Skip to main content

Ionotropic Glutamate Receptors in Synaptic Plasticity

  • Chapter
The Glutamate Receptors

Part of the book series: The Receptors ((REC))

Summary

More than 30 years have elapsed since the publication of the first reports of long-term potentiation by Bliss and Lomo (1973) and Bliss and Gardner-Medwin (1973). These two reports ushered in an exciting new era in which measurable persistent changes in synaptic strength were posited as substrates for learning and memory. Since that time, the study of long-term mechanisms of synaptic plasticity have arguably been one of the most intensely and perhaps the most rewarding fields of the neurosciences, casting important light on the nature of synaptic transmission and the events associated with the strengthening or weakening of synapses. Indeed, although once principally studied at excitatory glutamatergic synapses within the hippocampus and cortical formations, mechanisms of synaptic plasticity are observed at a myriad of synaptic connections throughout the mammalian central nervous system. Moreover, although many of these synapses share common mechanisms of plasticity, the last decade has seen an explosion in our understanding of plasticities peculiar to one synapse or another. This chapter does not attempt to cover all of these divergent mechanisms but instead focuses on those mechanisms of long-term potentiation (LTP) and depression (LTD) most commonly found within the hippocampal formation. A large portion of this review covers N-methyl-\fontsize77\selectfont D-aspartate–receptor-dependent LTP and LTD, the two most commonly studied forms of cortical plasticity; however, it also addresses plasticity mechanisms at other hippocampal synapses that have not enjoyed the same intensity of investigation but are worthy of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973;232:331–356.

    PubMed  CAS  Google Scholar 

  2. Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol 1973;232:357–374.

    PubMed  CAS  Google Scholar 

  3. Bennett MR. The concept of long term potentiation of transmission at synapses. Prog Neurobiol 2000;60:109–137.

    Article  PubMed  CAS  Google Scholar 

  4. Lynch MA. Long-term potentiation and memory. Physiol Rev 2004;84:87–136.

    Article  PubMed  CAS  Google Scholar 

  5. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 2000;23:649–711.

    Article  PubMed  CAS  Google Scholar 

  6. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 1983;334:33–46.

    PubMed  CAS  Google Scholar 

  7. MacDonald JF, Porietis AV, Wojtowicz JM. L-Aspartic acid induces a region of negative slope conductance in the current–voltage relationship of cultured spinal cord neurons. Brain Res 1982;237:248–253.

    Article  PubMed  CAS  Google Scholar 

  8. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261–263.

    Article  PubMed  CAS  Google Scholar 

  9. Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate–activated channels in mouse central neurones. Nature 1984;307:462–465.

    Article  PubMed  CAS  Google Scholar 

  10. Wigstrom H, Gustafsson B. On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. Acta Physiol Scand 1985;123:519–522.

    PubMed  CAS  Google Scholar 

  11. McNaughton BL, Douglas RM, Goddard GV. Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 1978;157:277–293.

    Article  PubMed  CAS  Google Scholar 

  12. Levy WB, Steward O. Synapses as associative memory elements in the hippocampal formation. Brain Res 1979;175:233–245.

    Article  PubMed  CAS  Google Scholar 

  13. Kelso SR, Ganong AH, Brown TH. Hebbian synapses in hippocampus. Proc Natl Acad Sci USA 1986;83:5326–5330.

    Article  PubMed  CAS  Google Scholar 

  14. Wigstrom H, Gustafsson B, Huang YY, et al. Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol Scand 1986;126:317–319.

    PubMed  CAS  Google Scholar 

  15. Sastry BR, Goh JW, Auyeung A. Associative induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus. Science 1986;232: 988–990.

    Article  PubMed  CAS  Google Scholar 

  16. Malinow R, Miller JP. Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 1986;320: 529–530.

    Article  PubMed  CAS  Google Scholar 

  17. Lynch G, Larson J, Kelso S, et al. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 1983;305:719–721.

    Article  PubMed  CAS  Google Scholar 

  18. Malenka RC, Kauer JA, Zucker RS, et al. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 1988;242:81–84.

    Article  PubMed  CAS  Google Scholar 

  19. MacDermott AB, Mayer ML, Westbrook GL, et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 1986;321:519–522.

    Article  PubMed  CAS  Google Scholar 

  20. Mayer ML, Westbrook GL. Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 1987;394:501–527.

    PubMed  CAS  Google Scholar 

  21. Perkel DJ, Petrozzino JJ, Nicoll RA, et al. The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron 1993;11:817–823.

    Article  PubMed  CAS  Google Scholar 

  22. Yuste R, Majewska A, Cash SS, et al. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 1999;19:1976–1987.

    PubMed  CAS  Google Scholar 

  23. Mainen ZF, Malinow R, Svoboda K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 1999;399:151–155.

    Article  PubMed  CAS  Google Scholar 

  24. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31–39.

    Article  PubMed  CAS  Google Scholar 

  25. Chittajallu R, Alford S, Collingridge GL. Ca2+ and synaptic plasticity. Cell Calcium 1998;24:377–385.

    Article  PubMed  CAS  Google Scholar 

  26. Cavazzini M, Bliss T, Emptage N. Ca2+ and synaptic plasticity. Cell Calcium 2005;38:355–367.

    Article  PubMed  CAS  Google Scholar 

  27. Harvey J, Collingridge GL. Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 1992;139:197–200.

    Article  PubMed  CAS  Google Scholar 

  28. Bortolotto ZA, Bashir ZI, Davies CH, et al. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 1994;368:740–743.

    Article  PubMed  CAS  Google Scholar 

  29. Grover LM, Teyler TJ. Two components of long-term potentiation induced by different patterns of afferent activation. Nature 1990;347:477–479.

    Article  PubMed  CAS  Google Scholar 

  30. Malenka RC, Lancaster B, Zucker RS. Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 1992;9:121–128.

    Article  PubMed  CAS  Google Scholar 

  31. Muller W, Connor JA. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 1991;354:73–76.

    Article  PubMed  CAS  Google Scholar 

  32. Pawlak V, Jensen V, Schupp BJ, Kvello A, Hvalby O, Seeburg PH, Kohr G. Frequency dependent impairment of hippocampal LTP from NMDA receptors with reduced calcium permeability. Eur J Neurosci 2005;22:476–484.

    Article  PubMed  Google Scholar 

  33. Wigstrom H, Gustafsson B. Facilitation of hippocampal long-lasting potentiation by GABA antagonists. Acta Physiol Scand 1985;125:159–172.

    Article  PubMed  CAS  Google Scholar 

  34. Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994;12:529–540.

    Article  PubMed  CAS  Google Scholar 

  35. Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice. Nature 1999;401:63–69.

    Article  PubMed  CAS  Google Scholar 

  36. Liu L, Wong TP, Pozza MF, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004;304:1021–1024.

    Article  PubMed  CAS  Google Scholar 

  37. Massey PV, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 2004;24:7821–7828.

    Article  PubMed  CAS  Google Scholar 

  38. Berberich S, Punnakkal P, Jensen V, et al. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 2005;25: 6907–6910.

    Article  PubMed  CAS  Google Scholar 

  39. Weitlauf C, Honse Y, Auberson YP, et al. Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor–dependent long-term potentiation. J Neurosci 2005;25:8386–8390.

    Article  PubMed  CAS  Google Scholar 

  40. Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 1995;373:151–155.

    Article  PubMed  CAS  Google Scholar 

  41. Kohr G, Jensen V, Koester HJ, et al. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci 2003;23:10791–10799.

    PubMed  Google Scholar 

  42. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 2005;48:289–301.

    Article  PubMed  CAS  Google Scholar 

  43. Yasuda H, Barth AL, Stellwagen D, et al. A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 2003;6:15–16.

    Article  PubMed  CAS  Google Scholar 

  44. Sanes JR, Lichtman JW. Can molecules explain long-term potentiation? Nat Neurosci 1999;2:597–604.

    Article  PubMed  CAS  Google Scholar 

  45. Browning M, Dunwiddie T, Bennett W, et al. Synaptic phosphoproteins: specific changes after repetitive stimulation of the hippocampal slice. Science 1979;203:60–62.

    Article  PubMed  CAS  Google Scholar 

  46. Kennedy MB. The postsynaptic density at glutamatergic synapses. Trends Neurosci 1997;20:264–268.

    Article  PubMed  CAS  Google Scholar 

  47. Hanson PI, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 1992;61:559–601.

    Article  PubMed  CAS  Google Scholar 

  48. Ouyang Y, Kantor D, Harris KM, et al. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci 1997;17:5416–5427.

    PubMed  CAS  Google Scholar 

  49. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002;3:175–190.

    Article  PubMed  CAS  Google Scholar 

  50. Malenka RC, Kauer JA, Perkel DJ, et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 1989;340:554–557.

    Article  PubMed  CAS  Google Scholar 

  51. Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 1989;245:862–866.

    Article  PubMed  CAS  Google Scholar 

  52. Lledo PM, Hjelmstad GO, Mukherji S, et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci USA 1995;92:11175–11179.

    Article  PubMed  CAS  Google Scholar 

  53. Pettit DL, Perlman S, Malinow R. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 1994;266:1881–1885.

    Article  PubMed  CAS  Google Scholar 

  54. Barria A, Muller D, Derkach V, et al. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 1997;276:2042–2045.

    Article  PubMed  CAS  Google Scholar 

  55. Shen K, Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 1999;284: 162–166.

    Article  PubMed  CAS  Google Scholar 

  56. Shen K, Teruel MN, Connor JH, et al. Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat Neurosci 2000;3:881–886.

    Article  PubMed  CAS  Google Scholar 

  57. Giese KP, Fedorov NB, Filipkowski RK, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 1998;279:870–873.

    Article  PubMed  CAS  Google Scholar 

  58. Silva AJ, Stevens CF, Tonegawa S, et al. Deficient hippocampal long-term potentiation in alpha-calcium–calmodulin kinase II mutant mice. Science 1992;257:201–206.

    Article  PubMed  CAS  Google Scholar 

  59. Otmakhov N, Griffith LC, Lisman JE. Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J Neurosci 1997;17:5357–5365.

    PubMed  CAS  Google Scholar 

  60. Chen HX, Otmakhov N, Strack S, et al. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol 2001;85:1368–1376.

    PubMed  CAS  Google Scholar 

  61. Feng TP. The involvement of PKC and multifunctional CaM kinase II of the postsynaptic neuron in induction and maintenance of long-term potentiation. Prog Brain Res 1995;105:55–63.

    PubMed  CAS  Google Scholar 

  62. Lengyel I, Voss K, Cammarota M, et al. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci 2004;20:3063–3072.

    Article  PubMed  CAS  Google Scholar 

  63. Strack S, Colbran RJ. Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 1998;273:20689–20692.

    Article  PubMed  CAS  Google Scholar 

  64. Bayer KU, De Koninck P, Leonard AS, et al. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 2001;411:801–805.

    Article  PubMed  CAS  Google Scholar 

  65. Bayer KU, LeBel E, McDonald GL, et al. Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 2006;26:1164–1174.

    Article  PubMed  CAS  Google Scholar 

  66. Barria A, Derkach V, Soderling T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino- 3-hydroxyl-5-methyl-4-isoxazole-propionate–type glutamate receptor. J Biol Chem 1997;272:32727–32730.

    Article  PubMed  CAS  Google Scholar 

  67. Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 1999; 96:3269–3274.

    Article  PubMed  CAS  Google Scholar 

  68. Shi SH, Hayashi Y, Petralia RS, et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 1999;284:1811–1816.

    Article  PubMed  CAS  Google Scholar 

  69. Shi S, Hayashi Y, Esteban JA, et al. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 2001;105:331–343.

    Article  PubMed  CAS  Google Scholar 

  70. Liao D, Scannevin RH, Huganir R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J Neurosci 2001;21:6008–6017.

    PubMed  CAS  Google Scholar 

  71. Wikstrom MA, Matthews P, Roberts D, et al. Parallel kinase cascades are involved in the induction of LTP at hippocampal CA1 synapses. Neuropharmacology 2003;45:828–836.

    Article  PubMed  CAS  Google Scholar 

  72. Huang CC, Chou PH, Yang CH, et al. Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction. J Physiol 2005;569:789–799.

    Article  PubMed  CAS  Google Scholar 

  73. Otmakhova NA, Otmakhov N, Mortenson LH, et al. Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J Neurosci 2000;20:4446–4451.

    PubMed  CAS  Google Scholar 

  74. Blitzer RD, Connor JH, Brown GP, et al. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 1998;280:1940–1942.

    Article  PubMed  CAS  Google Scholar 

  75. Makhinson M, Chotiner JK, Watson JB, et al. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci 1999;19:2500–2510.

    PubMed  CAS  Google Scholar 

  76. Malenka RC, Nicoll RA. Long-term potentiation—-a decade of progress? Science 1999;285:1870–1874.

    Article  PubMed  CAS  Google Scholar 

  77. Oh MC, Derkach VA, Guire ES, et al. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 2006;281:752–758.

    Article  PubMed  CAS  Google Scholar 

  78. Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 2000;28:511–525.

    Article  PubMed  CAS  Google Scholar 

  79. Esteban JA, Shi SH, Wilson C, et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003;6:136–143.

    Article  PubMed  CAS  Google Scholar 

  80. Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP–dependent protein kinases. Prog Neurobiol 2003;71:401–437.

    Article  PubMed  CAS  Google Scholar 

  81. Lovinger DM, Wong KL, Murakami K, et al. Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res 1987;436:177–183.

    Article  PubMed  CAS  Google Scholar 

  82. Hvalby O, Hemmings HC Jr, Paulsen O, et al. Specificity of protein kinase inhibitor peptides and induction of long-term potentiation. Proc Natl Acad Sci USA 1994;91:4761–4765.

    Article  PubMed  CAS  Google Scholar 

  83. Wang JH, Feng DP. Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation in the hippocampal CA1 region. Proc Natl Acad Sci USA 1992;89:2576–2580.

    Article  PubMed  CAS  Google Scholar 

  84. Newton AC. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 2001;101: 2353–2364.

    Article  PubMed  CAS  Google Scholar 

  85. Sacktor TC, Osten P, Valsamis H, et al. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci USA 1993;90:8342–8346.

    Article  PubMed  CAS  Google Scholar 

  86. Klann E, Chen SJ, Sweatt JD. Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc Natl Acad Sci USA 1993;90:8337–8341.

    Article  PubMed  CAS  Google Scholar 

  87. Osten P, Valsamis L, Harris A, et al. Protein synthesis–dependent formation of protein kinase Mzeta in long-term potentiation. J Neurosci 1996;16: 2444–2451.

    PubMed  CAS  Google Scholar 

  88. Sessoms JS, Chen SJ, Chetkovich DM, et al. Ca(2+)-induced persistent protein kinase C activation in rat hippocampal homogenates. Second Messengers Phosphoproteins 1992;14:109–126.

    PubMed  Google Scholar 

  89. del Cerro S, Larson J, Oliver MW, et al. Development of hippocampal long-term potentiation is reduced by recently introduced calpain inhibitors. Brain Res 1990;530:91–95.

    Article  PubMed  CAS  Google Scholar 

  90. Denny JB, Polan-Curtain J, Ghuman A, et al. Calpain inhibitors block long-term potentiation. Brain Res 1990;534:317–320.

    Article  PubMed  CAS  Google Scholar 

  91. Hernandez AI, Blace N, Crary JF, et al. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 2003;278:40305–40316.

    Article  PubMed  CAS  Google Scholar 

  92. Muslimov IA, Nimmrich V, Hernandez AI, et al. Dendritic transport and localization of protein kinase Mzeta mRNA: implications for molecular memory consolidation. J Biol Chem 2004;279:52613–52622.

    Article  PubMed  CAS  Google Scholar 

  93. Ling DS, Benardo LS, Serrano PA, et al. Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci 2002;5:295–296.

    Article  PubMed  CAS  Google Scholar 

  94. Serrano P, Yao Y, Sacktor TC. Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. J Neurosci 2005;25: 1979–1984.

    Article  PubMed  CAS  Google Scholar 

  95. Roche KW, O’Brien RJ, Mammen AL, et al. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996;16:1179–1188.

    Article  PubMed  CAS  Google Scholar 

  96. Mammen AL, Kameyama K, Roche KW, et al. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem 1997;272: 32528–32533.

    Article  PubMed  CAS  Google Scholar 

  97. Lee HK, Barbarosie M, Kameyama K, et al. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 2000;405:955–959.

    Article  PubMed  CAS  Google Scholar 

  98. Lee HK, Takamiya K, Han JS, et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 2003;112:631–643.

    Article  PubMed  CAS  Google Scholar 

  99. O’Dell TJ, Kandel ER, Grant SG. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 1991;353:558–560.

    Article  PubMed  CAS  Google Scholar 

  100. Kalia LV, Gingrich JR, Salter MW. Src in synaptic transmission and plasticity. Oncogene 2004;23:8007–8016.

    Article  PubMed  CAS  Google Scholar 

  101. Yu XM, Askalan R, Keil GJ 2nd, et al. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 1997;275:674–678.

    Article  PubMed  CAS  Google Scholar 

  102. Moon IS, Apperson ML, Kennedy MB. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-d-aspartate receptor subunit 2B. Proc Natl Acad Sci USA 1994;91:3954–3958.

    Article  PubMed  CAS  Google Scholar 

  103. Lau LF, Huganir RL. Differential tyrosine phosphorylation of N-methyl- d-aspartate receptor subunits. J Biol Chem 1995;270:20036–20041.

    Article  PubMed  CAS  Google Scholar 

  104. Lu YM, Roder JC, Davidow J, et al. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 1998;279:1363–1367.

    Article  PubMed  CAS  Google Scholar 

  105. Huang Y, Lu W, Ali DW, et al. CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 2001;29: 485–496.

    Article  PubMed  CAS  Google Scholar 

  106. Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 2001;11:336–342.

    Article  PubMed  CAS  Google Scholar 

  107. Pelkey KA, Askalan R, Paul S, et al. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 2002;34:127–138.

    Article  PubMed  CAS  Google Scholar 

  108. Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu Rev Neurosci 1994;17:153–183.

    Article  PubMed  CAS  Google Scholar 

  109. Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 1995;377:115–118.

    Article  PubMed  CAS  Google Scholar 

  110. Huang EP. Synaptic plasticity: a role for nitric oxide in LTP. Curr Biol 1997;7:R141–R143.

    Article  PubMed  CAS  Google Scholar 

  111. Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res 1998;118:155–172.

    PubMed  CAS  Google Scholar 

  112. Brenman JE, Chao DS, Xia H, et al. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995;82:743–752.

    Article  PubMed  CAS  Google Scholar 

  113. Craven SE, Bredt DS. PDZ proteins organize synaptic signaling pathways. Cell 1998;93:495–498.

    Article  PubMed  CAS  Google Scholar 

  114. Brenman JE, Chao DS, Gee SH, et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 1996;84:757–767.

    Article  PubMed  CAS  Google Scholar 

  115. Son H, Hawkins RD, Martin K, et al. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 1996;87:1015–1023.

    Article  PubMed  CAS  Google Scholar 

  116. Kantor DB, Lanzrein M, Stary SJ, et al. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 1996;274: 1744–1748.

    Article  PubMed  CAS  Google Scholar 

  117. O’Dell TJ, Huang PL, Dawson TM, et al. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 1994;265: 542–546.

    Article  PubMed  CAS  Google Scholar 

  118. Blackshaw S, Eliasson MJ, Sawa A, et al. Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide–dependent synaptic plasticity. Neuroscience 2003;119:979–990.

    Article  PubMed  CAS  Google Scholar 

  119. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 1991;254:1503–1506.

    Article  PubMed  CAS  Google Scholar 

  120. O’Dell TJ, Hawkins RD, Kandel ER, et al. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 1991;88:11285–11289.

    Article  PubMed  CAS  Google Scholar 

  121. Haley JE, Wilcox GL, Chapman PF. The role of nitric oxide in hippocampal long-term potentiation. Neuron 1992;8:211–216.

    Article  PubMed  CAS  Google Scholar 

  122. Cummings JA, Nicola SM, Malenka RC. Induction in the rat hippocampus of long-term potentiation (LTP) and long-term depression (LTD) in the presence of a nitric oxide synthase inhibitor. Neurosci Lett 1994;176:110–114.

    Article  PubMed  CAS  Google Scholar 

  123. Williams JH, Li YG, Nayak A, et al. The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent. Neuron 1993;11:877–884.

    Article  PubMed  CAS  Google Scholar 

  124. Huang Y, Man HY, Sekine-Aizawa Y, et al. S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 2005;46:533–540.

    Article  PubMed  CAS  Google Scholar 

  125. Kauer JA, Malenka RC, Nicoll RA. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1988;1:911–917.

    Article  PubMed  CAS  Google Scholar 

  126. Muller D, Joly M, Lynch G. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 1988;242:1694–1697.

    Article  PubMed  CAS  Google Scholar 

  127. Perkel DJ, Nicoll RA. Evidence for all-or-none regulation of neurotransmitter release: implications for long-term potentiation. J Physiol 1993;471:481–500.

    PubMed  CAS  Google Scholar 

  128. Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 1996;381:71–75.

    Article  PubMed  CAS  Google Scholar 

  129. Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 1995;375:400–404.

    Article  PubMed  CAS  Google Scholar 

  130. Montgomery JM, Pavlidis P, Madison DV. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron 2001;29:691–701.

    Article  PubMed  CAS  Google Scholar 

  131. Clark KA, Collingridge GL. Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J Physiol 1995;482(Pt 1):39–52.

    PubMed  CAS  Google Scholar 

  132. Watt AJ, Sjostrom PJ, Hausser M, et al. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci 2004;7: 518–524.

    Article  PubMed  CAS  Google Scholar 

  133. Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for the expression of LTP. Neuron 1995;15:427–434.

    Article  PubMed  CAS  Google Scholar 

  134. Choi S, Klingauf J, Tsien RW. Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’. Nat Neurosci 2000;3:330–336.

    Article  PubMed  CAS  Google Scholar 

  135. Renger JJ, Egles C, Liu G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 2001;29:469–484.

    Article  PubMed  CAS  Google Scholar 

  136. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44:5–21.

    Article  PubMed  CAS  Google Scholar 

  137. Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 2004;5:952–962.

    Article  PubMed  CAS  Google Scholar 

  138. Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 2003;40:361–379.

    Article  PubMed  CAS  Google Scholar 

  139. Lynch G, Baudry M. The biochemistry of memory: a new and specific hypothesis. Science 1984;224:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  140. Nicoll RA. Expression mechanisms underlying long-term potentiation: a postsynaptic view. Phil Trans R Soc Lond B Biol Sci 2003;358:721–726.

    Article  CAS  Google Scholar 

  141. Petralia RS, Esteban JA, Wang YX, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 1999;2:31–36.

    Article  PubMed  CAS  Google Scholar 

  142. Nusser Z, Lujan R, Laube G, et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 1998;21:545–559.

    Article  PubMed  CAS  Google Scholar 

  143. Liao D, Zhang X, O’Brien R, et al. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 1999;2: 37–43.

    Article  PubMed  CAS  Google Scholar 

  144. Gomperts SN, Rao A, Craig AM, et al. Postsynaptically silent synapses in single neuron cultures. Neuron 1998;21:1443–1451.

    Article  PubMed  CAS  Google Scholar 

  145. Takumi Y, Matsubara A, Rinvik E, et al. The arrangement of glutamate receptors in excitatory synapses. Ann N Y Acad Sci 1999;868:474–482.

    Article  PubMed  CAS  Google Scholar 

  146. Racca C, Stephenson FA, Streit P, et al. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci 2000;20:2512–2522.

    PubMed  CAS  Google Scholar 

  147. Lledo PM, Zhang X, Sudhof TC, et al. Postsynaptic membrane fusion and long-term potentiation. Science 1998;279:399–403.

    Article  PubMed  CAS  Google Scholar 

  148. Nishimune A, Isaac JT, Molnar E, et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 1998;21:87–97.

    Article  PubMed  CAS  Google Scholar 

  149. Osten P, Srivastava S, Inman GJ, et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 1998;21:99–110.

    Article  PubMed  CAS  Google Scholar 

  150. Song I, Kamboj S, Xia J, et al. Interaction of the N-ethylmaleimide–sensitive factor with AMPA receptors. Neuron 1998;21:393–400.

    Article  PubMed  CAS  Google Scholar 

  151. Maletic–Savatic M, Koothan T, Malinow R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II. J Neurosci 1998; 18:6814–6821.

    PubMed  CAS  Google Scholar 

  152. Lu W, Man H, Ju W, et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 2001;29:243–254.

    Article  PubMed  CAS  Google Scholar 

  153. Fitzjohn SM, Pickard L, Duckworth JK, et al. An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones. Neuropharmacology 2001;41:693–699.

    Article  PubMed  CAS  Google Scholar 

  154. Pickard L, Noel J, Duckworth JK, et al. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology 2001;41:700–713.

    Article  PubMed  CAS  Google Scholar 

  155. Man HY, Wang Q, Lu WY, et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003;38:611–624.

    Article  PubMed  CAS  Google Scholar 

  156. Hayashi Y, Shi SH, Esteban JA, et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000;287:2262–2267.

    Article  PubMed  CAS  Google Scholar 

  157. Zhu JJ, Esteban JA, Hayashi Y, et al. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat Neurosci 2000;3:1098–1106.

    Article  PubMed  CAS  Google Scholar 

  158. Zhu JJ, Qin Y, Zhao M, et al. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 2002;110:443–455.

    Article  PubMed  CAS  Google Scholar 

  159. Kolleker A, Zhu JJ, Schupp BJ, et al. Glutamatergic plasticity by synaptic delivery of GluR-B(long)–containing AMPA receptors. Neuron 2003; 40:1199–1212.

    Article  PubMed  CAS  Google Scholar 

  160. Kopec CD, Li B, Wei W, et al. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 2006;26:2000–2009.

    Article  PubMed  CAS  Google Scholar 

  161. Bowie D, Mayer ML. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 1995;15:453–462.

    Article  PubMed  CAS  Google Scholar 

  162. Koh DS, Burnashev N, Jonas P. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol 1995;486(Pt 2):305–312.

    PubMed  CAS  Google Scholar 

  163. Kamboj SK, Swanson GT, Cull-Candy SG. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol 1995;486(Pt 2):297–303.

    PubMed  CAS  Google Scholar 

  164. Wenthold RJ, Petralia RS, Blahos J II, et al. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 1996;16: 1982–1989.

    PubMed  CAS  Google Scholar 

  165. Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 2001;4: 917–926.

    Article  PubMed  CAS  Google Scholar 

  166. Kim CH, Takamiya K, Petralia RS, et al. Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1. Nat Neurosci 2005;8: 985–987.

    Article  PubMed  CAS  Google Scholar 

  167. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002;25:103–126.

    Article  PubMed  CAS  Google Scholar 

  168. Boehm J, Malinow R. AMPA receptor phosphorylation during synaptic plasticity. Biochem Soc Trans 2005;33:1354–1356.

    Article  PubMed  CAS  Google Scholar 

  169. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 2002;25:578–588.

    Article  PubMed  CAS  Google Scholar 

  170. Luscher C, Xia H, Beattie EC, et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 1999;24:649–658.

    Article  PubMed  CAS  Google Scholar 

  171. Lee SH, Liu L, Wang YT, et al. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 2002;36:661–674.

    Article  PubMed  CAS  Google Scholar 

  172. Ogoshi F, Weiss JH. Heterogeneity of Ca2+-permeable AMPA/kainate channel expression in hippocampal pyramidal neurons: fluorescence imaging and immunocytochemical assessment. J Neurosci 2003;23:10521–10530.

    PubMed  CAS  Google Scholar 

  173. Harms KJ, Tovar KR, Craig AM. Synapse et al specific regulation of AMPA receptor subunit composition by activity. J Neurosci 2005;25:6379–6388.

    Article  PubMed  CAS  Google Scholar 

  174. Terashima A, Cotton L, Dev KK, et al. Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J Neurosci 2004;24: 5381–5390.

    Article  PubMed  CAS  Google Scholar 

  175. Ju W, Morishita W, Tsui J, et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 2004;7:244–253.

    Article  PubMed  CAS  Google Scholar 

  176. Stellwagen D, Beattie EC, Seo JY, et al. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 2005;25:3219–3228.

    Article  PubMed  CAS  Google Scholar 

  177. Thiagarajan TC, Lindskog M, Tsien RW. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 2005;47:725–737.

    Article  PubMed  CAS  Google Scholar 

  178. Shin J, Shen F, Huguenard JR. Polyamines modulate AMPA receptor–dependent synaptic responses in immature layer V pyramidal neurons. J Neurophysiol 2005;93:2634–2643.

    Article  PubMed  CAS  Google Scholar 

  179. Plant K, Pelkey KA, Bortolotto ZA, et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 2006;9:602–604.

    Article  PubMed  CAS  Google Scholar 

  180. Frey U, Morris RG. Synaptic tagging and long-term potentiation. Nature 1997;385:533–536.

    Article  PubMed  CAS  Google Scholar 

  181. Fonseca R, Nagarl UV, Bonhoeffer T. Neuronal activity determines the protein synathesis dependence of long-term potentiation. Nat Neurosci 2006;9: 478–480.

    Article  PubMed  CAS  Google Scholar 

  182. Volianskis A, Jensen MS. Transient and sustained types of long term potentiation in the CA1 area of the rat hippocampus. J physiol 2003;550:459–492.

    Article  PubMed  CAS  Google Scholar 

  183. Liu SQ, Cull-Candy SG. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 2000;405:454–458.

    Article  PubMed  CAS  Google Scholar 

  184. Liu SJ, Cull-Candy SG. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat Neurosci 2005;8:768–775.

    Article  PubMed  CAS  Google Scholar 

  185. Gardner SM, Takamiya K, Xia J, et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 2005;45:903–915.

    Article  PubMed  CAS  Google Scholar 

  186. Zamanillo D, Sprengel R, Hvalby O, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 1999;284:1805–1811.

    Article  PubMed  CAS  Google Scholar 

  187. Mack V, Burnashev N, Kaiser KM, et al. Conditional restoration of hippocampal synaptic potentiation in Glur-A–deficient mice. Science 2001;292:2501–2504.

    Article  PubMed  CAS  Google Scholar 

  188. Hoffman DA, Sprengel R, Sakmann B. Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci USA 2002;99:7740–7745.

    Article  PubMed  CAS  Google Scholar 

  189. Jensen V, Kaiser KM, Borchardt T, et al. A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J Physiol 2003;553:843–856.

    Article  PubMed  CAS  Google Scholar 

  190. Carvalho AL, Kameyama K, Huganir RL. Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J Neurosci 1999;19:4748–4754.

    PubMed  CAS  Google Scholar 

  191. Jia Z, Agopyan N, Miu P, et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 1996;17:945–956.

    Article  PubMed  CAS  Google Scholar 

  192. Meng Y, Zhang Y, Jia Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 2003;39:163–176.

    Article  PubMed  CAS  Google Scholar 

  193. Mainen ZF, Jia Z, Roder J, et al. Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat Neurosci 1998;1:579–586.

    Article  PubMed  CAS  Google Scholar 

  194. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001;76:1–10.

    Article  PubMed  CAS  Google Scholar 

  195. Oh JS, Manzerra P, Kennedy MB. Regulation of the neuron-specific Ras GTPase-activating protein, synGAP, by Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 2004;279:17980–17988.

    Article  PubMed  CAS  Google Scholar 

  196. Kim JH, Lee HK, Takamiya K, et al. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 2003;23:1119–1124.

    PubMed  CAS  Google Scholar 

  197. Komiyama NH, Watabe AM, Carlisle HJ, et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 2002;22:9721–9732.

    PubMed  CAS  Google Scholar 

  198. Benke TA, Luthi A, Isaac JT, et al. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 1998;393:793–797.

    Article  PubMed  CAS  Google Scholar 

  199. Nicoll RA, Tomita S, Bredt DS. Auxiliary subunits assist AMPA-type glutamate receptors. Science 2006;311:1253–1256.

    Article  PubMed  CAS  Google Scholar 

  200. Chen L, Chetkovich DM, Petralia RS, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000;408:936–943.

    Article  PubMed  CAS  Google Scholar 

  201. Tomita S, Chen L, Kawasaki Y, et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 2003;161:805–816.

    Article  PubMed  CAS  Google Scholar 

  202. Schnell E, Sizemore M, Karimzadegan S, et al. Direct interactions between \hPSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA 2002;99:13902–13907.

    Article  PubMed  CAS  Google Scholar 

  203. Tomita S, Stein V, Stocker TJ, et al. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 2005;45:269–277.

    Article  PubMed  CAS  Google Scholar 

  204. Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 2004;24:916–927.

    Article  PubMed  CAS  Google Scholar 

  205. Stein V, House DR, Bredt DS, et al. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J Neurosci 2003;23:5503–5506.

    PubMed  CAS  Google Scholar 

  206. Rouach N, Byrd K, Petralia RS, et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 2005;8:1525–1533.

    Article  PubMed  CAS  Google Scholar 

  207. Banke TG, Bowie D, Lee H, et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 2000;20:89–102.

    PubMed  CAS  Google Scholar 

  208. Luthi A, Wikstrom MA, Palmer MJ, et al. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neurosci 2004;5:44.

    Article  PubMed  CAS  Google Scholar 

  209. Palmer MJ, Isaac JT, Collingridge GL. Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J Neurosci 2004;24:4903–4911.

    Article  PubMed  CAS  Google Scholar 

  210. Oh MC, Derkach VA. Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII. Nat Neurosci 2005;8:853–854.

    PubMed  CAS  Google Scholar 

  211. Tomita S, Adesnik H, Sekiguchi M, et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 2005;435:1052–1058.

    Article  PubMed  CAS  Google Scholar 

  212. Priel A, Kolleker A, Ayalon G, et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 2005;25: 2682–2686.

    Article  PubMed  CAS  Google Scholar 

  213. Turetsky D, Garringer E, Patneau DK. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J Neurosci 2005;25:7438–7448.

    Article  PubMed  CAS  Google Scholar 

  214. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982;2:32–48.

    PubMed  CAS  Google Scholar 

  215. Bear MF. Mechanism for a sliding synaptic modification threshold. Neuron 1995;15:1–4.

    Article  PubMed  CAS  Google Scholar 

  216. Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 1992;89:4363–4367.

    Article  PubMed  CAS  Google Scholar 

  217. Dudek SM, Bear MF. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 1993;13: 2910–2918.

    PubMed  CAS  Google Scholar 

  218. Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 1992;9:967–975.

    Article  PubMed  CAS  Google Scholar 

  219. Cummings JA, Mulkey RM, Nicoll RA, et al. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 1996;16:825–833.

    Article  PubMed  CAS  Google Scholar 

  220. Kandler K, Katz LC, Kauer JA. Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat Neurosci 1998;1:119–123.

    Article  PubMed  CAS  Google Scholar 

  221. Dodt H, Eder M, Frick A, et al. Precisely localized LTD in the neocortex revealed by infrared-guided laser stimulation. Science 1999;286:110–113.

    Article  PubMed  CAS  Google Scholar 

  222. Lee HK, Kameyama K, Huganir RL, et al. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998;21:1151–1162.

    Article  PubMed  CAS  Google Scholar 

  223. Mulkey RM, Herron CE, Malenka RC. An essential role for protein phosphatases in hippocampal long-term depression. Science 1993;261: 1051–1055.

    Article  PubMed  CAS  Google Scholar 

  224. Mulkey RM, Endo S, Shenolikar S, et al. Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 1994;369:486–488.

    Article  PubMed  CAS  Google Scholar 

  225. Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science 2002;298:776–780.

    Article  PubMed  CAS  Google Scholar 

  226. Luthi A, Chittajallu R, Duprat F, et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 1999;24: 389–399.

    Article  PubMed  CAS  Google Scholar 

  227. DeSouza S, Fu J, States BA, et al. Differential palmitoylation directs the AMPA receptor–binding protein ABP to spines or to intracellular clusters. J Neurosci 2002;22:3493–3503.

    PubMed  CAS  Google Scholar 

  228. Matsuda S, Mikawa S, Hirai H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor–interacting protein. J Neurochem 1999;73:1765–1768.

    Article  PubMed  CAS  Google Scholar 

  229. Xia J, Chung HJ, Wihler C, et al. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain–containing proteins. Neuron 2000;28:499–510.

    Article  PubMed  CAS  Google Scholar 

  230. Kim CH, Chung HJ, Lee HK, et al. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci USA 2001;98:11725–11730.

    Article  PubMed  CAS  Google Scholar 

  231. Perez JL, Khatri L, Chang C, et al. PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 2001;21: 5417–5428.

    PubMed  CAS  Google Scholar 

  232. Chung HJ, Xia J, Scannevin RH, et al. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain–containing proteins. J Neurosci 2000;20:7258–7267.

    PubMed  CAS  Google Scholar 

  233. Linden DJ. Long-term potentiation of glial synaptic currents in cerebellar culture. Neuron 1997;18:983–994.

    Article  PubMed  CAS  Google Scholar 

  234. Salin PA, Malenka RC, Nicoll RA. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 1996;16:797–803.

    Article  PubMed  CAS  Google Scholar 

  235. Castro-Alamancos MA, Calcagnotto ME. Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci 1999;19:9090–9097.

    PubMed  CAS  Google Scholar 

  236. Huang YY, Kandel ER. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 1998;21:169–178.

    Article  PubMed  CAS  Google Scholar 

  237. Acsady L, Kamondi A, Sik A, et al. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 1998;18:3386–3403.

    PubMed  CAS  Google Scholar 

  238. Lawrence JJ, McBain CJ. Interneuron diversity series: containing the detonation—feedforward inhibition in the CA3 hippocampus. Trends Neurosci 2003;26:631–640.

    Article  PubMed  CAS  Google Scholar 

  239. Nicoll RA, Schmitz D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 2005;6:863–876.

    Article  PubMed  CAS  Google Scholar 

  240. Chicurel ME, Harris KM. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 1992;325:169–182.

    Article  PubMed  CAS  Google Scholar 

  241. Henze DA, Urban NN, Barrionuevo G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 2000;98:407–427.

    Article  PubMed  CAS  Google Scholar 

  242. Zalutsky RA, Nicoll RA. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 1990;248:1619–1624.

    Article  PubMed  CAS  Google Scholar 

  243. Katsuki H, Kaneko S, Tajima A, et al. Separate mechanisms of long-term potentiation in two input systems to CA3 pyramidal neurons of rat hippocampal slices as revealed by the whole-cell patch-clamp technique. Neurosci Res 1991;12: 393–402.

    Article  PubMed  CAS  Google Scholar 

  244. Monaghan DT, Cotman CW. Distribution of N-methyl-d-aspartate–sensitive l-[3H]glutamate–binding sites in rat brain. J Neurosci 1985;5:2909–2919.

    PubMed  CAS  Google Scholar 

  245. Weisskopf MG, Nicoll RA. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor–mediated synaptic responses. Nature 1995;376:256–259.

    Article  PubMed  CAS  Google Scholar 

  246. Zalutsky RA, Nicoll RA. Mossy fiber long-term potentiation shows specificity but no apparent cooperativity. Neurosci Lett 1992;138:193–197.

    Article  PubMed  CAS  Google Scholar 

  247. Langdon RB, Johnson JW, Barrionuevo G. Posttetanic potentiation and presynaptically induced long-term potentiation at the mossy fiber synapse in rat hippocampus. J Neurobiol 1995;26:370–385.

    Article  PubMed  CAS  Google Scholar 

  248. Chattarji S, Stanton PK, Sejnowski TJ. Commissural synapses, but not mossy fiber synapses, in hippocampal field CA3 exhibit associative long-term potentiation and depression. Brain Res 1989;495:145–150.

    Article  PubMed  CAS  Google Scholar 

  249. Williams S, Johnston D. Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators. Neuron 1989;3:583–588.

    Article  PubMed  CAS  Google Scholar 

  250. Jaffe D, Johnston D. Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J Neurophysiol 1990;64:948–960.

    PubMed  CAS  Google Scholar 

  251. Urban NN, Barrionuevo G. Induction of hebbian and non-hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J Neurosci 1996;16:4293–4299.

    PubMed  CAS  Google Scholar 

  252. Yeckel MF, Kapur A, Johnston D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 1999;2: 625–633.

    Article  PubMed  CAS  Google Scholar 

  253. Mellor J, Nicoll RA. Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 2001;4:125–126.

    Article  PubMed  CAS  Google Scholar 

  254. Wang J, Yeckel MF, Johnston D, et al. Photolysis of postsynaptic caged Ca2+ can potentiate and depress mossy fiber synaptic responses in rat hippocampal CA3 pyramidal neurons. J Neurophysiol 2004;91:1596–1607.

    Article  PubMed  Google Scholar 

  255. Lei S, Pelkey KA, Topolnik L, et al. Depolarization-induced long-term depression at hippocampal mossy fiber–CA3 pyramidal neuron synapses. J Neurosci 2003;23:9786–9795.

    PubMed  CAS  Google Scholar 

  256. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002;3:475–486.

    Article  PubMed  CAS  Google Scholar 

  257. Murai KK, Pasquale EB. Can Eph receptors stimulate the mind? Neuron 2002;33:159–162.

    Article  PubMed  CAS  Google Scholar 

  258. Grunwald IC, Korte M, Wolfer D, et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 2001;32:1027–1040.

    Article  PubMed  CAS  Google Scholar 

  259. Liebl DJ, Morris CJ, Henkemeyer M, et al. mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 2003;71:7–22.

    Article  PubMed  CAS  Google Scholar 

  260. Armstrong JN, Saganich MJ, Xu NJ, et al. B-Ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J Neurosci 2006;26:3474–3481.

    Article  PubMed  CAS  Google Scholar 

  261. Contractor A, Rogers C, Maron C, et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 2002;296: 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  262. Spruston N, Jonas P, Sakmann B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 1995;482(Pt 2): 325–352.

    PubMed  CAS  Google Scholar 

  263. Toth K, Suares G, Lawrence JJ, et al. Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 2000;20:8279–8289.

    PubMed  CAS  Google Scholar 

  264. Kakegawa W, Yamada N, Iino M, et al. Postsynaptic expression of a new calcium pathway in hippocampal CA3 neurons and its influence on mossy fiber long-term potentiation. J Neurosci 2002;22:4312–4320.

    PubMed  CAS  Google Scholar 

  265. Kakegawa W, Tsuzuki K, Yoshida Y, et al. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Eur J Neurosci 2004;20:101–110.

    Article  PubMed  Google Scholar 

  266. Monaghan DT, Cotman CW. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 1982;252:91–100.

    Article  PubMed  CAS  Google Scholar 

  267. Marchal C, Mulle C. Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 2004;561:27–37.

    Article  PubMed  CAS  Google Scholar 

  268. Mulle C, Sailer A, Perez-Otano I, et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998;392:601–605.

    Article  PubMed  CAS  Google Scholar 

  269. Contractor A, Sailer AW, Darstein M, et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2-/- mice. J Neurosci 2003;23:422–429.

    PubMed  CAS  Google Scholar 

  270. Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001;29:209–216.

    Article  PubMed  CAS  Google Scholar 

  271. Ruiz A, Sachidhanandam S, Utvik JK, et al. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J Neurosci 2005;25:11710–11718.

    Article  PubMed  CAS  Google Scholar 

  272. Schmitz D, Mellor J, Breustedt J, et al. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 2003;6:1058–1063.

    Article  PubMed  CAS  Google Scholar 

  273. Nicoll RA, Mellor J, Frerking M, et al. Kainate receptors and synaptic plasticity. Nature 2000;406:957.

    Article  PubMed  CAS  Google Scholar 

  274. Castillo PE, Weisskopf MG, Nicoll RA. The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 1994;12:261–269.

    Article  PubMed  CAS  Google Scholar 

  275. Day NC, Shaw PJ, McCormack AL, et al. Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience 1996;71:1013–1024.

    Article  PubMed  CAS  Google Scholar 

  276. Breustedt J, Vogt KE, Miller RJ, et al. Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci USA 2003;100: 12450–12455.

    Article  PubMed  CAS  Google Scholar 

  277. Castillo PE, Janz R, Sudhof TC, et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 1997;388:590–593.

    Article  PubMed  CAS  Google Scholar 

  278. Castillo PE, Schoch S, Schmitz F, et al. RIM1alpha is required for presynaptic long-term potentiation. Nature 2002;415:327–3230.

    Article  PubMed  CAS  Google Scholar 

  279. Kamiya H, Umeda K, Ozawa S, et al. Presynaptic Ca2+ entry is unchanged during hippocampal mossy fiber long-term potentiation. J Neurosci 2002;22: 10524–10528.

    PubMed  CAS  Google Scholar 

  280. Kobayashi K, Manabe T, Takahashi T. Presynaptic long-term depression at the hippocampal mossy fiber–CA3 synapse. Science 1996;273:648–650.

    Article  PubMed  CAS  Google Scholar 

  281. Tzounopoulos T, Janz R, Sudhof TC, et al. A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 1998;21:837–845.

    Article  PubMed  CAS  Google Scholar 

  282. Domenici MR, Berretta N, Cherubini E. Two distinct forms of long-term depression coexist at the mossy fiber–CA3 synapse in the hippocampus during development. Proc Natl Acad Sci USA 1998;95:8310–8315.

    Article  PubMed  CAS  Google Scholar 

  283. Yokoi M, Kobayashi K, Manabe T, et al. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 1996;273:645–647.

    Article  PubMed  CAS  Google Scholar 

  284. Battistin T, Cherubini E. Developmental shift from long-term depression to long-term potentiation at the mossy fibre synapses in the rat hippocampus. Eur J Neurosci 1994;6:1750–1755.

    Article  PubMed  CAS  Google Scholar 

  285. Berretta N, Rossokhin AV, Cherubini E, et al. Long-term synaptic changes induced by intracellular tetanization of CA3 pyramidal neurons in hippocampal slices from juvenile rats. Neuroscience 1999;93:469–477.

    Article  PubMed  CAS  Google Scholar 

  286. Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990;347:281–284.

    Article  PubMed  CAS  Google Scholar 

  287. Alle H, Jonas P, Geiger JR. PTP and LTP at a hippocampal mossy fiber–interneuron synapse. Proc Natl Acad Sci USA 2001;98:14708–14713.

    Article  PubMed  CAS  Google Scholar 

  288. Maccaferri G, Toth K, McBain CJ. Target-specific expression of presynaptic mossy fiber plasticity. Science 1998;279:1368–1370.

    Article  PubMed  CAS  Google Scholar 

  289. Lei S, McBain CJ. Two loci of expression for long-term depression at hippocampal mossy fiber–interneuron synapses. J Neurosci 2004;24:2112–2121.

    Article  PubMed  CAS  Google Scholar 

  290. Pelkey KA, Lavezzari G, Racca C, et al. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron 2005;46: 89–102.

    Article  PubMed  CAS  Google Scholar 

  291. Lei S, McBain CJ. Distinct NMDA receptors provide differential modes of transmission at mossy fiber–interneuron synapses. Neuron 2002;33:921–933.

    Article  PubMed  CAS  Google Scholar 

  292. Shigemoto R, Kinoshita A, Wada E, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 1997;17:7503–7522.

    PubMed  CAS  Google Scholar 

  293. Shigemoto R, Kulik A, Roberts JD, et al. Target-cell–specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 1996;381:523–525.

    Article  PubMed  CAS  Google Scholar 

  294. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002;64:355–405.

    Article  PubMed  CAS  Google Scholar 

  295. Jonas P, Burnashev N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 1995;15:987–990.

    Article  PubMed  CAS  Google Scholar 

  296. Jonas P, Bischofberger J, Fricker D, et al. Interneuron diversity series: Fast in, fast out—temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 2004;27:30–40.

    Article  PubMed  CAS  Google Scholar 

  297. Rozov A, Burnashev N. Polyamine–dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 1999;401: 594–598.

    Article  PubMed  CAS  Google Scholar 

  298. Rozov A, Zilberter Y, Wollmuth LP, et al. Facilitation of currents through rat Ca2+-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J Physiol 1998;511(Pt 2):361–377.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Pelkey, K.A., McBain, C.J. (2008). Ionotropic Glutamate Receptors in Synaptic Plasticity. In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_5

Download citation

Publish with us

Policies and ethics