Skip to main content

Mutant Mouse Models of Bipolar Disorder

Are There Any?

  • Chapter

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Bipolar disorder (also known as manic-depressive illness) is distinctive among psychiatric illnesses in that it is characterized by spontaneously alternating episodes of depression and mania. Over the years, extensive research into the pathophysiology of bipolar disorder has resulted in a growing understanding of the cellular, biochemical, and molecular changes associated with bipolar disorder and its treatment. However, given its unique nature, developing an animal model for bipolar disorder in which all aspects of the illness are emulated is challenging. Indeed, fully validated animal models of bipolar disorder are not available and a variety of models are used to represent a single manic or depressive episode, with some models possibly representing the progressive nature of the disorder. Nonetheless, targeted mutations of specific neurotransmitter systems, including receptors and transporters, as well as genetic manipulations of cellular signaling pathways, produce a variety of changes in affective-like behavior, with most changes consistent with manic-like behavior. As such, these mutant mouse models (with their own limitations) could contribute to the research of the underlying brain mechanisms of mania and/or bipolar disorder. In this chapter, we present an overview of neurochemical, neuroendocrine, and behavioral changes in bipolar disorder, and of the available mutant mouse models in which some aspects of the disorder are emulated. The mutant mouse models include targeted overexpression or knockout/knock-down of genes coding for corticotropin-releasing factor, glucocorticoid receptor, serotonin transporters, and dopamine transporters, and of genes involved in intracellular signaling pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiala SJ. Normal is a place I visit. JAMA 2004;291:2924–2926.

    Article  PubMed  CAS  Google Scholar 

  2. Angst J, Marneros A. Bipolarity from ancient to modern times: conception, birth and rebirth. J Affect Disord 2001;67:3–19.

    Article  PubMed  CAS  Google Scholar 

  3. Manji HK, Lenox RH. The nature of bipolar disorder. J Clin Psychiatry 2000;61:42–57.

    PubMed  Google Scholar 

  4. Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 2004;9:734–755.

    Article  PubMed  CAS  Google Scholar 

  5. Quiroz JA, Singh J, Gould TD, Denicoff KD, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry 2004;9:756–776.

    Article  PubMed  CAS  Google Scholar 

  6. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depres sion-related behavior in genetically modified mice. Mol Psychiatry 2004;9:326–357.

    Article  PubMed  CAS  Google Scholar 

  7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-IV). 4th ed. Text Revision. Washington DC: American Psychiatric Association, 2000.

    Google Scholar 

  8. Thomas P. The many forms of bipolar disorder: a modern look at an old illness. J Affect Disord 2004;79:3–8.

    Article  Google Scholar 

  9. Akiskal HS, Bourgeois ML, Angst J, Post R, Moller HJ, Hirschfeld R. Re-evaluating the preva lence of and diagnostic composition within the broad clinical spectrum of bipolar disorders. J Affect Disord 2000;59:S5–S30.

    Article  PubMed  Google Scholar 

  10. Chen YW, Dilsaver SC. Comorbidity of panic disorder in bipolar illness: evidence from the Epidemiologic Catchment Area Survey. Am J Psychiatry 1995;152:280–282.

    PubMed  CAS  Google Scholar 

  11. MacKinnon DF, McMahon FJ, Simpson SG, McInnis MG, DePaulo JR. Panic disorder with familial bipolar disorder. Biol Psychiatry 1997;42:90–95.

    Article  PubMed  CAS  Google Scholar 

  12. McElroy SL, Altshuler LL, Suppes T, et al. Axis I psychiatric comorbidity and its relationship to historical illness variables in 288 patients with bipolar disorder. Am J Psychiatry 2001;158:420–426.

    Article  PubMed  CAS  Google Scholar 

  13. Alda M. The phenotypic spectra of bipolar disorder. Eur Neuropsychopharmacol 2004;14:S94–S99

    Article  PubMed  CAS  Google Scholar 

  14. Perry W, Minassian A, Feifel D, Braff DL. Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 2001;50:418–424.

    Article  PubMed  CAS  Google Scholar 

  15. Bearden CE, Hoffman KM, Cannon TD. The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 2001;3:106–150.

    Article  PubMed  CAS  Google Scholar 

  16. Clark L, Iversen SD, Goodwin GM. A neuropsychological investigation of prefrontal cortex involvement in acute mania. Am J Psychiatry 2001;158:1605–1611.

    Article  PubMed  CAS  Google Scholar 

  17. Addington J, Addington D. Facial affect recognition and information processing in schizophrenia and bipolar disorder. Schizophr Res 1998;32:171–181.

    Article  PubMed  CAS  Google Scholar 

  18. Tam WC, Sewell KW, Deng H. Information processing in schizophrenia and bipolar disorder: a discriminant analysis. J Nerv Ment Dis 1998;186:597–603.

    Article  PubMed  CAS  Google Scholar 

  19. Braff DL, Geyer MA. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 1990;47:181–188.

    PubMed  CAS  Google Scholar 

  20. Kahn D, Chaplan R. The “good enough” mood stabilizer: a review of the clinical evidence. CNS Spectr 2002;7:227–237.

    PubMed  Google Scholar 

  21. Holtzheimer PE, Neumaier JF. Treatment of acute mania. CNS Spectr 2003;8:917–920;924-928.

    PubMed  Google Scholar 

  22. Keck PE Jr, Nelson EB, McElroy SL. Advances in the pharmacologic treatment of bipolar depression. Biol Psychiatry 2003;53:671–679.

    Article  PubMed  CAS  Google Scholar 

  23. Calabrese JR, Kasper S, Johnson G, et al. International Consensus Group on bipolar i depression treatment guidelines. J Clin Psychiatry 2004;65:569–579.

    Article  Google Scholar 

  24. Owens MJ, Nemeroff CB. Pharmacology of valproate. Psychopharmacol Bull 2003;37(Suppl 2):17–24.

    PubMed  Google Scholar 

  25. Gould TD, Chen G, Manji HK. Mood stabilizer psychopharmacology. Clin Neurosci Res 2002;2:193–212.

    Article  CAS  Google Scholar 

  26. Einat H, Manji HK, Gould TD, Du J, Chen G. Possible involvement of the ERK signaling cascade in bipolar disorder: behavioral leads from the study of mutant mice. Drug News Perspect 2003;16:453–463.

    Article  PubMed  CAS  Google Scholar 

  27. Post RM, Speer AM, Hough CJ, Xing G. Neurobiology of bipolar illness: implications for future study and therapeutics. Ann Clin Psychiatry 2004;15:85–94.

    Article  Google Scholar 

  28. Machado-Vieira R, Kapczinski F, Soares JC. Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:209–224.

    Article  PubMed  Google Scholar 

  29. Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM. International Union of Pharmacology.: XVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 2003;55:21–26.

    Article  PubMed  CAS  Google Scholar 

  30. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev 1990;15:71–100.

    Article  PubMed  CAS  Google Scholar 

  31. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 1991;43:425–473.

    PubMed  CAS  Google Scholar 

  32. Koob GF, Heinrichs SC, Merlo Pich E, et al. The role of corticotropin-releasing factor in behavioural responses to stress. Ciba Found Symp 1993;172:277–295.

    PubMed  CAS  Google Scholar 

  33. Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999;848:141–152.

    Article  PubMed  CAS  Google Scholar 

  34. Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999;33:181–214.

    Article  PubMed  CAS  Google Scholar 

  35. Berrettini WH, Nurnberger JI, Zerbe RL, Gold PW, Chrousos GP, Tamao T. CSF neuropeptides in euthymic bipolar patients and controls. Br J Pharmacol 1987;150:208–212.

    CAS  Google Scholar 

  36. Banki CM, Karmacsi L, Bissette G, Nemeroff CB. Cerebrospinal fluid neuropeptides in mood disorder and dementia. J Affect Disord 1992;25:39–45.

    Article  PubMed  CAS  Google Scholar 

  37. Gilmor ML, Skelton KH, Nemeroff CB, Owens MJ. The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. J Pharmacol Exp Ther 2003;305:434–439.

    Article  PubMed  CAS  Google Scholar 

  38. Stout SC, Owens MJ, Lindsey KP, Knight DL, Nemeroff CB. Effects of sodium valproate on corticotropin-releasing factor systems in rat brain. Neuropsychopharmacology 2001;24:624–631.

    Article  PubMed  CAS  Google Scholar 

  39. Niculescu AB III, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR. Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000;4:83–91.

    PubMed  CAS  Google Scholar 

  40. Lenox RH, Gould TD, Manji HK. Endophenotypes in bipolar disorder. Am J Med Genet 2002;114:391–406.

    Article  PubMed  Google Scholar 

  41. Prathikanti S, MacMahon FJ. Genome scans for susceptibility genes in bipolar affective disorder. Ann Med 2001;33:257–262.

    Article  PubMed  CAS  Google Scholar 

  42. Glahn DC, Bearden CE, Niendam TA, Escamilla MA. The feasibility of neuropsychological endophenotypes in the search for genes associated with bipolar affective disorder. Bipolar Disord 2004;6:171–182.

    Article  PubMed  Google Scholar 

  43. Tsuang MT, Taylor L, Faraone SV. An overview of the genetics of psychotic mood disorders. J Psychiatr Res 2004;38:3–15.

    Article  PubMed  Google Scholar 

  44. Mathews CA, Reus VI. Genetic linkage in bipolar disorder. CNS Spectr 2003;8:891–904.

    PubMed  Google Scholar 

  45. Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet 2003;123C:48–58.

    Article  PubMed  Google Scholar 

  46. Geyer MA, Markou A. Animal Models of Psychiatric Disorders. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven, 1995, pp. 787–798.

    Google Scholar 

  47. Einat H, Belmaker RH, Manji HK. New approaches to modeling bipolar disorder. Psychopharmacol Bull 2003;37:47–63.

    PubMed  Google Scholar 

  48. El Mallakh RS, Karippot A. Use of antidepressants to treat depression in bipolar disorder. Psychiatr Serv 2002;53:580–584.

    Article  PubMed  Google Scholar 

  49. Goldberg JF, Truman CJ. Antidepressant-induced mania: an overview of current controversies. Bipolar Disord 2003;5:407–420.

    Article  PubMed  CAS  Google Scholar 

  50. Nestler EJ, Gould E, Manji H, et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002;52:503–528.

    Article  PubMed  Google Scholar 

  51. Dirks A, Groenink L, Bouwknecht JA, et al. Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations. Eur J Neurosci 2002;16:1751–1760.

    Article  PubMed  Google Scholar 

  52. Groenink L, Pattij T, de Jongh R, et al. 5-HT1 1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur J Pharmacol 2003;463:185–197.

    Article  PubMed  CAS  Google Scholar 

  53. Groenink L, Dirks A, Verdouw PM, et al. HPA-axis dysregulation in mice overexpressing corticotropin-releasing hormone. Biol Psychiatry 2002;51:875–881.

    Article  PubMed  CAS  Google Scholar 

  54. Dirks A, Groenink L, lutje Schipholt M, et al. Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol Psychiatry 2002;51:583–590.

    Article  PubMed  CAS  Google Scholar 

  55. Dirks A, Groenink L, Westphal KGC, et al. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs. Neuropsychopharmacology 2003;28:1790–1798.

    Article  PubMed  CAS  Google Scholar 

  56. Dirks A, Groenink L, Verdouw P, et al. Behavioral analysis of transgenic mice overexpressing corticotropin-releasing hormone in paradigms emulating aspects of stress, anxiety and depression. Int J Comp Psychol 2001;14:123–135.

    Google Scholar 

  57. Wei Q, Lu XY, Liu L, et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA 2004;101:11,851–11,856.

    Article  PubMed  CAS  Google Scholar 

  58. De Kloet ER. Stress in the brain. Eur J Pharmacol 2000;405:187–198.

    Article  PubMed  Google Scholar 

  59. Kelsoe JR. Recent progress in the search for genes for bipolar disorder. Curr Psychiatry Rep 1999;1:135–140.

    Article  PubMed  CAS  Google Scholar 

  60. Greenwood TA, Alexander M, Keck PE, et al. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 2001;105:145–151.

    Article  PubMed  CAS  Google Scholar 

  61. Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 1993;14:43–49.

    Article  PubMed  CAS  Google Scholar 

  62. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1995;379:606–612.

    Article  Google Scholar 

  63. Gainetdinov RR, Jones SR, Caron MG. Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 1999;46:303–311.

    Article  PubMed  CAS  Google Scholar 

  64. Spielewoy C, Roubert C, Hamon M, Nosten-Bertrand M, Betancur C, Giros B. Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behav Pharmacol 2000;11:279–290.

    PubMed  CAS  Google Scholar 

  65. Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA. Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 2001;21:305–313.

    PubMed  CAS  Google Scholar 

  66. Morice E, Denis C, Giros B, Nosten-Bertrand M. Phenotypic expression of the targeted null-mutation in the dopamine transporter gene varies as a function of the genetic background. Eur J Neurosci 2004;20:120–126.

    Article  PubMed  Google Scholar 

  67. Zhuang X, Oosting RS, Jones SR, et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 2001;98:1982–1987.

    Article  PubMed  CAS  Google Scholar 

  68. Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA. Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol Psychiatry 2003;53:352–359.

    Article  PubMed  CAS  Google Scholar 

  69. Dean B. The neurobiology of bipolar disorder: findings using human postmortem central nervous system tissue. Aus N Z J Psychiatry 2004;38:135–140.

    Article  Google Scholar 

  70. Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996;274:1527–1530.

    Article  PubMed  CAS  Google Scholar 

  71. Stockmeier CA. Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 2003;37:357–373.

    Article  PubMed  Google Scholar 

  72. Murphy DL, Lerner A, Rudnick G, Lesch KP. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 2004;4:109–123.

    Article  PubMed  CAS  Google Scholar 

  73. Bengel D, Murphy DL, Andrews AM, et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 1998;53:649–655.

    PubMed  CAS  Google Scholar 

  74. Holmes A, Murphy DL, Crawley JN. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 2003;54:953–959.

    Article  PubMed  CAS  Google Scholar 

  75. Montanez S, Owens WA, Gould GG, Murphy DL, Daws LC. Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem 2003;86:210–219.

    Article  PubMed  CAS  Google Scholar 

  76. Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL. Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 2003;28:2077–2088.

    PubMed  CAS  Google Scholar 

  77. Holmes A, Murphy DL, Crawley JN. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 2002;161:160–167.

    Article  PubMed  CAS  Google Scholar 

  78. Holmes A, Yang RJ, Murphy DL, Crawley JN. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 2002;27:914–923.

    Article  PubMed  CAS  Google Scholar 

  79. Anguelova M, Benkelfat C, Turecki G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry 2003;8:591.

    Google Scholar 

  80. Lotrich FE, Pollock BG. Meta-analysis of serotonin transporter polymorphisms and affective disorders. Psychiatr Genet 2004;14:121–129.

    Article  PubMed  Google Scholar 

  81. Ackenheil M. Neurotransmitters and signal transduction processes in bipolar affective disorders: a synopsis. J Affect Disord 2001;62:101–111.

    Article  PubMed  CAS  Google Scholar 

  82. Einat H, Yuan P, Gould TD, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003;23:7311–7316.

    PubMed  CAS  Google Scholar 

  83. Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153–183.

    Article  PubMed  CAS  Google Scholar 

  84. Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 2002;42:135–163.

    Article  PubMed  CAS  Google Scholar 

  85. Mazzucchelli C, Brambilla R. Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cell Mol Life Sci 2000;57:604–611.

    Article  PubMed  CAS  Google Scholar 

  86. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004;14:311–317.

    Article  PubMed  CAS  Google Scholar 

  87. Mazzucchelli C, Vantaggiato C, Ciamei A, et al. Knockout of ERK1 MAP Kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002;34:807–820.

    Article  PubMed  CAS  Google Scholar 

  88. Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001;276:31,674–31,683.

    Article  PubMed  CAS  Google Scholar 

  89. Selcher JC, Nekrasova T, Paylor R, Landreth GE, Sweatt JD. Mice lacking the ERK1 isoform of MAP Kinase are unimpaired in emotional learning. Learn Mem 2001;8:11–19.

    Article  PubMed  CAS  Google Scholar 

  90. Enfel SE, Nekrasova T, Einat H, et al. Role of the extrcellular regulated kinase (ERK)-1 in the regulation of the behaviors associated with mood. Program No. 755. 7. 2003 Abstract Viewer/ Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. Online.

    Google Scholar 

  91. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002;71:651–655.

    Article  PubMed  CAS  Google Scholar 

  92. Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004;5:11–25.

    Article  PubMed  CAS  Google Scholar 

  93. Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 2004;45:104–114.

    Article  PubMed  CAS  Google Scholar 

  94. Lang UE, Jockers-Scherubl MC, Hellweg R. State of the art of the neurotrophin hypothesis in psychiatric disorders: implications and limitations. J Neural Transm 2004;111:387–411.

    Article  PubMed  CAS  Google Scholar 

  95. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000;14:2919–2937.

    Article  PubMed  CAS  Google Scholar 

  96. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24:677–736.

    Article  PubMed  CAS  Google Scholar 

  97. Horch HW. Local effects of BDNF on dendritic growth. Rev Neurosci 2004;15:1 17–129.

    CAS  Google Scholar 

  98. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S. Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology 2001;158:100–106.

    Article  PubMed  CAS  Google Scholar 

  99. Mamounas LA, Blue ME, Siuciak JA, Altar CA. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 1995;15:7929–7939.

    PubMed  CAS  Google Scholar 

  100. Guillin O, Griffon N, Diaz J, et al. Brain-derived neurotrophic factor and the plasticity of the mesolimbic dopamine pathway. Int Rev Neurobiol 2004;59:425–444.

    Article  PubMed  CAS  Google Scholar 

  101. Lyons WE, Mamounas LA, Ricaurte GA, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 1999;96:15,239–15,244.

    Article  PubMed  CAS  Google Scholar 

  102. Chourbaji S, Hellweg R, Brandis D, et al. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res 2004;121:28–36.

    Article  PubMed  CAS  Google Scholar 

  103. Dluzen DE, Story GM, Xu K, Kucera J, Walro JM. Alterations in nigrostriatal dopaminergic function within BDNF mutant mice. Exp Neurol 1999;160:500–507.

    Article  PubMed  CAS  Google Scholar 

  104. Dluzen DE, Gao X, Story GM, Anderson LI, Kucera J, Walro JM. Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/-BDNF mutant mice. Exp Neurol 2001;170:121–128.

    Article  PubMed  CAS  Google Scholar 

  105. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J 2000;19:1290–1300.

    Article  PubMed  CAS  Google Scholar 

  106. Montkowski A, Holsboer F. Intact spatial learning and memory in transgenic mice with reduced BDNF. NeuroReport 1997;8:779–782.

    Article  PubMed  CAS  Google Scholar 

  107. MacQueen GM, Ramakrishnan K, Croll SD, et al. Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 2001;115:1145–1153.

    Article  PubMed  CAS  Google Scholar 

  108. Rios M, Fan G, Fekete C, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 2001;15:1748–1757.

    Article  PubMed  CAS  Google Scholar 

  109. Gorski JA, Balogh SA, Wehner JM, Jones KR. Learning deficits in forebrain-restricted brain-de rived neurotrophic factor mutant mice. Neuroscience 2003;121:341–354.

    Article  PubMed  CAS  Google Scholar 

  110. Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann NY Acad Sci 1995;766:442–458.

    Article  PubMed  CAS  Google Scholar 

  111. Purcell AL, Carew TJ. Tyrosine kinases, synaptic plasticity and memory: insights from vertebrates and invertebrates. Trends Neurosci 2003;26:625–630.

    Article  PubMed  CAS  Google Scholar 

  112. Minichiello L, Korte M, Wolfer DP, et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 1999;24:401–414.

    Article  PubMed  CAS  Google Scholar 

  113. Zorner B, Wolfer DP, Brandis D, et al. Forebrain-specific TrkB-receptor knockout mice: behav-iorally more hyperactive than “depressive.” Biol Psychiatry 2003;54:972–982.

    Article  PubMed  CAS  Google Scholar 

  114. Gould TD, Zarate CA, Manji HK. Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry 2004;65:10–21.

    Article  PubMed  CAS  Google Scholar 

  115. Vaarties KG, Ahnaou A, Huysmans H, Moechars D, Taymans JM, Drinkenburg WH. Mice overexpressing glycogen synthase kinase 3 beta (GSK-3b) show normal total sleep-wake duration with altered body activity and body temperature. Program No. 930. 19. 2003 Abstract Viewer/ Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. Online.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dirks, A., Groenink, L., Olivier, B. (2006). Mutant Mouse Models of Bipolar Disorder. In: Fisch, G.S., Flint, J. (eds) Transgenic and Knockout Models of Neuropsychiatric Disorders. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-058-4_13

Download citation

Publish with us

Policies and ethics