Skip to main content

Kainate Receptors

  • Chapter
The Glutamate Receptors

Part of the book series: The Receptors ((REC))

Summary

Kainate receptors are glutamate-gated ion channels whose functional roles in the brain have been only poorly understood until recently. A picture has developed over the last decade of kainate receptors as subtle actors in neurotransmission; they modulate excitatory and inhibitory transmission and neuronal excitability and generate small but prolonged depolarizations at a subset of postsynaptic sites. This chapter reviews a variety of aspects of kainate receptor function, including their structure, biophysical function, and activities in (and out) of synapses in the mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bettler B, Boulter J, Hermans-Borgmeyer I, et al. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 1990;5:583–595.

    PubMed  CAS  Google Scholar 

  2. Bettler B, Egebjerg J, Sharma G, et al. Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 1992;8:257–265.

    PubMed  CAS  Google Scholar 

  3. Egebjerg J, Bettler B, Hermans-Borgmeyer I, et al. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 1991;351:745–748.

    PubMed  CAS  Google Scholar 

  4. Herb A, Burnashev N, Werner P, et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 1992;8:775–785.

    PubMed  CAS  Google Scholar 

  5. Lomeli H, Wisden W, Köhler M, et al. High-affinity kainate and domoate receptors in rat brain. FEBS Lett 1992;307:139–143.

    PubMed  CAS  Google Scholar 

  6. Sommer B, Burnashev N, Verdoorn TA, et al. A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 1992;11:1651–1656.

    PubMed  CAS  Google Scholar 

  7. Werner P, Voigt M, Keinänen K, et al. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 1991;351:742–744.

    PubMed  CAS  Google Scholar 

  8. Barbon A, Vallini I, Barlati S. Genomic organization of the human GRIK2 gene and evidence for multiple splicing variants. Gene 2001;274:187–197.

    PubMed  CAS  Google Scholar 

  9. Bennett JA, Dingledine R. Topology profile for a glutamate receptor: Three transmembrane domains and a channel-lining re-entrant membrane loop. Neuron 1995;14:373–184.

    PubMed  CAS  Google Scholar 

  10. Hollmann M, Maron C, Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 1994;13:1331–1343.

    PubMed  CAS  Google Scholar 

  11. Wo ZG, Oswald RE. Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci USA 1994;91:7154–7158.

    PubMed  CAS  Google Scholar 

  12. Wood MW, VanDongen HM, VanDongen AM. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci USA 1995;92:4882–4886.

    PubMed  CAS  Google Scholar 

  13. Kuner T, Seeburg PH, Guy HR. A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 2003;26:27–32.

    Google Scholar 

  14. Rosenmund C, Stern-Bach Y, Stevens CF. The tetrameric structure of a glutamate receptor channel. Science 1998;280:1596–1599.

    PubMed  CAS  Google Scholar 

  15. Wollmuth LP, Sobolevsky AI. Structure and gating of the glutamate receptor ion channel. Trends Neurosci 2004;27:321–328.

    PubMed  CAS  Google Scholar 

  16. O’Hara PJ, Sheppard PO, Th\o rgersen H, et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993;11:41–52.

    PubMed  CAS  Google Scholar 

  17. Ayalon G, Stern-Bach Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein–protein interactions. Neuron 2001;31:103–113.

    PubMed  CAS  Google Scholar 

  18. Leuschner WD, Hoch W. Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their N-terminal domains. J Biol Chem 1999;274:16907–16916.

    PubMed  CAS  Google Scholar 

  19. Stern-Bach Y, Bettler B, Hartley M, et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid–binding proteins. Neuron 1994;13:1345–1357.

    PubMed  CAS  Google Scholar 

  20. Mayer ML. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 2005;45:539–552.

    PubMed  CAS  Google Scholar 

  21. Mayer ML, Ghosal A, Dolman NP, et al. Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists. J Neurosci 2006;26:2852–2861.

    PubMed  CAS  Google Scholar 

  22. Nanao MH, Green T, Stern-Bach Y, et al. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc Natl Acad Sci USA 2005;102:1708–1713.

    PubMed  CAS  Google Scholar 

  23. Naur P, Vestergaard B, Skov LK, et al. Crystal structure of the kainate receptor GluR5 ligand-binding core in complex with (S)-glutamate. FEBS Lett 2005;579:1154–1160.

    PubMed  CAS  Google Scholar 

  24. Armstrong N, Sun Y, Chen GQ, et al. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 1998;395:913–917.

    PubMed  CAS  Google Scholar 

  25. Furukawa H, Singh SK, Mancusso R, et al. Subunit arrangement and function in NMDA receptors. Nature 2005;438:185–192.

    PubMed  CAS  Google Scholar 

  26. Nielsen MM, Liljefors T, Krogsgaard-Larsen P, et al. The selective activation of the glutamate receptor GluR5 by ATPA is controlled by serine 741. Mol Pharmacol 2003;63:19–25.

    PubMed  CAS  Google Scholar 

  27. Swanson GT, Gereau RW IV, Green T, et al. Identification of amino acid residues that control functional behavior in GluR5 and GluR6 kainate receptors. Neuron 1997;19:913–926.

    PubMed  CAS  Google Scholar 

  28. Sanders JM, Pentikainen OT, Settimo L, et al. Determination of binding site residues responsible for the subunit selectivity of novel marine-derived compounds on kainate receptors. Mol Pharmacol 2006;69:1849–1860.

    PubMed  CAS  Google Scholar 

  29. Robert A, Armstrong N, Gouaux JE, et al. AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization. J Neurosci 2005;25:3752–3762.

    PubMed  CAS  Google Scholar 

  30. Weston MC, Gertler C, Mayer ML, et al. Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate. J Neurosci 2006;26:7650–7658.

    PubMed  CAS  Google Scholar 

  31. Stern-Bach Y, Russo S, Neuman M, et al. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 1998;21:907–918.

    PubMed  CAS  Google Scholar 

  32. Sun Y, Olson R, Horning M, et al. Mechanism of glutamate receptor desensitization. Nature 2002;417:245–253.

    PubMed  CAS  Google Scholar 

  33. Fleck MW, Cornell E, Mah SJ. Amino-acid residues involved in glutamate receptor 6 kainate receptor gating and desensitization. J Neurosci 2003;23:1219–1227.

    PubMed  CAS  Google Scholar 

  34. Zuo J, De Jager PL, Takahashi KA, et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 1997;388:769–773.

    PubMed  CAS  Google Scholar 

  35. Kohda K, Wang Y, Yuzaki M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci 2000;3:315–322.

    PubMed  CAS  Google Scholar 

  36. Klein RM, Howe JR. Effects of the lurcher mutation on GluR1 desensitization and activation kinetics. J Neurosci 2004;24:4941–4951.

    PubMed  CAS  Google Scholar 

  37. Jaskolski F, Coussen F, Mulle C. Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 2005;26:20–26.

    PubMed  CAS  Google Scholar 

  38. Bettler B, Mulle C. Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 1995;34:123–139.

    PubMed  CAS  Google Scholar 

  39. Gregor P, O’Hara BF, Yang X, et al. Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. Neuroreport 1993;4:1343–1346.

    PubMed  CAS  Google Scholar 

  40. Barbon A, Barlati S. Genomic organization, proposed alternative splicing mechanisms, and RNA editing structure of GRIK1. Cytogenet Cell Genet 2000;88:236–239.

    PubMed  CAS  Google Scholar 

  41. Ren Z, Riley NJ, Needleman LA, et al. Cell surface expression of GluR5 kainate receptors is regulated by an endoplasmic reticulum retention signal. J Biol Chem 2003;278:52700–52709.

    PubMed  CAS  Google Scholar 

  42. Jaskolski F, Coussen F, Nagarajan N, et al. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J Neurosci 2004;24:2506–2515.

    PubMed  CAS  Google Scholar 

  43. Swanson GT, Heinemann SF. Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. J Physiol (Lond) 1998;513:639–646.

    CAS  Google Scholar 

  44. Coussen F, Perrais D, Jaskolski F, et al. Co-assembly of two GluR6 kainate receptor splice variants within a functional protein complex. Neuron 2005;47:555–566.

    PubMed  CAS  Google Scholar 

  45. Schiffer HH, Swanson GT, Heinemann SF. Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 1997;19:1141–1146.

    PubMed  CAS  Google Scholar 

  46. Yan S, Sanders JM, Xu J, et al. A C-terminal determinant of GluR6 kainate receptor trafficking. J Neurosci 2004;24:679–691.

    PubMed  CAS  Google Scholar 

  47. Jaskolski F, Normand E, Mulle C, et al. Differential trafficking of GluR7 kainate receptor subunit splice variants. J Biol Chem 2005;280:22968–22976.

    PubMed  CAS  Google Scholar 

  48. Sommer B, Köhler M, Sprengel R, et al. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991;67:11–19.

    PubMed  CAS  Google Scholar 

  49. Köhler M, Burnashev N, Sakmann B, et al. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 1993;10:491–500.

    PubMed  Google Scholar 

  50. Herb A, Higuchi M, Sprengel R, et al. Q/R site editing in kainate receptor GluR5 and GluR6 pre–mRNAs requires distant intronic sequences. Proc Natl Acad Sci USA 1996;93:1875–1880.

    PubMed  CAS  Google Scholar 

  51. Higuchi M, Maas S, Single FN, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000;406:78–81.

    PubMed  CAS  Google Scholar 

  52. Egebjerg J, Heinemann SF. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci USA 1993;90:755–759.

    PubMed  CAS  Google Scholar 

  53. Burnashev N, Zhou Z, Neher E, et al. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol (Lond) 1995;485:403–418.

    CAS  Google Scholar 

  54. Swanson GT, Feldmeyer D, Kaneda M, et al. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol (Lond) 1996;492:129–142.

    CAS  Google Scholar 

  55. Burnashev N, Villarroel A, Sakmann B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol (Lond) 1996;496:165–173.

    CAS  Google Scholar 

  56. Bowie D, Mayer ML. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 1995;15:453–462.

    PubMed  CAS  Google Scholar 

  57. Kamboj SK, Swanson GT, Cull-Candy SG. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol (Lond) 1995;486:297–303.

    CAS  Google Scholar 

  58. Cui C, Mayer ML. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J Neurosci 1999;19:8281–8291.

    PubMed  CAS  Google Scholar 

  59. Bernard A, Khrestchatisky M. Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development. J Neurochem 1994;62:2057–2060.

    PubMed  CAS  Google Scholar 

  60. Paschen W, Schmitt J, Dux E, et al. Temporal analysis of the upregulation of GluR5 mRNA editing with age: regional evaluation. Brain Res Dev Brain Res 1995;86:359–363.

    PubMed  CAS  Google Scholar 

  61. Paschen W, Schmitt J, Gissel C, et al. Developmental changes of RNA editing of glutamate receptor subunits GluR5 and GluR6: in vivo versus in vitro. Brain Res Dev Brain Res 1997;98:271–280.

    PubMed  CAS  Google Scholar 

  62. de Zulueta MP, Matute C. Reduced editing of low-affinity kainate receptor subunits in optic nerve glial cells. Brain Res Mol Brain Res 1999;73:104–109.

    PubMed  Google Scholar 

  63. Lee CJ, Kong H, Manzini MC, et al. Kainate receptors expressed by a subpopulation of developing nociceptors rapidly switch from high to low Ca2+ permeability. J Neurosci 2001;21:4572–4581.

    PubMed  CAS  Google Scholar 

  64. Paschen W, Hedreen JC, Ross CA. RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J Neurochem 1994;63:1596–1602.

    PubMed  CAS  Google Scholar 

  65. Paschen W, Djuricic B. Regional differences in the extent of RNA editing of the glutamate receptor subunits GluR2 and GluR6 in rat brain. J Neurosci Meth 1995;56:21–29.

    CAS  Google Scholar 

  66. Paschen W, Djuricic B. Extent of RNA editing of glutamate receptor subunit GluR5 in different brain regions of the rat. Cell Mol Neurobiol 1994;14:259–270.

    PubMed  CAS  Google Scholar 

  67. Christensen KV, Dai WM, Lambert JD, et al. Larger intercellular variation in (Q/R) editing of GluR6 than GluR5 revealed by single cell RT-PCR. Neuroreport 2000;11:3577–3582.

    PubMed  CAS  Google Scholar 

  68. Mackler SA, Eberwine JH. Diversity of glutamate receptor subunit mRNA expression within live hippocampal CA1 neurons. Mol Pharmacol 1993;44:308–315.

    PubMed  CAS  Google Scholar 

  69. Paschen W, Schmitt J, Uto A. RNA editing of glutamate receptor subunits GluR2, GluR5 and GluR6 in transient cerebral ischemia in the rat. J Cereb Blood Flow Metab 1996;16:548–556.

    PubMed  CAS  Google Scholar 

  70. Bernard A, Ferhat L, Dessi F, et al. Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 1999;11:604–616.

    PubMed  CAS  Google Scholar 

  71. Kortenbruck G, Berger E, Speckmann EJ, et al. RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 2001;8:459–468.

    PubMed  CAS  Google Scholar 

  72. Grigorenko EV, Bell WL, Glazier S, et al. Editing status at the Q/R site of the GluR2 and GluR6 glutamate receptor subunits in the surgically excised hippocampus of patients with refractory epilepsy. Neuroreport 1998;9:2219–2224.

    PubMed  CAS  Google Scholar 

  73. Kawahara Y, Ito K, Sun H, et al. Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Down’s syndrome brains. Brain Res Dev Brain Res 2004;148:151–155.

    PubMed  CAS  Google Scholar 

  74. Nutt SL, Hoo KH, Rampersad V, et al. Molecular characterization of the human EAA5 (GluR7) receptor: a high-affinity kainate receptor with novel potential RNA editing sites. Receptors Channels 1994;2:315–326.

    PubMed  CAS  Google Scholar 

  75. Schiffer HH, Swanson GT, Masliah E, et al. Unequal expression of allelic kainate receptor GluR7 mRNAs in human brains. J Neurosci 2000;20:9025–9033.

    PubMed  CAS  Google Scholar 

  76. Schiffer HH, Heinemann SF. Association of the human kainate receptor GluR7 gene (GRIK3) with recurrent major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2007;144:20–26.

    PubMed  CAS  Google Scholar 

  77. Begni S, Popoli M, Moraschi S, et al. Association between the ionotropic glutamate receptor kainate 3 (GRIK3) ser310ala polymorphism and schizophrenia. Mol Psychiatry 2002;7:416–418.

    PubMed  CAS  Google Scholar 

  78. Delorme R, Krebs MO, Chabane N, et al. Frequency and transmission of glutamate receptors GRIK2 and GRIK3 polymorphisms in patients with obsessive compulsive disorder. Neuroreport 2004;15:699–702.

    PubMed  CAS  Google Scholar 

  79. Shibata H, Aramaki T, Sakai M, et al. Association study of polymorphisms in the GluR7, KA1 and KA2 kainate receptor genes (GRIK3, GRIK4, GRIK5) with schizophrenia. Psychiatry Res 2006;141:39–51.

    PubMed  CAS  Google Scholar 

  80. Samochowiec J, Grzywacz A, Kucharska-Mazur J, et al. Family-based and case–control association studies of glutamate receptor GRIK3 Ser310Ala polymorphism in Polish patients and families with alcohol dependence. Neurosci Lett 2006;396:159–162.

    PubMed  CAS  Google Scholar 

  81. Everts I, Villmann C, Hollmann M. N-Glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol Pharmacol 1997;52:861–873.

    PubMed  CAS  Google Scholar 

  82. Everts I, Petroski R, Kizelsztein P, et al. Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci 1999;19:916–927.

    PubMed  CAS  Google Scholar 

  83. Pickering DS, Taverna FA, Salter MW, et al. Palmitoylation of the GluR6 kainate receptor. Proc Natl Acad Sci USA 1995;92:12090–12094.

    PubMed  CAS  Google Scholar 

  84. Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 2005;47:709–723.

    PubMed  CAS  Google Scholar 

  85. El-Husseini AE, Craven SE, Chetkovich DM, et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol 2000;148:159–172.

    PubMed  CAS  Google Scholar 

  86. Ren Z, Riley NJ, Garcia EP, et al. Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 2003;23:6608–6616.

    PubMed  Google Scholar 

  87. Paternain AV, Herrera MT, Nieto MA, et al. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 2000;20:196–205.

    PubMed  CAS  Google Scholar 

  88. Heckmann M, Bufler J, Franke C, et al. Kinetics of homomeric GluR6 glutamate receptor channels. Biophys J 1996;71:1743–1750.

    PubMed  CAS  Google Scholar 

  89. Traynelis SF, Wahl P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J Physiol (Lond) 1997;503:513–531.

    CAS  Google Scholar 

  90. Bowie D, Lange GD. Functional stoichiometry of glutamate receptor desensitization. J Neurosci 2002;22:3392–403.

    PubMed  CAS  Google Scholar 

  91. Li G, Oswald RE, Niu L. Channel-opening kinetics of GluR6 kainate receptor. Biochemistry 2003;42:12367–12375.

    PubMed  CAS  Google Scholar 

  92. Swanson GT, Green T, Heinemann SF. Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine. Mol Pharmacol 1998;53:942–949.

    PubMed  CAS  Google Scholar 

  93. Paternain AV, Rodriguez-Moreno A, Villarroel A, et al. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 1998;37:1249–1259.

    PubMed  CAS  Google Scholar 

  94. Lomeli H, Mosbacher J, Melcher T, et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994;266:1709–1713.

    PubMed  CAS  Google Scholar 

  95. Jones KA, Wilding TJ, Huettner JE, et al. Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology 1997;36:853–863.

    PubMed  CAS  Google Scholar 

  96. Swanson GT, Green T, Sakai R, et al. Differential activation of individual subunits in heteromeric kainate receptors. Neuron 2002;34:589–598.

    PubMed  CAS  Google Scholar 

  97. Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 1997;388:182–186.

    PubMed  CAS  Google Scholar 

  98. Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 1997;388:179–182.

    Google Scholar 

  99. Henze DA, Urban NN, Barrionuevo G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 2000;98:407–427.

    PubMed  CAS  Google Scholar 

  100. Darstein M, Petralia RS, Swanson GT, et al. Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. J Neurosci 2003;23:8013–8019.

    PubMed  CAS  Google Scholar 

  101. Cossart R, Epsztein J, Tyzio R, et al. Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons. Neuron 2002;35:147–159.

    PubMed  CAS  Google Scholar 

  102. Ito K, Contractor A, Swanson GT. Attenuated plasticity of postsynaptic kainate receptors in hippocampal CA3 pyramidal neurons. J Neurosci 2004;24:6228–6236.

    PubMed  CAS  Google Scholar 

  103. Mulle C, Sailer A, Perez-Otano I, et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998;392:601–605.

    PubMed  CAS  Google Scholar 

  104. Contractor A, Sailer AW, Darstein M, et al. Loss of kainate receptor–mediated heterosynaptic facilitation of mossy-fiber synapses in KA2–/– mice. J Neurosci 2003;23:422–429.

    PubMed  CAS  Google Scholar 

  105. Vignes M, Clarke VR, Parry MJ, et al. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 1998;37:1269–1277.

    PubMed  CAS  Google Scholar 

  106. Bahn S, Volk B, Wisden W. Kainate receptor gene expression in the developing rat brain. J Neurosci 1994;14:5525–5547.

    PubMed  CAS  Google Scholar 

  107. Bureau I, Bischoff S, Heinemann SF, et al. Kainate receptor–mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci 1999;19:653–663.

    PubMed  CAS  Google Scholar 

  108. Lauri SE, Bortolotto ZA, Bleakman D, et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 2001;32:697–709.

    PubMed  CAS  Google Scholar 

  109. Cossart R, Esclapez M, Hirsch JC, et al . GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1998;1:470–478.

    PubMed  CAS  Google Scholar 

  110. Frerking M, Malenka RC, Nicoll RA. Synaptic activation of kainate receptors on hippocampal interneurons. Nat Neurosci 1998;1:479–486.

    PubMed  CAS  Google Scholar 

  111. Kidd FL, Isaac JT. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 1999;400:569–573.

    PubMed  CAS  Google Scholar 

  112. Bannister NJ, Benke TA, Mellor J, et al. Developmental changes in AMPA and kainate receptor–mediated quantal transmission at thalamocortical synapses in the barrel cortex. J Neurosci 2005;25:5259–5271.

    PubMed  CAS  Google Scholar 

  113. Park Y, Jo J, Isaac JT, Cho K. Long-term depression of kainate receptor–mediated synaptic transmission. Neuron 2006;49:95–106.

    PubMed  CAS  Google Scholar 

  114. Hirbec H, Francis JC, Lauri SE, et al. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 2003;37:625–638.

    PubMed  CAS  Google Scholar 

  115. DeVries SH, Schwartz EA. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 1999;397:157–160.

    PubMed  CAS  Google Scholar 

  116. Wu LJ, Zhao MG, Toyoda H, et al. Kainate receptor–mediated synaptic transmission in the adult anterior cingulate cortex. J Neurophysiol 2005;94:1805–1813.

    PubMed  CAS  Google Scholar 

  117. Ali AB. Involvement of post-synaptic kainate receptors during synaptic transmission between unitary connections in rat neocortex. Eur J Neurosci 2003;17:2344–2350.

    PubMed  Google Scholar 

  118. Li H, Rogawski MA. GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 1998;37:1279–1286.

    PubMed  CAS  Google Scholar 

  119. Miyata M, Imoto K. Different composition of glutamate receptors in corticothalamic and lemniscal synaptic responses and their roles in the firing responses of ventrobasal thalamic neurons in juvenile mice. J Physiol 2006;575:161–174.

    PubMed  CAS  Google Scholar 

  120. Li P, Wilding TJ, Kim SJ, et al. Kainate-receptor–mediated sensory synaptic transmission in mammalian spinal cord. Nature 1999;397:161–164.

    PubMed  CAS  Google Scholar 

  121. Bureau I, Dieudonne S, Coussen F, et al. Kainate receptor–mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc Natl Acad Sci USA 2000;97:6838–6843.

    PubMed  CAS  Google Scholar 

  122. Huang YH, Dykes-Hoberg M, Tanaka K, et al. Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. J Neurosci 2004;24:103–111.

    PubMed  CAS  Google Scholar 

  123. Frerking M, Ohliger-Frerking P. AMPA receptors and kainate receptors encode different features of afferent activity. J Neurosci 2002;22:7434–7443.

    PubMed  CAS  Google Scholar 

  124. Melyan Z, Wheal HV, Lancaster B. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 2002;34:107–114.

    PubMed  CAS  Google Scholar 

  125. Melyan Z, Lancaster B, Wheal HV. Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 2004;24:4530–4534.

    PubMed  CAS  Google Scholar 

  126. Rozas JL, Paternain AV, Lerma J. Noncanonical signaling by ionotropic kainate receptors. Neuron 2003;39:543–553.

    PubMed  CAS  Google Scholar 

  127. Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998;20:1211–1218.

    PubMed  CAS  Google Scholar 

  128. Lancaster B, Adams PR. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 1986;55:1268–1282.

    PubMed  CAS  Google Scholar 

  129. Fisahn A, Contractor A, Traub RD, et al. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J Neurosci 2004;24:9658–9668.

    PubMed  CAS  Google Scholar 

  130. Fisahn A, Heinemann SF, McBain CJ. The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones. J Physiol 2005;562:199–203.

    PubMed  CAS  Google Scholar 

  131. Ruiz A, Sachidhanandam S, Utvik JK, et al. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J Neurosci 2005;25:11710–11718.

    PubMed  CAS  Google Scholar 

  132. Engelman HS, MacDermott AB. Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci 2004;5:135–145.

    PubMed  CAS  Google Scholar 

  133. Malva JO, Ambrosio AF, Cunha RA, et al. A functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 subregion. Neurosci Lett 1995;185:83–86.

    PubMed  CAS  Google Scholar 

  134. Malva JO, Carvalho AP, Carvalho CM. Domoic acid induces the release of glutamate in the rat hippocampal CA3 subregion. Neuroreport 1996;7:1330–1334.

    PubMed  CAS  Google Scholar 

  135. Terrian DM, Conner-Kerr TA, Privette TH, et al. Domoic acid enhances the K(+)-evoked release of endogenous glutamate from guinea pig hippocampal mossy fiber synaptosomes. Brain Res 1991;551:303–307.

    PubMed  CAS  Google Scholar 

  136. Chittajallu R, Vignes M, Dev KK, et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 1996;379:78–81.

    PubMed  CAS  Google Scholar 

  137. Kamiya H, Ozawa S. Kainate receptor–mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J Physiol 1998;509(Pt 3):833–845.

    PubMed  CAS  Google Scholar 

  138. Frerking M, Schmitz D, Zhou Q, et al. Kainate receptors depress excitatory synaptic transmission at CA3→CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 2001;21:2958–2966.

    PubMed  CAS  Google Scholar 

  139. Monaghan DT, Cotman CW. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 1982;252:91–100.

    PubMed  CAS  Google Scholar 

  140. Represa A, Tremblay E, Ben-Ari Y. Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience 1987;20:739–748.

    PubMed  CAS  Google Scholar 

  141. Gannon RL, Terrian DM. Presynaptic modulation of glutamate and dynorphin release by excitatory amino acids in the guinea-pig hippocampus. Neuroscience 1991;41:401–410.

    PubMed  CAS  Google Scholar 

  142. Contractor A, Swanson GT, Sailer A, et al. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 2000;20:8269–8278.

    PubMed  CAS  Google Scholar 

  143. Kamiya H, Ozawa S. Kainate receptor–mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J Physiol 2000;523(Pt 3):653–665.

    PubMed  CAS  Google Scholar 

  144. Schmitz D, Frerking M, Nicoll RA. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 2000;27:327–338.

    PubMed  CAS  Google Scholar 

  145. Schmitz D, Mellor J, Nicoll RA. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 2001;291:1972–1976.

    PubMed  CAS  Google Scholar 

  146. Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001;29:209–216.

    PubMed  CAS  Google Scholar 

  147. Lauri SE, Bortolotto ZA, Nistico R, et al. A role for Ca2+ stores in kainate receptor–dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron 2003;39:327–341.

    PubMed  CAS  Google Scholar 

  148. Donevan SD, Beg A, Gunther JM, et al. The methylglutamate, SYM 2081, is a potent and highly selective agonist at kainate receptors. J Pharmacol Exp Ther 1998;285:539–545.

    PubMed  CAS  Google Scholar 

  149. Karst H, Joels M, Wadman WJ, et al. Philanthotoxin inhibits Ca2+ currents in rat hippocampal CA1 neurons. Eur J Pharmacol 1994;270:357–360.

    PubMed  CAS  Google Scholar 

  150. Kerschbaum HH, Kozak JA, Cahalan MD. Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J 2003;84:2293–2305.

    PubMed  CAS  Google Scholar 

  151. Liu M, Nakazawa K, Inoue K, et al. Potent and voltage-dependent block by philanthotoxin-343 of neuronal nicotinic receptor/channels in PC12 cells. Br J Pharmacol 1997;122:379–385.

    PubMed  CAS  Google Scholar 

  152. Breustedt J, Schmitz D. Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses. J Neurosci 2004;24:10093–10098.

    PubMed  CAS  Google Scholar 

  153. Fisher RS, Alger BE. Electrophysiological mechanisms of kainic acid–induced epileptiform activity in the rat hippocampal slice. J Neurosci 1984;4:1312–1323.

    PubMed  CAS  Google Scholar 

  154. Rodriguez-Moreno A, Herreras O, Lerma J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997;19:893–901.

    PubMed  CAS  Google Scholar 

  155. Rodriguez-Moreno A, Lopez-Garcia JC, Lerma J. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc Natl Acad Sci USA 2000;97:1293129–8.

    Google Scholar 

  156. Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 2000;23:580–587.

    PubMed  CAS  Google Scholar 

  157. Lerma J. Kainate receptors keep the excitement high. Trends Neurosci 2001;24:139–140; discussion, 40–41.

    PubMed  CAS  Google Scholar 

  158. Khalilov I, Hirsch J, Cossart R, et al . Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol 2002;88:523–527.

    PubMed  CAS  Google Scholar 

  159. Cossart R, Tyzio R, Dinocourt C, et al. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 2001;29:497–508.

    PubMed  CAS  Google Scholar 

  160. Mulle C, Sailer A, Swanson GT, et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 2000;28:475–484.

    PubMed  CAS  Google Scholar 

  161. Semyanov A, Kullmann DM. Kainate receptor–dependent axonal depolarization and action potential initiation in interneurons. Nat Neurosci 2001;4:718–723.

    PubMed  CAS  Google Scholar 

  162. Jiang L, Xu J, Nedergaard M, et al. A kainate receptor increases the efficacy of GABAergic synapses. Neuron 2001;30:503–513.

    PubMed  CAS  Google Scholar 

  163. Christensen JK, Paternain AV, Selak S, et al. A mosaic of functional kainate receptors in hippocampal interneurons. J Neurosci 2004;24:8986–8993.

    PubMed  CAS  Google Scholar 

  164. Delaney AJ, Jahr CE. Kainate receptors differentially regulate release at two parallel fiber synapses. Neuron 2002;36:475–482.

    PubMed  CAS  Google Scholar 

  165. Casassus G, Mulle C. Functional characterization of kainate receptors in the mouse nucleus accumbens. Neuropharmacology 2002;42:603–611.

    PubMed  CAS  Google Scholar 

  166. Kidd FL, Coumis U, Collingridge GL, et al. A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 2002;34:635–646.

    PubMed  CAS  Google Scholar 

  167. Huettner JE. Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 1990;5:255–266.

    PubMed  CAS  Google Scholar 

  168. Agrawal SG, Evans RH. The primary afferent depolarizing action of kainate in the rat. Br J Pharmacol 1986;87:345–355.

    PubMed  CAS  Google Scholar 

  169. Ault B, Hildebrand LM. Activation of nociceptive reflexes by peripheral kainate receptors. J Pharmacol Exp Ther 1993;265:927–932.

    PubMed  CAS  Google Scholar 

  170. Carlton SM, Hargett GL, Coggeshall RE. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci Lett 1995;197:25–28.

    PubMed  CAS  Google Scholar 

  171. Kerchner GA, Wilding TJ, Li P, et al. Presynaptic kainate receptors regulate spinal sensory transmission. J Neurosci 2001;21:59–66.

    PubMed  CAS  Google Scholar 

  172. Partin KM, Patneau DK, Winters CA, et al. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 1993;11:1069–1082.

    PubMed  CAS  Google Scholar 

  173. Kerchner GA, Wilding TJ, Huettner JE, et al. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. J Neurosci 2002;22:8010–8017.

    PubMed  CAS  Google Scholar 

  174. Dominguez E, Iyengar S, Shannon HE, et al. Two prodrugs of potent and selective GluR5 kainate receptor antagonists actives in three animal models of pain. J Med Chem 2005;48:4200–4203.

    PubMed  CAS  Google Scholar 

  175. Jones CK, Alt A, Ogden AM, et al. Antiallodynic and antihyperalgesic effects of selective competitive GLUK5 (GluR5) ionotropic glutamate receptor antagonists in the capsaicin and carrageenan models in rats. J Pharmacol Exp Ther 2006;319:396–404.

    PubMed  CAS  Google Scholar 

  176. Braga MF, Aroniadou-Anderjaska V, Xie J, et al. Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J Neurosci 2003;23:442–452.

    PubMed  CAS  Google Scholar 

  177. Liu QS, Patrylo PR, Gao XB, et al. Kainate acts at presynaptic receptors to increase GABA release from hypothalamic neurons. J Neurophysiol 1999;82:1059–1062.

    PubMed  CAS  Google Scholar 

  178. Nakamura M, Jang IS, Ishibashi H, et al. Possible roles of kainate receptors on GABAergic nerve terminals projecting to rat substantia nigra dopaminergic neurons. J Neurophysiol 2003;90:1662–1670.

    PubMed  CAS  Google Scholar 

  179. Bortolotto ZA, Clarke VR, Delany CM, et al. Kainate receptors are involved in synaptic plasticity. Nature 1999;402:297–301.

    PubMed  CAS  Google Scholar 

  180. Ito I, Sugiyama H. Roles of glutamate receptors in long-term potentiation at hippocampal mossy fiber synapses. Neuroreport 1991;2:333–336.

    PubMed  CAS  Google Scholar 

  181. Castillo PE, Weisskopf MG, Nicoll RA. The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 1994;12:261–269.

    PubMed  CAS  Google Scholar 

  182. Nicoll RA, Mellor J, Frerking M, et al. Kainate receptors and synaptic plasticity. Nature 2000;406:957.

    Google Scholar 

  183. O’Neill MJ, Bond A, Ornstein PL, et al. Decahydroisoquinolines: novel competitive AMPA/kainate antagonists with neuroprotective effects in global cerebral ischaemia. Neuropharmacology 1998;37:1211–1222.

    PubMed  CAS  Google Scholar 

  184. Schmitz D, Mellor J, Breustedt J, et al. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 2003;6:1058–1063.

    PubMed  CAS  Google Scholar 

  185. Ko S, Zhao MG, Toyoda H, et al. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J Neurosci 2005;25:977–984.

    PubMed  CAS  Google Scholar 

  186. Li H, Chen A, Xing G, et al. Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nat Neurosci 2001;4:612–620.

    PubMed  CAS  Google Scholar 

  187. Daw MI, Bannister NV, Isaac JT. Rapid, activity-dependent plasticity in timing precision in neonatal barrel cortex. J Neurosci 2006;26:4178–4187.

    PubMed  CAS  Google Scholar 

  188. Lauri SE, Segerstrale M, Vesikansa A, et al. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 2005;25:4473–4484.

    PubMed  CAS  Google Scholar 

  189. Lauri SE, Vesikansa A, Segerstrale M, C et al. Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor–mediated inhibition of glutamate release. Neuron 2006;50:415–429.

    Google Scholar 

  190. Tashiro A, Dunaevsky A, Blazeski R, et al. Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: a two-step model of synaptogenesis. Neuron 2003;38:773–784.

    PubMed  CAS  Google Scholar 

  191. Marchal C, Mulle C. Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 2004;561:27–37.

    PubMed  CAS  Google Scholar 

  192. Vissel B, Royle GA, Christie BR, et al. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 2001;29:217–227.

    PubMed  CAS  Google Scholar 

  193. Blackburn-Munro G, Bomholt SF, Erichsen HK. Behavioural effects of the novel AMPA/GluR5 selective receptor antagonist NS1209 after systemic administration in animal models of experimental pain. Neuropharmacology 2004;47:351–362.

    PubMed  CAS  Google Scholar 

  194. Simmons RM, Li DL, Hoo KH, et al. Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 1998;37:25–36.

    PubMed  CAS  Google Scholar 

  195. Bah J, Quach H, Ebstein RP, et al. Maternal transmission disequilibrium of the glutamate receptor GRIK2 in schizophrenia. Neuroreport 2004;15:1987–1991.

    PubMed  CAS  Google Scholar 

  196. Jamain S, Betancur C, Quach H, et al. Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry 2002;7:302–310.

    PubMed  CAS  Google Scholar 

  197. Rubinsztein DC, Leggo J, Chiano M, et al. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci USA 1997;94:3872–3876.

    PubMed  CAS  Google Scholar 

  198. Lai IC, Liou YJ, Chen JY, et al. No association between the ionotropic glutamate receptor kainate 3 gene ser310ala polymorphism and schizophrenia. Neuropsychobiology 2005;51:211–213.

    PubMed  CAS  Google Scholar 

  199. Mueller HT, Haroutunian V, Davis KL, et al . Expression of the ionotropic glutamate receptor subunits and NMDA receptor–associated intracellular proteins in the substantia nigra in schizophrenia. Brain Res Mol Brain Res 2004;121:60–69.

    PubMed  CAS  Google Scholar 

  200. Harrison PJ, McLaughlin D, Kerwin RW. Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 1991;337:450–452.

    PubMed  CAS  Google Scholar 

  201. Meador-Woodruff JH, Davis KL, Haroutunian V. Abnormal kainate receptor expression in prefrontal cortex in schizophrenia. Neuropsychopharmacology 2001;24:545–552.

    PubMed  CAS  Google Scholar 

  202. Porter RH, Eastwood SL, Harrison PJ. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 1997;751:217–231.

    PubMed  CAS  Google Scholar 

  203. Benes FM, Todtenkopf MS, Kostoulakos P. GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 2001;11:482–491.

    PubMed  CAS  Google Scholar 

  204. Alberdi E, Sanchez-Gomez MV, Torre I, et al. Activation of kainate receptors sensitizes oligodendrocytes to complement attack. J Neurosci 2006;26:3220–3228.

    PubMed  CAS  Google Scholar 

  205. Zhang QG, Tian H, Li HC, et al. Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus. Neurosci Lett 2006;408:159–164.

    PubMed  CAS  Google Scholar 

  206. Bischoff S, Barhanin J, Bettler B, et al. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J Comp Neurol 1997;379:541–562.

    PubMed  CAS  Google Scholar 

  207. Wisden W, Seeburg PH. A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 1993;13:3582–3598.

    PubMed  CAS  Google Scholar 

  208. Kask K, Jerecic J, Zamanillo D, et al. Developmental profile of kainate receptor subunit KA1 revealed by Cre expression in YAC transgenic mice. Brain Res 2000;876:55–61.

    PubMed  CAS  Google Scholar 

  209. Vivithanaporn P, Yan S, Swanson GT. Intracellular trafficking of KA2 kainate receptors mediated by interactions with coatomer protein complex I (COPI) and 14–3-3 chaperone systems. J Biol Chem 2006;281:15475–15484.

    PubMed  CAS  Google Scholar 

  210. Grunwald ME, Kaplan JM. Mutations in the ligand-binding and pore domains control exit of glutamate receptors from the endoplasmic reticulum in C. elegans. Neuropharmacology 2003;45:768–776.

    PubMed  CAS  Google Scholar 

  211. Mah SJ, Cornell E, Mitchell NA, et al. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. J Neurosci 2005;25:2215–2225.

    PubMed  CAS  Google Scholar 

  212. Valluru L, Xu J, Zhu Y, et al. Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors. J Biol Chem 2005;280:6085–6093.

    PubMed  CAS  Google Scholar 

  213. Greger IH, Akamine P, Khatri L, et al. Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Neuron 2006;51:85–97.

    PubMed  CAS  Google Scholar 

  214. Jong YJ, Kumar V, Kingston AE, et al. Functional metabotropic glutamate receptors on nuclei from brain and primary cultured striatal neurons. Role of transporters in delivering ligand. J Biol Chem 2005;280:30469–30480.

    PubMed  CAS  Google Scholar 

  215. Garcia EP, Mehta S, Blair LA, et al. SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 1998;21:727–739.

    PubMed  CAS  Google Scholar 

  216. Bowie D, Garcia EP, Marshall J, et al. Allosteric regulation and spatial distribution of kainate receptors bound to ancillary proteins. J Physiol (Lond) 2003;547:373–385.

    CAS  Google Scholar 

  217. Laezza F, Wilding TJ, Sequeira S, et al. KRIP6: a novel BTB/kelch protein regulating function of kainate receptors. Mol Cell Neurosci 2006; in press.

    Google Scholar 

  218. Salinas GD, Blair LA, Needleman LA, et al. Actinfilin is a CUL3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin–proteasome pathway. J Biol Chem 2006;281:40164–40173.

    PubMed  CAS  Google Scholar 

  219. Coussen F, Normand E, Marchal C, et al. Recruitment of the kainate receptor subunit glutamate receptor 6 by cadherin/catenin complexes. J Neurosci 2002;22:6426–6436.

    PubMed  CAS  Google Scholar 

  220. Murakami S, Takemoto T, Shimizu Z. Studies on the effective principles of Digenea simplex Aq. I. Separation of the effective fraction by liquid chromatography. J Pharm Soc Jpn 1953;73:1026–1028.

    CAS  Google Scholar 

  221. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985;14:375–403.

    PubMed  CAS  Google Scholar 

  222. Davies J, Evans RH, Francis AA, et al. Excitatory amino acid receptors and synaptic excitation in the mammalian central nervous system. J Physiol (Paris) 1979;75:641–654.

    CAS  Google Scholar 

  223. Nadler JV. Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981;29:2031–2042.

    Google Scholar 

  224. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17:31–108.

    PubMed  CAS  Google Scholar 

  225. Pentikäinen OT, Settimo L, Keinanen K, et al. Selective agonist binding of (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and 2S-(2alpha,3beta,4beta)-2-carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid (kainate) receptors: a molecular modeling study. Biochem Pharmacol 2003;66:2413–2425.

    PubMed  Google Scholar 

  226. Strutz N, Villmann C, Thalhammer A, et al. Identification of domains and amino acids involved in GLuR7 ion channel function. J Neurosci 2001;21:401–411.

    PubMed  CAS  Google Scholar 

  227. Wilding TJ, Huettner JE. Activation and desensitization of hippocampal kainate receptors. J Neurosci 1997;17:2713–2721.

    PubMed  CAS  Google Scholar 

  228. Perl TM, Bedard L, Kosatsky T, et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 1990;322:1775–1780.

    PubMed  CAS  Google Scholar 

  229. Wright JLC, Boyd RK, Defreitas ASW, et al. Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 1989;67:481–490.

    CAS  Google Scholar 

  230. Scholin CA, Gulland F, Doucette GJ, et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 2000;403:80–84.

    PubMed  CAS  Google Scholar 

  231. Sierra-Beltrán AP, Cruz A, Nùñez E, et al. An overview of the marine food poisoning in Mexico. Toxicon 1998;36:1493–1502.

    PubMed  Google Scholar 

  232. Sakai R, Kamiya H, Murata M, et al. Dysiherbaine: a new neurotoxic amino acid from the Micronesian marine sponge Dysidea herbacea. J Am Chem Soc 1997;119:4112–4116.

    CAS  Google Scholar 

  233. Sakai R, Koike T, Sasaki M, et al. Isolation, structure determination, and synthesis of neodysiherbaine A, a new excitatory amino acid from a marine sponge. Org Lett 2001;3:1479–1482.

    PubMed  CAS  Google Scholar 

  234. Kerchner GA, Wang GD, Qiu CS, et al. Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: an ionotropic mechanism. Neuron 2001;32:477–488.

    PubMed  CAS  Google Scholar 

  235. Alt A, Weiss B, Ogden AM, et al. Pharmacological characterization of glutamatergic agonists and antagonists at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacology 2004;46:793–806.

    PubMed  CAS  Google Scholar 

  236. Loscher W, Lehmann H, Behl B, et al. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy. Eur J Neurosci 1999;11:250–262.

    PubMed  CAS  Google Scholar 

  237. Evans RH, Jones AW, Watkins JC. Willardiine: a potent quisqualate-like excitant. J Physiol (Lond) 1980;308:71P–72P.

    Google Scholar 

  238. Clarke VR, Ballyk BA, Hoo KH, et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 1997;389:599–603.

    PubMed  CAS  Google Scholar 

  239. Jin R, Banke TG, Mayer ML, et al. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci 2003;6:803–810.

    PubMed  CAS  Google Scholar 

  240. Wong LA, Mayer ML, Jane DE, et al. Willardiines differentiate agonist binding sites for kainate- versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons. J Neurosci 1994;14:3881–3897.

    PubMed  CAS  Google Scholar 

  241. Bleakman R, Schoepp DD, Ballyk B, et al. Pharmacological discrimination of GluR5 and GluR6 kainate receptor subtypes by (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahyd roisdoquinoline-3 carboxylic-acid. Mol Pharmacol 1996;49:581–585.

    PubMed  CAS  Google Scholar 

  242. Smolders I, Bortolotto ZA, Clarke VR, et al. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 2002;5:796–804.

    PubMed  CAS  Google Scholar 

  243. Bleakman D, Ballyk BA, Schoepp DD, et al. Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 1996;35:1689–1702.

    PubMed  CAS  Google Scholar 

  244. More JC, Nistico R, Dolman NP, et al. Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist. Neuropharmacology 2004;47:46–64.

    PubMed  CAS  Google Scholar 

  245. Sanders JM, Ito K, Settimo L, et al. Divergent pharmacological activity of novel marine-derived excitatory amino acids on glutamate receptors. J Pharmacol Exp Ther 2005;314:1068–1078.

    PubMed  CAS  Google Scholar 

  246. Verdoorn TA, Johansen TH, Drejer J, et al. Selective block of recombinant glur6 receptors by NS-102, a novel non-NMDA receptor antagonist. Eur J Pharmacol 1994;269:43–49.

    PubMed  CAS  Google Scholar 

  247. Valgeirsson J, Nielsen EO, Peters D, et al. Bioisosteric modifications of 2-arylureidobenzoic acids: selective noncompetitive antagonists for the homomeric kainate receptor subtype GluR5. J Med Chem 2004;47:6948–6957.

    PubMed  CAS  Google Scholar 

  248. Valgeirsson J, Nielsen EO, Peters D, et al. 2-Arylureidobenzoic acids: selective noncompetitive antagonists for the homomeric kainate receptor subtype GluR5. J Med Chem 2003;46:5834–5843.

    PubMed  CAS  Google Scholar 

  249. Christensen JK, Varming T, Ahring PK, et al. In vitro characterization of 5-carboxyl-2,4-di-benzamidobenzoic Acid (NS3763), a noncompetitive antagonist of GLUK5 receptors. J Pharmacol Exp Ther 2004;309:1003–1010.

    PubMed  CAS  Google Scholar 

  250. Fay AM, Bowie D. Concanavalin-A reports agonist–induced conformational changes in the intact GluR6 kainate receptor. J Physiol 2006;572:201–213.

    PubMed  CAS  Google Scholar 

  251. Paternain AV, Cohen A, Stern–Bach Y, et al. A role for extracellular Na+ in the channel gating of native and recombinant kainate receptors. J Neurosci 2003;23:8641–8648.

    PubMed  CAS  Google Scholar 

  252. Bowie D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J Physiol 2002;539:725–733.

    PubMed  CAS  Google Scholar 

  253. Wong AY, Fay AM, Bowie D. External ions are coactivators of kainate receptors. J Neurosci 2006;26:5750–5755.

    PubMed  CAS  Google Scholar 

  254. Mott DD, Washburn MS, Zhang S, et al. Subunit-dependent modulation of kainate receptors by extracellular protons and polyamines. J Neurosci 2003;23:1179–1188.

    PubMed  CAS  Google Scholar 

  255. Wilding TJ, Chai YH, Huettner JE. Inhibition of rat neuronal kainate receptors by cis-unsaturated fatty acids. J Physiol (Lond) 1998;513:331–339.

    CAS  Google Scholar 

  256. Wilding TJ, Zhou Y, Huettner JE. Q/R site editing controls kainate receptor inhibition by membrane fatty acids. J Neurosci 2005;25:9470–9478.

    PubMed  CAS  Google Scholar 

  257. Raymond LA, Blackstone CD, Huganir RL. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 1993;361:637–641.

    PubMed  CAS  Google Scholar 

  258. Wang LY, Taverna FA, Huang XP, et al. Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase. Science 1993;259:1173–1175.

    PubMed  CAS  Google Scholar 

  259. Martin S, Henley JM. Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. EMBO J 2004;23:4749–4759.

    PubMed  CAS  Google Scholar 

  260. Cho K, Francis JC, Hirbec H, et al. Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. J Physiol (Lond) 2003;548:723–730.

    CAS  Google Scholar 

  261. Yakel JL, Vissavajjhala P, Derkach VA, et al. Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-d-aspartate glutamate receptors. Proc Natl Acad Sci USA 1995;92:1376–1380.

    PubMed  CAS  Google Scholar 

  262. Ghetti A, Heinemann SF. NMDA-Dependent modulation of hippocampal kainate receptors by calcineurin and Ca(2+)/calmodulin-dependent protein kinase. J Neurosci 2000;20:2766–2773.

    PubMed  CAS  Google Scholar 

  263. Sailer A, Swanson GT, Perez-Otano I, et al. Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J Neurosci 1999;19:8757–8764.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Contractor, A., Swanson, G.T. (2008). Kainate Receptors. In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_3

Download citation

Publish with us

Policies and ethics