signaling. How this fine-tuning is accomplished is likely to occupy and intrigue biologists for many years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000;289:739–745.

    Article  PubMed  CAS  Google Scholar 

  2. Kroeze WK, Kristiansen K, Roth BL. Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem 2002;2:507–528.

    Article  PubMed  CAS  Google Scholar 

  3. Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 2004;103:21–80.

    Article  PubMed  CAS  Google Scholar 

  4. Madabushi S, Yao H, Marsh M, Kristensen DM, Philippi A, Sowa ME, Lichtarge O. Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J Mol Biol 2002;316:139–154.

    Article  PubMed  CAS  Google Scholar 

  5. Kroeze WK, Sheffler DJ, Roth BL. G protein-coupled receptors at a glance. J Cell Sci 2003;116:4867–4869.

    Article  PubMed  CAS  Google Scholar 

  6. Ballesteros JA, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G protein coupled receptors. Methods Neurosci 1995;25:366–428.

    Article  CAS  Google Scholar 

  7. Barak LS, Menard L, Ferguson SS, Colapietro AM, Caron MG. The conserved seven-transmembrane sequence NP(X)2,3Y of the G protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry 1995;34:15,407-15,414.

    Google Scholar 

  8. Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 2003;13:2541–2558.

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen T, Marchese A, Kennedy JL, et al. An Alu sequence interrupts a human 5-hydroxytryptamine ID receptor pseudogene. Gene 1993;124:295–301.

    Article  PubMed  CAS  Google Scholar 

  10. Shuck ME, Veldman SA, Bienkowski MJ. Cloning, sequencing and phylogenetic analysis of a human 5-hydroxytryptamine ID receptor pseudogene. Gene 1993;137:339–344.

    Article  PubMed  CAS  Google Scholar 

  11. Bard JA, Nawoschik SP, O’Dowd BF, George SR, Branchek TA, Weinshank RL. The human serotonin 5-hydroxytryptamine ID receptor pseudogene is transcribed. Gene 1995;153:295–296.

    Article  PubMed  CAS  Google Scholar 

  12. Liu IS, Kusumi I, Ulpian C, Tallerico T, Seeman P. A serotonin-4 receptor-like pseudogene in humans. Brain Res Mol Brain Res 1998;53:98–103.

    Article  PubMed  CAS  Google Scholar 

  13. Nam D, Qian IH, Kusumi I, et al. The human serotonin-7 receptor pseudogene: variation and chromosome location. J Psychiatry Neurosci 1998;23:214–216.

    PubMed  CAS  Google Scholar 

  14. Qian IH, Kusumi I, Ulpian C, et al. A human serotonin-7 receptor pseudogene. Brain Res Mol Brain Res 1998;53:339–343.

    Article  PubMed  CAS  Google Scholar 

  15. Lassig JP, Vachirasomtoon K, Hartzell K, et al. Physical mapping of the serotonin 5-HT(7) receptor gene (HTR7) to chromosome 10 and pseudogene (HTR7P) to chromosome 12, and testing of linkage disequilibrium between HTR7 and autistic disorder. Am J Med Genet 1999;88:472–475.

    Article  PubMed  CAS  Google Scholar 

  16. Olsen MA, Schechter LE. Cloning, mRNA localization and evolutionary conservation of a human 5-HT7 receptor pseudogene. Gene 1999;227:63–69.

    Article  PubMed  CAS  Google Scholar 

  17. Grailhe R, Grabtree GW, Hen R. Human 5-HT(5) receptors: the 5-HT(5A) receptor is functional but the 5-HT(5B) receptor was lost during mammalian evolution. Eur J Pharmacol 2001;418:157–167.

    Article  PubMed  CAS  Google Scholar 

  18. Burns CM, Chu H, Rueter SM, et al. Regulation of serotonin-2C receptor G protein coupling by RNA editing. Nature 1997;387:303–308.

    Article  PubMed  CAS  Google Scholar 

  19. Fitzgerald LW, Iyer G, Conklin DS, et al. Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 1999;21:82S–90S.

    PubMed  CAS  Google Scholar 

  20. Wang Q, O’Brien PJ, Chen CX, Cho DS, Murray JM, Nishikura K. Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J Neurochem 2000;74:1290–1300.

    PubMed  CAS  Google Scholar 

  21. Sodhi MS, Burnet PW, Makoff AJ, Kerwin RW, Harrison PJ. RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Mol Psychiatry 2001;6:373–379.

    Article  PubMed  CAS  Google Scholar 

  22. Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 1999;274:9472–9478.

    Article  PubMed  CAS  Google Scholar 

  23. Backstrom JR, Chang MS, Chu H, Niswender CM, Sanders-Bush E. Agonistdirected signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD). Neuropsychopharmacology 1999;21:77S–81S.

    PubMed  CAS  Google Scholar 

  24. Herrick-Davis K, Grinde E, Niswender CM. Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem 1999;73:1711–1717.

    Article  PubMed  CAS  Google Scholar 

  25. Price RD, Sanders-Bush E. RNA editing of the human serotonin 5-HT(2C) receptor delays agonist-stimulated calcium release. Mol Pharmacol 2000;58:859–862.

    PubMed  CAS  Google Scholar 

  26. Rauser L, Savage JE, Meltzer HY, Roth BL. Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J Pharmacol Exp Ther 2001;299:83–89.

    PubMed  CAS  Google Scholar 

  27. Berg KA, Cropper JD, Niswender CM, Sanders-Bush E, Emeson RB, Clarke WP. RNA-editing of the 5-HT(2C) receptor alters agonist-receptor-effector coupling specificity. Br J Pharmacol 2001;134:386–392.

    Article  PubMed  CAS  Google Scholar 

  28. Price RD, Weiner DM, Chang MS, Sanders-Bush E. RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 2001;276:44,663–44,668.

    Article  PubMed  CAS  Google Scholar 

  29. McGrew L, Price RD, Hackler E, Chang MS, Sanders-Bush E. RNA editing of the human serotonin 5-HT2C receptor disrupts transactivation of the small G protein RhoA. Mol Pharmacol 2004;65:252–256.

    Article  PubMed  CAS  Google Scholar 

  30. Visiers I, Hassan SA, Weinstein H. Differences in conformational properties of the second intracellular loop (IL2) in 5HT(2C) receptors modified by RNA editing can account for G protein coupling efficiency. Protein Eng 2001;14:409–414.

    Article  PubMed  CAS  Google Scholar 

  31. Marion S, Weiner DM, Caron MG. RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J Biol Chem 2004;279:2945–2954.

    Article  PubMed  CAS  Google Scholar 

  32. Flomen R, Knight J, Sham P, Kerwin R, Makoff A. Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 2004;32:2113–2122.

    Article  PubMed  CAS  Google Scholar 

  33. Niswender CM, Herrick-Davis K, Dilley GE, et al. RNA editing of the human serotonin 5-HT2C receptor. Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 2001;24:478–491.

    Article  PubMed  CAS  Google Scholar 

  34. Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C. Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 2002;34:349–356.

    Article  PubMed  CAS  Google Scholar 

  35. Gurevich I, Englander MT, Adlersberg M, Siegal NB, Schmauss C. Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 2002;22:10,529–10,532.

    PubMed  CAS  Google Scholar 

  36. Iwamoto K, Kato T. Effects of cocaine and reserpine administration on RNA editing of rat 5-HT2C receptor estimated by primer extension combined with denaturing high-performance liquid chromatography. Pharmacogenomics J 2002;2:335–340.

    Article  PubMed  CAS  Google Scholar 

  37. Gerald C, Adham N, Kao HT, et al. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J 1995;14:2806–2815.

    PubMed  CAS  Google Scholar 

  38. Huang X, Xiao H, Rex EB, et al. Functional characterization of alternatively spliced 5-HT2 receptor isoforms from the pharynx and muscle of the parasitic nematode, Ascaris suum. J Neurochem 2002;83:249–258.

    Article  PubMed  CAS  Google Scholar 

  39. Hamdan FF, Ungrin MD, Abramovitz M, Ribeiro P. Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 1999;72:1372–1383.

    Article  PubMed  CAS  Google Scholar 

  40. Guest PC, Salim K, Skynner HA, George SE, Bresnick JN, McAllister G. Identification and characterization of a truncated variant of the 5-hydroxytryptamine(2A) receptor produced by alternative splicing. Brain Res 2000;876:238–244.

    Article  PubMed  CAS  Google Scholar 

  41. Canton H, Emeson RB, Barker EL, et al. Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 1996;50:799–807.

    PubMed  CAS  Google Scholar 

  42. Xie E, Zhu L, Zhao L, Chang LS. The human serotonin 5-HT2C receptor: complete cDNA, genomic structure, and alternatively spliced variant. Genomics 1996;35:551–561.

    Article  PubMed  CAS  Google Scholar 

  43. Olsen MA, Nawoschik SP, Schurman BR, et al. Identification of a human 5-HT6 receptor variant produced by alternative splicing. Brain Res Mol Brain Res 1999;64:255–263.

    Article  PubMed  CAS  Google Scholar 

  44. Khan MA, Isenberg KE, Aschauer H, Devor EJ. A Sac I RFLP is detected with the 5-HTla serotonin receptor probe G21. Nucleic Acids Res 1990;18:691.

    Article  PubMed  CAS  Google Scholar 

  45. Warren JT Jr, Peacock ML, Fink JK. An Rsal polymorphism in the human serotonin receptor gene (HTR1A): detection by DGGE and RFLP analysis. Hum Mol Genet 1992;1:778.

    Article  PubMed  CAS  Google Scholar 

  46. Warren JT Jr, Peacock ML, Rodriguez LC, Fink JK. An Mspl polymorphism in the hyman serotonin receptor gene (HTR2): detection by DGGE and RFLP analysis. Hum Mol Genet 1993;2:338.

    Article  PubMed  CAS  Google Scholar 

  47. Bergen A, Wang CY, Nakhai B, Goldman D. Mass allele detection (MAD) of rare 5-HT1A structural variants with allele-specific amplification and electrochemiluminescent detection. Hum Mutat 1996;7:135–143.

    Article  PubMed  CAS  Google Scholar 

  48. Li XC, Giot JF, Kuhl D, Hen R, Kandel ER. Cloning and characterization of two related serotonergic receptors from the brain and the reproductive system of Aplysia that activate phospholipase C. J Neurosci 1995;15:7585–7591.

    PubMed  CAS  Google Scholar 

  49. Pietrantonio PV, Jagge C, McDowell C. Cloning and expression analysis of a 5HT7-like serotonin receptor cDNA from mosquito Aedes aegypti female excretory and respiratory systems. Insect Mol Biol 2001;10:357–369.

    Article  PubMed  CAS  Google Scholar 

  50. Witz P, Amlaiky N, Plassat JL, Maroteaux L, Borrelli E, Hen R. Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc Natl Acad Sci USA 1990;87:8940–8944.

    Article  PubMed  CAS  Google Scholar 

  51. Saitoh O, Yuruzume E, Watanabe K, Nakata H. Molecular identification of a G protein-coupled receptor family which is expressed in planarians. Gene 1997;195:55–61.

    Article  PubMed  CAS  Google Scholar 

  52. Colas JF, Launay JM, Kellermann O, Rosay P, Maroteaux L. Drosophila 5-HT2 serotonin receptor: coexpression with fushi-tarazu during segmentation. Proc Natl Acad Sci USA 1995;92:5441–5445.

    Article  PubMed  CAS  Google Scholar 

  53. Huang X, Duran E, Diaz F, Xiao H, Messer WS Jr, Komuniecki R. Alternativesplicing of serotonin receptor isoforms in the pharynx and muscle of the parasitic nematode, Ascaris suum. Mol Biochem Parasitol 1999;101:95–106.

    Article  PubMed  CAS  Google Scholar 

  54. Huang X, Xiao H, Rex EB, et al. Functional characterization of alternatively spliced 5-HT2 receptor isoforms from the pharynx and muscle of the parasitic nematode, Ascaris suum. J Neurochem 2002;83:249–258.

    Article  PubMed  CAS  Google Scholar 

  55. Gerhardt CC, Leysen JE, Planta RJ, Vreugdenhil E, Van Heerikhuizen H. Functional characterisation of a 5-HT2 receptor cDNA cloned from Lymnaea stagnalis. Eur J Pharmacol 1996;311:249–258.

    Article  PubMed  CAS  Google Scholar 

  56. Clark MC, Dever TE, Dever JJ, et al. Arthropod 5-HT2 receptors: a neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif. J Neurosci 2004;24:3421–3435.

    Article  PubMed  CAS  Google Scholar 

  57. Saudou F, Boschert U, Amlaiky N, Plassat JL, Hen R. A family of Drosophila serotonin receptors with distinct intracellular signalling properties and expression patterns. EMBO J 1992;11:7–17.

    PubMed  CAS  Google Scholar 

  58. von Nickisch-Rosenegk E, Krieger J, Kubick S, et al. Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens). Insect Biochem Mol Biol 1996;26:817–827.

    Article  Google Scholar 

  59. Ono H, Yoshikawa H. Identification of amine receptors from a swallowtail butterfly, Papilio xuthus L.: cloning and mRNA localization in foreleg chemosensory organ for recognition of host plants. Insect Biochem Mol Biol 2004;34:1247–1256.

    Article  PubMed  CAS  Google Scholar 

  60. Chen A, Holmes SP, Pietrantonio PV. Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick Boophilus microplus (Acari: Ixodidae). Insect Mol Biol 2004;13:45–54.

    Article  PubMed  Google Scholar 

  61. Sugamori KS, Sunahara RK, Guan HC, et al. Serotonin receptor cDNA cloned from Lymnaea stagnalis. Proc Natl Acad Sci USA 1993;90:11–15.

    Article  PubMed  CAS  Google Scholar 

  62. Angers A, Storozhuk MV, Duchaine T, Castellucci VF, DesGroseillers L. Cloning and functional expression of an Aplysia 5-HT receptor negatively coupled to adenylate cyclase. J Neurosci 1998;18:5586–5593.

    PubMed  CAS  Google Scholar 

  63. Barbas D, Zappulla JP, Angers S, Bouvier M, Castellucci VF, DesGroseillers L. Functional characterization of a novel serotonin receptor (5-HTap2) expressed in the CNS of Aplysia californica. J Neurochem 2002;80:335–345.

    Article  PubMed  CAS  Google Scholar 

  64. Olde B, McCombie WR. Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 1997;8:53–62.

    Article  PubMed  CAS  Google Scholar 

  65. Smith MW, Borts TL, Emkey R, Cook CA, Wiggins CJ, Gutierrez JA. Characterization of a novel G protein coupled receptor from the parasitic nematode H. contortus with high affinity for serotonin. J Neurochem 2003;86:255–266.

    Article  PubMed  CAS  Google Scholar 

  66. Kawahara H, Isoai A, Shizuri Y. Molecular cloning of a putative serotonin receptor gene from barnacle, Balanus amphitrite. Gene 1997;184:245–250.

    Article  PubMed  CAS  Google Scholar 

  67. Rex E, Komuniecki RW. Characterization of a tyramine receptor from Caenor habditis elegans. J Neurochem 2002;82:1352–1359.

    Article  PubMed  CAS  Google Scholar 

  68. Yamaguchi F, Brenner S. Molecular cloning of 5-hydroxytryptamine (5-HT) type 1 receptor genes from the Japanese puffer fish, Fugu rubripes. Gene 1997;191:219–223.

    Article  PubMed  CAS  Google Scholar 

  69. Kobilka BK, Frielle T, Collins S, et al. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 1987;329:75–79.

    Article  PubMed  CAS  Google Scholar 

  70. Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 1998;335:358–360.

    Article  Google Scholar 

  71. Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptaminelA receptor gene. J Biol Chem 1990;265:5825–5832.

    PubMed  CAS  Google Scholar 

  72. Charest A, Wainer BH, Albert PR. Cloning and differentiation-induced expression of a murine serotoninlA receptor in a septal cell line. J Neurosci 1993;13:5164–5171.

    PubMed  CAS  Google Scholar 

  73. Kukekova AV, Trut LN, Oskina IN, et al. A marker set for construction of a genetic map of the silver fox (Vulpes vulpes). J Hered 2004;95:185–194.

    Article  PubMed  CAS  Google Scholar 

  74. van den Berg L, Versteeg SA, van Oost BA. Isolation and characterization of the canine serotonin receptor 1A gene (htrlA). J Hered 2003;94:49–56.

    Article  PubMed  CAS  Google Scholar 

  75. Marracci S, Cini D, Nardi I. Cloning and developmental expression of 5-HT1A receptor gene in Xenopus laevis. Brain Res Mol Brain Res 1997;47:67–77.

    Article  PubMed  CAS  Google Scholar 

  76. Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA, Hartig PR. Human serotonin ID receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta. Proc Natl Acad Sci USA 1992;89:3630–3634.

    Article  PubMed  CAS  Google Scholar 

  77. Demchyshyn L, Sunahara RK, Miller K, et al. A human serotonin ID receptor variant (5HT1D beta) encoded by an intronless gene on chromosome 6. Proc Natl Acad Sci USA 1992;89:5522–5526.

    Article  PubMed  CAS  Google Scholar 

  78. Mochizuki D, Yuyama Y, Tsujita R, Komaki H, Sagai H. Cloning and expression of the human 5-HTlB-type receptor gene. Biochem Biophys Res Commun 1992;185:517–523.

    Article  PubMed  CAS  Google Scholar 

  79. Hamblin MW, Metcalf MA, McGuffin RW, Karpells S. Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B receptor with 5-HTlD-like pharmacological specificity. Biochem Biophys Res Commun 1992;184:752–759.

    Article  PubMed  CAS  Google Scholar 

  80. Levy FO, Gudermann T, Perez-Reyes E, Birnbaumer M, Kaumann AJ, Birnbaumer L. Molecular cloning of a human serotonin receptor (SI2) with a pharmacological profile resembling that of the 5-HT1D subtype. J Biol Chem 1992;267:7553–7562.

    PubMed  CAS  Google Scholar 

  81. Veldman SA, Bienkowski MJ. Cloning and pharmacological characterization of a novel human 5-hydroxytryptaminelD receptor subtype. Mol Pharmacol 1992;42:439–444.

    PubMed  CAS  Google Scholar 

  82. Jin H, Oksenberg D, Ashkenazi A, et al. Characterization of the human 5-hydroxytryptaminelB receptor. J Biol Chem 1992;267:5735–5738.

    PubMed  CAS  Google Scholar 

  83. Ng GY, George SR, Zastawny RL, et al. Human serotoninlB receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry 1993;32:11,727–11,733.

    Article  PubMed  CAS  Google Scholar 

  84. Nothen MM, Erdmann J, Shimron-Abarbanell D, Propping P. Identification of genetic variation in the human serotonin ID beta receptor gene. Biochem Biophys Res Commun 1994;205:1194–1200.

    Article  PubMed  CAS  Google Scholar 

  85. Masuda K, Hashizume C, Ogata N, Kikusui T, Takeuchi Y, Mori Y. Sequencing of canine 5-hydroxytriptamine receptor (5-HTR) IB, 2A, 2C genes and identification of polymorphisms in the 5-HTR1B gene. J Vet Med Sci 2004;66:965–972.

    Article  PubMed  CAS  Google Scholar 

  86. Bhalla P, Sharma HS, Ma X, Wurch T, Pauwels PJ, Saxena PR. Molecular cloning, pharmacological properties and tissue distribution of the porcine 5-HT(lB) receptor. Br J Pharmacol 2001;133:891–901.

    Article  PubMed  CAS  Google Scholar 

  87. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R. Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci USA 1992;89:3020–3024.

    Article  PubMed  CAS  Google Scholar 

  88. Hamblin MW, McGuffin RW, Metcalf MA, Dorsa DM, Merchant KM. Distinct 5-HT1B and 5-HT1D serotonin receptors in rat: structural and pharmacological comparison of the two cloned receptors. Mol Cell Neurosci 1992;3:578–587.

    Article  CAS  PubMed  Google Scholar 

  89. Harwood G, Lockyer M, Giles H, Fairweather N. Cloning and characterisation of the rabbit 5-HT1D alpha and 5-HT1D beta receptors. FEBS Lett 1995;377:73–76.

    Article  PubMed  CAS  Google Scholar 

  90. Zgombick JM, Bard JA, Kucharewicz SA, Urquhart DA, Weinshank RL, Branchek TA. Molecular cloning and pharmacological characterization of guinea pig 5-HT1B and 5-HT1D receptors. Neuropharmacology 1997;36:513–524.

    Article  PubMed  CAS  Google Scholar 

  91. Cerutis DR, Hass NA, Iversen LJ, Bylund DB. The cloning and expression of an OK cell cDNA encoding a 5-hydroxytryptaminelB receptor. Mol Pharmacol 1994;45:20–28.

    PubMed  CAS  Google Scholar 

  92. Hamblin MW, Metcalf MA. Primary structure and functional characterization of a human 5-HTlD-type serotonin receptor. Mol Pharmacol 1991;40:143–148.

    PubMed  CAS  Google Scholar 

  93. Bhalla P, Sharma HS, Wurch T, Pauwels PJ, Saxena PR. Molecular cloning, sequence analysis and pharmacological properties of the porcine 5-HT(lD) receptor. Br J Pharmacol 2000;131:949–957.

    Article  PubMed  CAS  Google Scholar 

  94. Wurch T, Palmier C, Colpaert FC, Pauwels PJ. Sequence and functional analysis of cloned guinea pig and rat serotonin 5-HT1D receptors: common pharmacological features within the 5-HT1D receptor subfamily. J Neurochem 1997;68:410–418.

    PubMed  CAS  Google Scholar 

  95. Wilkie TM, Chen Y, Gilbert DJ, et al. Identification, chromosomal location, and genome organization of mammalian G protein-coupled receptors. Genomics 1993;18:175–184.

    Article  PubMed  CAS  Google Scholar 

  96. Libert F, Parmentier M, Lefort A, et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 1989;244:569–572.

    Article  PubMed  CAS  Google Scholar 

  97. Libert F, Parmentier M, Lefort A, Dumont JE, Vassart G. Complete nucleotide sequence of a putative G protein coupled receptor: RDC4. Nucleic Acids Res 1990;18:1916.

    Article  PubMed  CAS  Google Scholar 

  98. Maenhaut C, Van Sande J, Massart C, et al. The orphan receptor cDNA RDC4 encodes a 5-HT1D serotonin receptor. Biochem Biophys Res Commun 1991;180:1460–1468.

    Article  PubMed  CAS  Google Scholar 

  99. Zgombick JM, Schechter LE, Macchi M, Hartig PR, Branchek TA, Weinshank RL. Human gene S31 encodes the pharmacologically defined serotonin 5-hydroxy-tryptaminelE receptor. Mol Pharmacol 1992;42:180–185.

    PubMed  CAS  Google Scholar 

  100. Bai F, Yin T, Johnstone EM, et al. Molecular cloning and pharmacological charaterization of the guinea pig 5-HT1E receptor. Eur J Pharmacol 2004;484:127–139.

    Article  PubMed  CAS  Google Scholar 

  101. Lovenberg TW, Erlander MG, Baron BM, et al. Molecular cloning and functional expression of 5-HTlE-like rat and human 5-hydroxytryptamine receptor genes. Proc Natl Acad Sci USA 1993;90:2184–2188.

    Article  PubMed  CAS  Google Scholar 

  102. Adham N, Kao HT, Schecter LE, et al. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci USA 1993;90:408–412.

    Article  PubMed  CAS  Google Scholar 

  103. Amlaiky N, Ramboz S, Boschert U, Plassat JL, Hen R. Isolation of a mouse “5HT1E-like” serotonin receptor expressed predominantly in hippocampus. J Biol Chem 1992;267:19,761–19,764.

    PubMed  CAS  Google Scholar 

  104. Bhalla P, Sharma HS, Wurch T, Pauwels PJ, Saxena PR. Molecular cloning and expression of the porcine trigeminal ganglion cDNA encoding a 5-ht(lF) receptor. Eur J Pharmacol 2002;436:23–33.

    Article  PubMed  CAS  Google Scholar 

  105. Adham N, Bard JA, Zgombick JM, et al. Cloning and characterization of the guinea pig 5-HT1F receptor subtype: a comparison of the pharmacological profile to the human species homolog. Neuropharmacology 1997;36:569–576.

    Article  PubMed  CAS  Google Scholar 

  106. Johnson MP, Baez M, Kursar JD, Nelson DL. Species differences in 5-HT2A receptors: cloned pig and rhesus monkey 5-HT2A receptors reveal conserved transmembrane homology to the human rather than rat sequence. Biochim Biophys Acta 1995;1236:201–206.

    Article  PubMed  Google Scholar 

  107. Ullmer C, Schmuck K, Kalkman HO, Lubbert H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 1995;370:215–221.

    Article  PubMed  CAS  Google Scholar 

  108. Julius D, Huang KN, Livelli TJ, Axel R, Jessell TM. The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc Natl Acad Sci USA 1990;87:928–932.

    Article  PubMed  CAS  Google Scholar 

  109. Saltzman AG, Morse B, Whitman MM, Ivanshchenko Y, Jaye M, Felder S. Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun 1991;181:1469–1478.

    Article  PubMed  CAS  Google Scholar 

  110. Chen K, Yang W, Grimsby J, Shih JC. The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Brain Res Mol Brain Res 1992;14:20–26.

    Article  PubMed  CAS  Google Scholar 

  111. Stam NJ, Van Huizen F, Van Alebeek C, et al. Genomic organization, coding sequence and functional expression of human 5-HT2 and 5-HT1A receptor genes. Eur J Pharmacol 1992;227:153–162.

    Article  PubMed  CAS  Google Scholar 

  112. Cook EH Jr, Fletcher KE, Wainwright M, Marks N, Yan SY, Leventhal BL. Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor. J Neurochem 1994;63:465–469.

    PubMed  CAS  Google Scholar 

  113. Erdmann J, Shiinron-Abarbanell D, Rietschel M, et al. Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia. Hum Genet 1996;97:614–619.

    Article  PubMed  CAS  Google Scholar 

  114. Pritchett DB, Bach AW, Wozny M, et al. Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 1988;7:4135–4140.

    PubMed  CAS  Google Scholar 

  115. Chambard JC, Van Obberghen-Schilling E, Haslam RJ, Vouret V, Pouyssegur J. Chinese hamster serotonin (5-HT) type 2 receptor cDNA sequence. Nucleic Acids Res 1990;18:5282.

    Article  PubMed  CAS  Google Scholar 

  116. Yang W, Chen K, Lan NC, Gallaher TK, Shih JC. Gene structure and expression of the mouse 5-HT2 receptor. J Neurosci Res 1992;33:196–204.

    Article  PubMed  CAS  Google Scholar 

  117. Schmuck K, Ullmer C, Engels P, Lubbert H. Cloning and functional characterization of the human 5-HT2B serotonin receptor. FEBS Lett 1994;342:85–90.

    Article  PubMed  CAS  Google Scholar 

  118. Kursar JD, Nelson DL, Wainscott DB, Baez M. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol 1994;46:227–234.

    PubMed  CAS  Google Scholar 

  119. Loric S, Launay JM, Colas JF, Maroteaux L. New mouse 5-HT2-like receptor. Expression in brain, heart and intestine. FEBS Lett 1992;312:203–207.

    Article  PubMed  CAS  Google Scholar 

  120. Foguet M, Hoyer D, Pardo LA, et al. Cloning and functional characterization of the rat stomach fundus serotonin receptor. EMBO J 1992;11:3481–3487.

    PubMed  CAS  Google Scholar 

  121. De Lucchini S, Ori M, Nardini M, Marracci S, Nardi I. Expression of 5-HT2B and 5-HT2C receptor genes is associated with proliferative regions of Xenopus developing brain and eye. Brain Res Mol Brain Res 2003;115:196–201.

    Article  PubMed  CAS  Google Scholar 

  122. De Lucchini S, Marracci S, Nardi I. The serotonin 5-HT2B receptor from the puffer fish Tetraodon fluviatilis: cDNA cloning, genomic organization and alternatively spliced variants. Brain Res Mol Brain Res 2001;97:89–93.

    Article  PubMed  Google Scholar 

  123. Julius D, MacDermott AB, Axel R, Jessell TM. Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 1988;241:558–564.

    Article  PubMed  CAS  Google Scholar 

  124. Stam NJ, Vanderheyden P, van Alebeek C, et al. Genomic organisation and functional expression of the gene encoding the human serotonin 5-HT2C receptor. Eur J Pharmacol 1994;269:339–348.

    Article  PubMed  CAS  Google Scholar 

  125. Foguet M, Nguyen H, Le H, Lubbert H. Structure of the mouse 5-HT1C, 5-HT2 and stomach fundus serotonin receptor genes. Neuroreport 1992;3:345–348.

    Article  PubMed  CAS  Google Scholar 

  126. Yu L, Nguyen H, Le H, et al. The mouse 5-HT1C receptor contains eight hydrophobic domains and is X-linked. Brain Res Mol Brain Res 1991;11:143–149.

    Article  PubMed  CAS  Google Scholar 

  127. Blondel O, Vandecasteele G, Gastineau M, et al. Molecular and functional characterization of a 5-HT4 receptor cloned from human atrium. FEBS Lett 1997;412:465–474.

    Article  PubMed  CAS  Google Scholar 

  128. Claeysen S, Faye P, Sebben M, Taviaux S, Bockaert J, Dumuis A. 5-HT4 receptors: cloning and expression of new splice variants. Ann NY Acad Sci 1998;861:49–56.

    Article  PubMed  CAS  Google Scholar 

  129. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 1999;55:910–920.

    PubMed  CAS  Google Scholar 

  130. Bender E, Pindon A, van Oers I, et al. Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. J Neurochem 2000;74:478–489.

    Article  PubMed  CAS  Google Scholar 

  131. Claeysen S, Faye P, Sebben M, Lemaire S, Bockaert J, Dumuis A. Cloning and expression of human 5-HT4S receptors. Effect of receptor density on their coupling to adenylyl cyclase. Neuroreport 1997;8:3189–3196.

    Article  PubMed  CAS  Google Scholar 

  132. Claeysen S, Sebben M, Journot L, Bockaert J, Dumuis A. Cloning, expression and pharmacology of the mouse 5-HT(4L) receptor. FEBS Lett 1996;398:19–25.

    Article  PubMed  CAS  Google Scholar 

  133. Thomas DR, Larminie CG, Lyons HR, Fosberry A, Hill MJ, Hayes PD. Cloning and pharmacological characterisation of the guinea pig 5-ht5A receptor. Eur J Pharmacol 2004;494:91–99.

    Article  PubMed  CAS  Google Scholar 

  134. Erlander MG, Lovenberg TW, Baron BM, et al. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci USA 1993;90:3452–3456.

    Article  PubMed  CAS  Google Scholar 

  135. Rees S, den Daas I, Foord S, et al. Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett 1994;355:242–246.

    Article  PubMed  CAS  Google Scholar 

  136. Matthes H, Boschert U, Amlaiky N, et al. Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol Pharmacol 1993;43:313–319.

    PubMed  CAS  Google Scholar 

  137. Plassat JL, Boschert U, Amlaiky N, Hen R. The mouse 5HT5 receptor reveals a remarkable heterogeneity within the 5HT1D receptor family. EMBO J 1992;11:4779–4786.

    PubMed  CAS  Google Scholar 

  138. Wisden W, Parker EM, Mahle CD, et al. Cloning and characterization of the rat 5-HT5B receptor. Evidence that the 5-HT5B receptor couples to a G protein in mammalian cell membranes. FEBS Lett 1993;333:25–31.

    Article  PubMed  CAS  Google Scholar 

  139. Kohen R, Metcalf MA, Khan N, et al. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem 1996;66:47–56.

    PubMed  CAS  Google Scholar 

  140. Monsma FJ Jr, Shen Y, Ward RP, Hamblin MW, Sibley DR. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 1993;43:320–327.

    PubMed  CAS  Google Scholar 

  141. Ruat M, Traiffort E, Arrang JM, et al. A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 1993;193:268–276.

    Article  PubMed  CAS  Google Scholar 

  142. Kohen R, Fashingbauer LA, Heidmann DE, Guthrie CR, Hamblin MW. Cloning of the mouse 5-HT6 serotonin receptor and mutagenesis studies of the third cytoplasmic loop. Brain Res Mol Brain Res 2001;90:110–117.

    Article  PubMed  CAS  Google Scholar 

  143. Tsou AP, Kosaka A, Bach C, et al. Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J Neurochem 1994;63:456–464.

    PubMed  CAS  Google Scholar 

  144. Heidmann DE, Metcalf MA, Kohen R, Hamblin MW. Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J Neurochem 1997;68:1372–1381.

    Article  PubMed  CAS  Google Scholar 

  145. Lovenberg TW, Baron BM, de Lecea L, et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 1993;11:449–458.

    Article  PubMed  CAS  Google Scholar 

  146. Ruat M, Traiffort E, Leurs R, et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 1993;90:8547–8551.

    Article  PubMed  CAS  Google Scholar 

  147. Meyerhof W, Obermuller F, Fehr S, Richter D. A novel rat serotonin receptor: primary structure, pharmacology, and expression pattern in distinct brain regions. DNA Cell Biol 1993;12:401–409.

    Article  PubMed  CAS  Google Scholar 

  148. Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, Sibley DR. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 1993;268:18,200–18,204.

    PubMed  CAS  Google Scholar 

  149. Bhalla P, Saxena PR, Sharma HS. Molecular cloning and tissue distribution of mRNA encoding porcine 5-HT7 receptor and its comparison with the structure of other species. Mol Cell Biochem 2002;238:81–88.

    Article  PubMed  CAS  Google Scholar 

  150. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 1993;268:23,422–23,426.

    PubMed  CAS  Google Scholar 

  151. Plassat JL, Amlaiky N, Hen R. Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol 1993;44:229–236.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kroeze, W.K., Roth, B.L. (2006). Molecular Biology and Genomic Organization of G Protein-Coupled Serotonin Receptors. In: Roth, B.L. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-080-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-080-5_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-568-2

  • Online ISBN: 978-1-59745-080-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics