Skip to main content

Local Care of Diabetic Foot Ulcers

Assessment, Dressings, and Topical Treatments

  • Chapter
The Diabetic Foot

Abstract

The ideal wound environment can be described as moist, warm, and clean. There is no single dressing that is suitable for all wounds or even for the same wound at different stages in the healing process. Successful wound management involves the use of dressing or agents to control moisture content, insulate the wound from its surroundings, and provide an environment that reduces inflammation and bacterial burden without harming the cells involved in the repair process. Therefore, wound-dressing functions will vary depending on the type of wound and the particular stage of repair. For example, during the inflammatory phase of wound healing, the ideal dressing should provide an environment that would limit or control vascular leakage, proteolytic degradation of the provisional matrix, free radical generation, oxygen consumption, and breakdown products of nonviable tissue (1). All of these are disruptive to the wound and any measure that limits or controls inflammation should promote wound healing, provided that it does not compromise the ability to resist infection nor leukocyte and macrophage function. Throughout the inflammatory phase wounds are most vulnerable to infection, especially in the patient with diabetes (2). Therefore, the goals are to control infection, and reduce bacterial burden by the removal of nonviable tissues and the use of antibacterial agents. During the regenerative phase (granulation and re-epithelialization) the environment should be moist, warm and protective to endothelium, fibroblasts, and keratinocytes. After the wound has resurfaced (and for a period of weeks thereafter), the wound is particularly vulnerable to reinjury because the epithelium is thin and immature. During this last phase of tissue remodeling the wound dressing environment should provide protection from pressure and friction while controlling edema. During this third phase, the clinician should begin to plan for prevention of ulcer recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark RAF. Wound repair: overview and general considerations, in The Molecular and Cellular Biology of Wound Repair (Clark RAF, ed.), Plennum Press, New York, 1996, pp. 3–35.

    Google Scholar 

  2. Little JR, Vobayashi GS. Infection in the diabetic foot, in The Diabetic Foot (Levin ME, O’Neil LW, eds.), 4th ed, Mosby Yearbook, St Louis MO, 1988, pp. 104–118.

    Google Scholar 

  3. Reiber GE. Epidemiology of the diabetic foot, in The Diabetic Foot, (Levin ME, O’Neil LW, Bowker JH, eds.), 5th ed., Mosby Yearbook, St. Louis, MO, 1993, pp. 1–15.

    Google Scholar 

  4. Alvarez OM, Gilson G, Auletta M. Local aspects of diabetic foot ulcer care: assessment, dressings, and topical agents, in The Diabetic Foot (Levin ME, O’Neil LW, Bowker JH, eds.), 5th ed., Mosby Yearbook, St. Louis, MO, 1993, pp. 259–281.

    Google Scholar 

  5. Wagner FW Jr. A classification and treatment program for diabetic neuropathic and dysvas-cular foot problems, in American Academy of Orthopedic surgeons: Instructional Course Lectures, Volume 28, Mosby Yearbook, St Louis, MO, 1979.

    Google Scholar 

  6. Pecoraro RE, Reiber GE. Classification of wounds in diabetic amputees. Wounds 1990;2:65–73.

    Google Scholar 

  7. Laing P. Diabetic foot ulcers. Am J Surg 1994;167(Suppl 1A):31S–36S.

    Article  PubMed  CAS  Google Scholar 

  8. Sheehan P, Caselli A, Giurini J, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is arobust predictor of complete healing in a 12 week prospective trial. Diabetes Care 2003;26(6):1879–1882.

    Article  PubMed  Google Scholar 

  9. van Rijswijk L, Polansky M. Predictors of time to healing deep pressure ulcers. Wounds 1994;6(5):159–165.

    Google Scholar 

  10. van Rijswijk L. Multi-center leg ulcer study group. Full thickness leg ulcers: patient demographics and predictors of healing. J Fam Pract 1993;36(6):625–6

    PubMed  Google Scholar 

  11. Alvarez OM, Markowitz L, Rogers R, Booker J, Waltrous L. Effectiveness of 4-layer compression and the modified unna’s boot for the treatment of lower leg ulcers in ambulatory patients with chronic venous disease: a crossover study of 80 patients. Abstract presented at the 18th annual SAWC San Diego, CA 2005.

    Google Scholar 

  12. Wendelken M, Markowitz L, Alvarez OM. Wound mapping with high resolution ultrasound provides objective, accurate and reproducible wound measurements for clinical trials. Wounds 2005;17(3):A40.

    Google Scholar 

  13. Wendelken M, Markowitz L, Patel M, Alvarez OM. Objective, noninvasive wound assessment using b-mode ultrasonography. Wounds 2003;15(11) 1–10.

    Google Scholar 

  14. Gilje O. On taping (adhesive tape treatment) of leg ulcers. Acta Dermatol Venereol 1948;28:454–467.

    CAS  Google Scholar 

  15. Winter GD. Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature (London) 1962;193:293, 294.

    Article  CAS  Google Scholar 

  16. Hinman CD, Maibach H. Effect of air exposure and occlusion on experimental human skin wounds. Nature (London) 1963;200:377–379.

    Article  CAS  Google Scholar 

  17. Alvarez OM, Rozint J, Wiseman D. Moist environment for healing: matching the dressing to the wound. Wounds 1989 Premier Issue;1(1):35–50.

    Google Scholar 

  18. Eaglstein WH, Mertz PM, Falanga V. Occlusive Dressings. Am Fam Phys 1987;35:211–216.

    CAS  Google Scholar 

  19. Hutchinson JJ, McGuckin M. Influence of occlusive dressings: a microbiological and clinical review. Am J Infect Control 1990;18:257–268.

    Article  PubMed  CAS  Google Scholar 

  20. Motta G (ed.). Wound Source; The Kestrel Wound Product sourcebook 8th ed. Kestrel health Information Inc., Toronto Canada, 2005. (http://www.woundsource.com). Date accessed: 01/23/06.

    Google Scholar 

  21. Gentzkow GD, Iwasaki SD, Hershon KS, et al. Use of dermagraft a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 1992;19:350–354.

    Article  Google Scholar 

  22. Alvarez OM, Mertz PM, Eaglstein WH. The effect of occlusive dressings on collagen synthesis and re-epithelialization in superficial wounds. J Surg Res 1983;35:142–148.

    Article  PubMed  CAS  Google Scholar 

  23. Tomic-Canic M, Agren MS, Alvarez OM. Epidermal repair and the chronic wound, in The Epidermis in Wound Healing (Rovee DT, Maibach H, eds.), CRC Press, Boca Raton, FL, 2004, pp. 25–57.

    Google Scholar 

  24. Alvarez OM, Hefton JM, Eaglstein WE. Healing wound: occlusion or exposure. Infect Surg 1984;3:173–181.

    Google Scholar 

  25. Burton CS. Management of chronic and problem lower extremity wounds. Dermatol Clin1993;11:767–773.

    PubMed  Google Scholar 

  26. Varghese MC, Balin AK, Carter M, et al. Local environment of chronic wounds under synthetic dressings. Arch Dermatol 1986;122:52–57.

    Article  PubMed  CAS  Google Scholar 

  27. Alvarez OM. Pharmacological and environmental modulation of wound healing, in Connective Tissue Disease. Molecular Pathology of the Extracellular Matrix (Uitto J, Parejda AJ, eds.), New York, Marcel Dekker, 1987, pp. 367–384.

    Google Scholar 

  28. Alvarez OM, Patel M, Booker J, Markowitz L. Effectiveness of a biocellulose wounddressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients, Wounds 2004;16(7):224–233.

    Google Scholar 

  29. Thomas S. Alginate dressings in surgery and wound management-part 3 J Wound Care2000;9:163–166.

    PubMed  CAS  Google Scholar 

  30. Ovington LG. The well dressed wound: an overview of dressing types. Wounds 1998;10(Suppl A):1A–11A.

    Google Scholar 

  31. Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000;26:131–138.

    Article  PubMed  CAS  Google Scholar 

  32. Kucan JO, Robson MC, Heggers JP, et al. Comparison of silver sulfadiazine, povidone iodine and physiologic saline in the treatment of pressure ulcers. J Am Geriatr Soc 1981;29:232–235.

    PubMed  CAS  Google Scholar 

  33. Holloway GA, Johansen KH, Barnes RW, Pierce GE. Multicenter trial of cadexomer iodine to treat venous stasis ulcers. West J Med 1989;151:35–38.

    PubMed  Google Scholar 

  34. Apelqvist J, Ragnarson Tennvall G. Cavity foot ulcers in diabetic patients: a comparative study of cadexomer iodine and standard treatment. An economic analysis alongside a clinical trial. Acta Dermatol Venereol 1996;76:231–235.

    CAS  Google Scholar 

  35. Leipziger LS, Glushko V, DiBernardo B, Shafaie F, Noble J, Alvarez OM. Dermal wound repair:role of collagen matrix implants and synthetic polymer dressings. J Am Acad Dermatol 1985;12(2):409–419.

    Article  PubMed  CAS  Google Scholar 

  36. Veves A, Sheehan P, Pham HT, et al. A randomized controlled trial of promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 2002;137:822–827.

    Article  PubMed  CAS  Google Scholar 

  37. Brigido SA, Boc SF, Lopez RC. Effective management of major lower extremity wounds using an acellular regenerative tissue matrix: a pilot study. Orthopedics 2004;27(1 Suppl):s145–s149.

    PubMed  Google Scholar 

  38. Falanga V. How to use Apligraf to treat venous ulcers. Skin Aging 1999;7:30–36.

    Google Scholar 

  39. Sabolinski ML, Alvarez OM, Auletta M, Mulder G, Parentau NL. Cultured skin as a smart material for healing wounds: experience in venous ulcers. Biomaterials 1996;17:311–320.

    Article  PubMed  CAS  Google Scholar 

  40. Falanga V. Tissue engineering in wound repair. Adv Skin Wound Care 2000;13(2 Suppl):15–19.

    PubMed  CAS  Google Scholar 

  41. Veves A, Falanga V, Armstrong DG, et al. Graftskin a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 2001;24(2):290–295.

    Article  PubMed  CAS  Google Scholar 

  42. Falanga V, Margolis D, Alvarez OM, et al. (The human skin equivalent investigators group), Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch Dermatol 1998;134:293–300.

    Article  PubMed  CAS  Google Scholar 

  43. Charles C, Eaglstein WH. Active Treatments for acute and chronic wound, in Wound Healing (Rovee DT, Maibach H, eds.), CRC Press, Boca Raton, FL, 2004, pp. 351–373.

    Google Scholar 

  44. Eisenberg M, Llewellen D. Surgical management of hands in children with recessive dys-trophic epidermolysis bullosa: use of allogeneic composite cultured skin grafts. Br J Plat Surg 1998;51:608–613.

    CAS  Google Scholar 

  45. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331–343.

    Article  PubMed  CAS  Google Scholar 

  46. Leigh IM, Purkis PE, Navasaria HA, Phillips TJ. Treatment of chronic venous ulcers with sheets of cultured allogeneic keratinocytes. Br J Dermatol 1987;117:591–597.

    Article  PubMed  CAS  Google Scholar 

  47. Carsin H, Ainaud P, Le Bever H, Rives J, et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single center experience with 30 patients. Burns 2000;26:379–387.

    Article  PubMed  CAS  Google Scholar 

  48. Phillips TJ, Pachas W. Clinical trial of cultured autologous keratinocyte grafts in the treatment of long standing pressure ulcers. Wounds 1994;6:133–139.

    Google Scholar 

  49. Cooper M, Hansbrough J, Spielvogel R, et al. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 1991;12:243–248.

    Article  PubMed  CAS  Google Scholar 

  50. Jiang WG, Harding KG. Enhancement of wound tissue expansion and angiogenesis by matrix-embedded fibroblast (Dermagraft), a role for hepatocyte growth factor/scatter factor. Int J Mol Med 1998;2:203–210.

    PubMed  CAS  Google Scholar 

  51. Purdue GF, Hunt JL, Still JM, et al. A multicenter clinical trial of biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 1997;18 (1 Pt1), 52–57.

    Article  PubMed  CAS  Google Scholar 

  52. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg1995;21:71–78.

    Article  PubMed  CAS  Google Scholar 

  53. Weiman TJ, Smiel JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (beclapermin) in patients with chronic neuropathic ulcers. A phase III randomized placebo-controlled double blind study. Diabetes Care 1998;21:822–837.

    Article  Google Scholar 

  54. Smiel JM, Wieman TJ, Steed DL, et al. Efficacy and safety of beclapermin (recombinant human platelet derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 1999;7:335–346.

    Article  Google Scholar 

  55. Mertz PM, Alvarez OM, Smerbeck RV, Eaglstein WH. A new in vivo model for the evaluation of topical antiseptics on superficial wounds: the effect of 70% alcohol and povidoneiodine solution. Arch Dermatol 1984;120:58–62.

    Article  PubMed  CAS  Google Scholar 

  56. Van Den Broek PJ, Buys LMF, Van Furth R. Interaction of povidone-iodine compounds, phagocytic cells, and microorganisms. Antimicrob Agents Chemother 1982;22:593–597.

    PubMed  Google Scholar 

  57. Lineaweaver W, Howard R, Soucy D, et al. Topical antimicrobial toxicity. Arch Surg 1985;120:267–270.

    PubMed  CAS  Google Scholar 

  58. Doughty D. A rational approach to the use of topical antiseptics. J Wound Ostomy Continence Nurs 1994;21:224–231.

    PubMed  CAS  Google Scholar 

  59. Gruber RP, Vistnes L, Pardoe R. The effect of commonly used antiseptics on wound healing. Plast Reconstr Surg 1975;55:472–476.

    Article  PubMed  CAS  Google Scholar 

  60. Armstrong DG, Attinger CE, Boulton AJM, et al. Guidelines regarding negative pressure wound therapy (NPWT) in the diabetic foot: Results of the Tucson Expert Concensus Conference (TECC) on V.A.C. Therapy Ostomy Wound Manage 2004;50(4 Suppl B):3s–27s.

    PubMed  Google Scholar 

  61. Ennis WJ, Meneses P. MIST ultrasound: the results of a multicenter randomized, double blind sham controlled trial of the healing of diabetic foot ulcers. Wounds 2005;17(3):A43.

    Google Scholar 

  62. Cope Z. The treatment of wounds through the ages. Med Hist 1958;2:163–174.

    PubMed  CAS  Google Scholar 

  63. Alvarez OM, Rogers RS, Booker J, Patel M. Effect of noncontact normothermic wound therapy on the healing of neuropathic (diabetic) foot ulcers: an interim analysis of 20 patients. J Foot Ankle Surg 2003;42:30–35.

    Article  PubMed  Google Scholar 

  64. Carley PJ. Electrotherapy for acceleration of wound healing: low density direct current. Arch Phys Med Rehabil 1985;66:443–446.

    PubMed  CAS  Google Scholar 

  65. Spadaro JA. Electrically stimulated bone growth in animals and man: review of the literature. Clin Orthop 1977;122:325–332.

    PubMed  Google Scholar 

  66. Peters EJG, Armstrong DG, Wunderlich RP, et al. The benefit of electric stimulation to enhance perfusion in persons with diabetes mellitus. J Foot Ankle Surg 1998;37(5):396–400.

    PubMed  CAS  Google Scholar 

  67. Peters EJ, Lavery LA, Armstrong DG, Fleischli JG. Electric stimulation as an adjunct to heal diabetic foot ulcers: a randomized clinical trial. Arch Phys Med Rehabil 2001;82:721–724.

    Article  PubMed  CAS  Google Scholar 

  68. Levine NS, Lindberg RB, Mason AD, Pruitt BA. The quantitative swab culture and smear: a quick simple method for determining the number of viable bacteria in open wounds. J Trauma 1976;16:89–94.

    PubMed  CAS  Google Scholar 

  69. Bornside GH, Bornside BB. Comparison between moist swab and tissue biopsy methods for quantitation of bacteria in experimental incisional wounds. J Trauma 1979;19:103–106.

    Article  PubMed  CAS  Google Scholar 

  70. Gentzkow GD, Jensen JL, Pollack RA, et al. Improved healing of diabetic foot ulcers after grafting with a living human dermal replacement. Wounds 1999;11:77–84.

    Google Scholar 

  71. Bentkover JD, Champpion AH. Economic evaluation of alternative methods of treatment for diabetic foot ulcer patients: cost effectiveness of platelet realesate and wound care clinics. Wounds 1993;5:207–215.

    Google Scholar 

  72. Boulton AJ, Meneses P, Ennis WJ. Diabetic foot ulcers: a framework for prevention and care. Wound Rep Regen 1999;7:7–17.

    Article  CAS  Google Scholar 

  73. Thomas S, Banks V, Bale S, et al. A comparison of two dressings in the management of chronic wounds. J Wound Care 1997;6:383–386.

    PubMed  CAS  Google Scholar 

  74. Kraft MR, Lawson L, Pohlman B, et al. A comparison of Epi-Lock and saline dressings in the management of pressure ulcers. Decubitus 1993;48:42–44.

    Google Scholar 

  75. Laing PW, Cogley DI, Klenerman L. Neuropathic foot ulceration treated by total contact casts. J Bone Joint Surg 1991;74:133–136.

    Google Scholar 

  76. Lyon RT, Veith FJ, Bolton L, Machado F. Clinical benchmark for healing of chronic venous ulcers. Am J Surg 1998;176:172–175.

    Article  PubMed  CAS  Google Scholar 

  77. Berry DP, Bale S, Harding KG. Dressings for treating cavity wounds. J Wound Care 1996;5:10–17.

    PubMed  CAS  Google Scholar 

  78. Thomas S, Tucker CA. Sorbsan in the management of leg ulcers. Pharm J 1989;243:706–709.

    Google Scholar 

  79. Cannavo M, Fairbrother G, Owen D, et al. A comparison of dressings in the management of surgical abdominal wounds. J Wound Care 1998;7:57–62.

    PubMed  CAS  Google Scholar 

  80. Davis S. Department of Dermatology University of Miami School of Medicine, personal communication.

    Google Scholar 

  81. Demling RH, DeSanti L. Effects of silver on wound management. Wounds 2001;13:5–15.

    Google Scholar 

  82. Niezgoda JA, Van Gils CC, Frykberg RG, et al. Randomized clinical trial comparing Oasis wound matrix to regranex gel for diabetic ulcers. Skin Wound Care 2005;18:258–266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Alvarez, O.M., Markowitz, L., Wendelken, M. (2006). Local Care of Diabetic Foot Ulcers. In: Veves, A., Giurini, J.M., Logerfo, F.W. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-075-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-075-1_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-610-8

  • Online ISBN: 978-1-59745-075-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics