Skip to main content

Part of the book series: The Receptors ((REC))

Summary

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMP ARs) are glutamate-gated ion channels. They are the neurotransmitter receptors that mediate the great majority of fast excitatory synaptic transmission in the mammalian brain and are found throughout the animal kingdom in organisms as diverse as rodents, honeybees, nematode worms, and humans. They are absolutely critical for brain function; for example, infusion of a selective AMPAR antagonist into the rat hippocampus in vivo completely silences excitatory transmission in that region (1). AMPARs are also required for adaptive changes in the brain, mediating the expression of forms of long-term and short-term synaptic plasticity that are believed to underlie learning and memory, development, and certain neurologic diseases (2-5). Thus, AMPARs play a central role in brain function, and consequently there is great interest in the development of novel therapies directed at modulating AMPAR function for treatment of neurologic disorders, such as Alzheimer disease and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riedel G, et al. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 1999;2(10):898–905.

    PubMed  CAS  Google Scholar 

  2. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361(6407):31–39.

    PubMed  CAS  Google Scholar 

  3. Malenka RC, Nicoll RA. Long-term potentiation—a decade of progress? Science 1999;285(5435):1870–1874.

    PubMed  CAS  Google Scholar 

  4. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44(1):5–21.

    PubMed  CAS  Google Scholar 

  5. Kullmann DM, Asztely F, Walker MC. The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci 2000;57(11):1551–1561.

    PubMed  CAS  Google Scholar 

  6. Chen GQ, et al. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 1999;402(6763):817–821.

    PubMed  CAS  Google Scholar 

  7. Borges K, Dingledine R. AMPA receptors: molecular and functional diversity. Prog Brain Res 1998;116:153–170.

    PubMed  CAS  Google Scholar 

  8. Kohler M, Kornau HC, Seeburg PH. The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J Biol Chem 1994;269(26):17367–17370.

    PubMed  CAS  Google Scholar 

  9. Hollmann M, Maron C, Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 1994;13(6):1331–1343.

    PubMed  CAS  Google Scholar 

  10. Molnar E, et al. Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned GluR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain. Neuroscience 1993;53(2):307–326.

    PubMed  CAS  Google Scholar 

  11. Mayer ML. Glutamate receptors at atomic resolution. Nature 2006; 440(7083):456–462.

    PubMed  CAS  Google Scholar 

  12. Vandenberghe W, Nicoll RA, Bredt DS. Stargazin is an AMPA receptor auxiliary subunit. Proc Natl Acad Sci USA 2005;102(2):485–490.

    PubMed  CAS  Google Scholar 

  13. Leuschner WD, Hoch W. Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their N-terminal domains. J Biol Chem 1999;274(24):16907–16916.

    PubMed  CAS  Google Scholar 

  14. Ayalon G, et al. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J Biol Chem 2005;280(15):15053–15060.

    PubMed  CAS  Google Scholar 

  15. Passafaro M, et al. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 2003;424(6949):677–681.

    PubMed  CAS  Google Scholar 

  16. Kuner T, et al. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter. J Neurosci 2001;21(12):4162–4172.

    PubMed  CAS  Google Scholar 

  17. Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci 2000;23(2):75–80.

    PubMed  CAS  Google Scholar 

  18. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002;25:103–126.

    PubMed  CAS  Google Scholar 

  19. Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 2004;5(12):952–962.

    PubMed  CAS  Google Scholar 

  20. Nakagawa T, et al. Structure and different conformational states of native AMPA receptor complexes. Nature 2005;433(7025):545–549.

    PubMed  CAS  Google Scholar 

  21. Nakagawa T, et al. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins. Biol Chem 2006;387(2):179–187.

    PubMed  CAS  Google Scholar 

  22. Wu TY, Liu CI, Chang YC. A study of the oligomeric state of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–preferring glutamate receptors in the synaptic junctions of porcine brain. Biochem J 1996;319(Pt 3):731–739.

    PubMed  CAS  Google Scholar 

  23. Rosenmund C, Stern-Bach Y, Stevens CF. The tetrameric structure of a glutamate receptor channel. Science 1998;280(5369):1596–1599.

    PubMed  CAS  Google Scholar 

  24. Ayalon G, Stern-Bach Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein–protein interactions. Neuron 2001;31(1):103–113.

    PubMed  CAS  Google Scholar 

  25. Greger IH, et al. AMPA receptor tetramerization is mediated by Q/R editing. Neuron 2003;40(4):763–774.

    PubMed  CAS  Google Scholar 

  26. Sommer B, et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 1990;249(4976):1580–1585.

    PubMed  CAS  Google Scholar 

  27. Brorson JR, Li D, Suzuki T. Selective expression of heteromeric AMPA receptors driven by flip-flop differences. J Neurosci 2004;24(14):3461–3470.

    PubMed  CAS  Google Scholar 

  28. Sommer B, et al. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991;67(1):11–19.

    PubMed  CAS  Google Scholar 

  29. Quirk JC, Siuda ER, Nisenbaum ES. Molecular determinants responsible for differences in desensitization kinetics of AMPA receptor splice variants. J Neurosci 2004;24(50):11416–11420.

    PubMed  CAS  Google Scholar 

  30. Gallo V, et al. Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. J Neurosci 1992;12(3):1010–1023.

    PubMed  CAS  Google Scholar 

  31. Higuchi M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron–exon structure determines position and efficiency. Cell 1993;75(7):1361–1370.

    PubMed  CAS  Google Scholar 

  32. Carlson NG, et al. RNA editing (Q/R site) and flop/flip splicing of AMPA receptor transcripts in young and old brains. Neurobiol Aging 2000;21(4):599–606.

    PubMed  CAS  Google Scholar 

  33. Burnashev N, et al. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992;8(1):189–198.

    PubMed  CAS  Google Scholar 

  34. Nutt SL, Kamboj RK. Differential RNA editing efficiency of AMPA receptor subunit GluR-2 in human brain. Neuroreport 1994;5(13):1679–1683.

    PubMed  CAS  Google Scholar 

  35. Kim DY, et al. High abundance of GluR1 mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons. Mol Cell Neurosci 2001;17(6):1025–1033.

    PubMed  CAS  Google Scholar 

  36. Brusa R, et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 1995;270(5242):1677–1680.

    PubMed  CAS  Google Scholar 

  37. Kawahara Y, et al. Glutamate receptors: RNA editing and death of motor neurons. Nature 2004;427(6977):801.

    PubMed  CAS  Google Scholar 

  38. Kwak S, Kawahara Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 2005;83(2):110–120.

    PubMed  CAS  Google Scholar 

  39. Peng PL, et al. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 2006;49(5):719–733.

    PubMed  CAS  Google Scholar 

  40. Soundarapandian MM, et al. AMPA receptor subunit GluR2 gates injurious signals in ischemic stroke. Mol Neurobiol 2005;32(2):145–155.

    PubMed  CAS  Google Scholar 

  41. Lomeli H, et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994;266(5191):1709–1713.

    PubMed  CAS  Google Scholar 

  42. Ohman M, Kallman AM, Bass BL. In vitro analysis of the binding of ADAR2 to the pre-mRNA encoding the GluR-B R/G site. RNA 2000;6(5):687–697.

    PubMed  CAS  Google Scholar 

  43. Grosskreutz J, et al. Kinetic properties of human AMPA-type glutamate receptors expressed in HEK293 cells. Eur J Neurosci 2003;17(6):1173–1178.

    PubMed  Google Scholar 

  44. Vollmar W, et al. RNA editing (R/G site) and flip-flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis 2004;15(2):371–379.

    PubMed  CAS  Google Scholar 

  45. Yamaguchi K, et al. The reversible change of GluR2 RNA editing in gerbil hippocampus in course of ischemic tolerance. J Cereb Blood Flow Metab 1999;19(4):370–375.

    PubMed  CAS  Google Scholar 

  46. Wenthold RJ, et al. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 1996;16(6):1982–1989.

    PubMed  CAS  Google Scholar 

  47. Greger IH, Khatri L, Ziff EB. RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 2002;34(5):759–772.

    PubMed  CAS  Google Scholar 

  48. Mansour M, et al. Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron 2001;32(5):841–853.

    PubMed  CAS  Google Scholar 

  49. Sans N, et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J Neurosci 2003;23(28):9367–9373.

    PubMed  CAS  Google Scholar 

  50. Myers SJ, et al. Inhibition of glutamate receptor 2 translation by a polymorphic repeat sequence in the 5’-untranslated leaders. J Neurosci 2004–24(14):3489–3499.

    Google Scholar 

  51. Huang Y, Myers SJ, Dingledine R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 1999;2(10):867–872.

    PubMed  CAS  Google Scholar 

  52. Myers SJ, Dingledine R, Borges K. Genetic regulation of glutamate receptor ion channels. Annu Rev Pharmacol Toxicol 1999;39:221–241.

    PubMed  CAS  Google Scholar 

  53. Noh KM, et al. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 2005;102(34):12230–12235.

    PubMed  CAS  Google Scholar 

  54. Calderone A, et al. Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 2003;23(6):2112–2121.

    PubMed  CAS  Google Scholar 

  55. Pellegrini-Giampietro DE, et al. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 1997;20(10):464–470.

    PubMed  CAS  Google Scholar 

  56. Jonas P, et al. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994;12(6):1281–1289.

    PubMed  CAS  Google Scholar 

  57. Tsuzuki K, et al. Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J Neurochem 2001;77(6):1650–1659.

    PubMed  CAS  Google Scholar 

  58. Ju W, et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 2004;7(3):244–253.

    PubMed  CAS  Google Scholar 

  59. Thiagarajan TC, Lindskog M, Tsien RW. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 2005;47(5):725–737.

    PubMed  CAS  Google Scholar 

  60. Clem RL, Barth A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron 2006;49(5):663–670.

    PubMed  CAS  Google Scholar 

  61. Plant K, Pelkey KA, Bortolotto ZA, et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 2006;9:602–604.

    PubMed  CAS  Google Scholar 

  62. Roche KW, et al. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996;16(6):1179–1188.

    PubMed  CAS  Google Scholar 

  63. McDonald BJ, Chung HJ, Huganir RL. Identification of protein kinase C phosphorylation sites within the AMPA receptor GluR2 subunit. Neuropharmacology 2001;41(6):672–679.

    PubMed  CAS  Google Scholar 

  64. Carvalho AL, Kameyama K, and Huganir RL. Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J Neurosci 1999;19(12):4748–4754.

    PubMed  CAS  Google Scholar 

  65. Yakel JL, et al. Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non–N-methyl-D-aspartate glutamate receptors. Proc Natl Acad Sci USA 1995;92(5):1376–1380.

    PubMed  CAS  Google Scholar 

  66. Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 2005;47(5):709–723.

    PubMed  CAS  Google Scholar 

  67. Standley S, Baudry M. The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cell Mol Life Sci 2000;57(11):1508–1516.

    PubMed  CAS  Google Scholar 

  68. Kawamoto S, et al. N-linked glycosylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)–selective glutamate receptor channel alpha 2 subunit is essential for the acquisition of ligand-binding activity. J Neurochem 1995;64(3):1258–1266.

    PubMed  CAS  Google Scholar 

  69. Hullebroeck MF, Hampson DR. Characterization of the oligosaccharide side chains on kainate binding proteins and AMPA receptors. Brain Res 1992;590(1–2):187–192.

    PubMed  CAS  Google Scholar 

  70. Clark RA, et al. Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: conservation of glycosylation at the synapse. J Neurochem 1998;70(6):2594–2605.

    PubMed  CAS  Google Scholar 

  71. Standley S, et al. High- and low-affinity alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA) binding sites represent immature and mature forms of AMPA receptors and are composed of differentially glycosylated subunits. J Neurochem 1998;70(6):2434–2445.

    PubMed  CAS  Google Scholar 

  72. Everts I, Villmann C, Hollmann M. N-Glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol Pharmacol 1997;52(5):861–873.

    PubMed  CAS  Google Scholar 

  73. Gahring L, et al. Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation. J Immunol 2001;166(3):1433–1438.

    PubMed  CAS  Google Scholar 

  74. Dingledine R, et al. The glutamate receptor ion channels. Pharmacol Rev 1999;51(1):7–61.

    PubMed  CAS  Google Scholar 

  75. Cull-Candy SG, Usowicz MM. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 1987;325(6104):525–528.

    PubMed  CAS  Google Scholar 

  76. Jahr CE, Stevens CF. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 1987;325(6104):522–525.

    PubMed  CAS  Google Scholar 

  77. Howe JR, Cull-Candy SG, Colquhoun D. Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells. J Physiol 1991;432:143–202.

    PubMed  CAS  Google Scholar 

  78. Jonas P, Sakmann B. Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol 1992;455:143–171.

    PubMed  CAS  Google Scholar 

  79. Traynelis SF, Silver RA, Cull-Candy SG. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 1993;11(2):279–289.

    PubMed  CAS  Google Scholar 

  80. Bannister NJ, et al. Developmental changes in AMPA and kainate receptor–mediated quantal transmission at thalamocortical synapses in the barrel cortex. J Neurosci 2005;25(21):5259–5271.

    PubMed  CAS  Google Scholar 

  81. Benke TA, et al. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 1998;393(6687):793–797.

    PubMed  CAS  Google Scholar 

  82. Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 1999;96(6):3269–3274.

    PubMed  CAS  Google Scholar 

  83. Smith TC, Howe JR. Concentration-dependent substate behavior of native AMPA receptors. Nat Neurosci 2000;3(10):992–997.

    PubMed  CAS  Google Scholar 

  84. Nicoll RA, Tomita S, Bredt DS. Auxiliary subunits assist AMPA-type glutamate receptors. Science 2006;311(5765):1253–1256.

    PubMed  CAS  Google Scholar 

  85. Turetsky D, Garringer E, Patneau DK. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J Neurosci 2005;25(32):7438–7448.

    PubMed  CAS  Google Scholar 

  86. Tomita S, et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 2005;435(7045):1052–1058.

    PubMed  CAS  Google Scholar 

  87. Boulter J et al. Molecular cloning and functional expression of glutamate receptor subunit genes. Science 1990;249(4972):1033–1037.

    PubMed  CAS  Google Scholar 

  88. Bowie D, Mayer ML. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 1995;15(2):453–462.

    PubMed  CAS  Google Scholar 

  89. Kamboj SK, Swanson GT, Cull-Candy SG. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol 1995;486(Pt 2):297–303.

    PubMed  CAS  Google Scholar 

  90. Geiger JR, et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 1995;15(1):193–204.

    PubMed  CAS  Google Scholar 

  91. Swanson GT, Kamboj SK, Cull-Candy SG. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 1997;17(1):58–69.

    PubMed  CAS  Google Scholar 

  92. Jonas P, Burnashev N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 1995;15(5):987–990.

    PubMed  CAS  Google Scholar 

  93. McBain CJ, Fisahn A. Interneurons unbound. Nat Rev Neurosci 2001;2(1):11–23.

    PubMed  CAS  Google Scholar 

  94. Bowie D, Lange GD, Mayer ML. Activity-dependent modulation of glutamate receptors by polyamines. J Neurosci 1998;18(20):8175–8185.

    PubMed  CAS  Google Scholar 

  95. Rozov A, Burnashev N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 1999;401(6753):594–598.

    PubMed  CAS  Google Scholar 

  96. Rozov A, et al. Facilitation of currents through rat Ca2+-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J Physiol 1998;511(Pt 2):361–377.

    PubMed  CAS  Google Scholar 

  97. Trussell L. Control of time course of glutamatergic synaptic currents. Prog Brain Res 1998;116:59–69.

    PubMed  CAS  Google Scholar 

  98. Jonas P, Spruston N. Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS. Curr Opin Neurobiol 1994;4(3):366–372.

    PubMed  CAS  Google Scholar 

  99. Galarreta M, Hestrin S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 2001;292(5525):2295–2299.

    PubMed  CAS  Google Scholar 

  100. Fricker D, Miles R. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 2000;28(2):559–569.

    PubMed  CAS  Google Scholar 

  101. Geiger JR, et al. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 1997;18(6):1009–1023.

    PubMed  CAS  Google Scholar 

  102. Trussell LO. Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 1999;61:477–496.

    PubMed  CAS  Google Scholar 

  103. Jonas P, et al. Interneuron diversity series: fast in, fast out—temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 2004;27(1):30–40.

    PubMed  CAS  Google Scholar 

  104. Fricker D, Miles R. Interneurons, spike timing, and perception. Neuron 2001;32(5):771–774.

    Google Scholar 

  105. Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;24(1):49–65, 111–125.

    PubMed  CAS  Google Scholar 

  106. Carroll RC, et al. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2001;2(5):315–324.

    PubMed  CAS  Google Scholar 

  107. Bellone C, Luscher C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 2005;21(5):1280–1288.

    PubMed  Google Scholar 

  108. Liu SQ, Cull-Candy SG. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 2000;405(6785):454–458.

    PubMed  CAS  Google Scholar 

  109. Gardner SM, et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 2005;45(6):903–915.

    PubMed  CAS  Google Scholar 

  110. Schenk U, Matteoli M. Presynaptic AMPA receptors: more than just ion channels? Biol Cell 2004;96(4):257–260.

    PubMed  CAS  Google Scholar 

  111. Nicoll RA, Frerking M, Schmitz D. AMPA receptors jump the synaptic cleft. Nat Neurosci 2000;3(6):527–529.

    PubMed  CAS  Google Scholar 

  112. Satake S, et al. Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat Neurosci 2000;3(6):551–558.

    PubMed  CAS  Google Scholar 

  113. Takago H, Nakamura Y, Takahashi T. G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held. Proc Natl Acad Sci USA 2005;102(20):7368–7373.

    PubMed  CAS  Google Scholar 

  114. Belachew S, Gallo V. Synaptic and extrasynaptic neurotransmitter receptors in glial precursors’ quest for identity. Glia 2004;48(3):185–196.

    PubMed  Google Scholar 

  115. Patneau DK, et al. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron 1994;12(2):357–371.

    PubMed  CAS  Google Scholar 

  116. Sontheimer H, et al. Glutamate opens Na+/K+ channels in cultured astrocytes. Glia 1988;1(5):328–336.

    PubMed  CAS  Google Scholar 

  117. Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signaling function. Physiol Rev 1998;78(1):99–141.

    PubMed  CAS  Google Scholar 

  118. Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 2002;3(9):748–755.

    PubMed  CAS  Google Scholar 

  119. Wisden W, Seeburg PH. Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 1993;3(3):291–298.

    PubMed  CAS  Google Scholar 

  120. Bettler B, Mulle C. Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 1995;34(2):123–139.

    PubMed  CAS  Google Scholar 

  121. Monyer H, Seeburg PH, Wisden W. Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 1991;6(5):799–810.

    PubMed  CAS  Google Scholar 

  122. Craig AM, et al. The distribution of glutamate receptors in cultured rat hippocampal neurons: postsynaptic clustering of AMPA-selective subunits. Neuron 1993;10(6):1055–1068.

    PubMed  CAS  Google Scholar 

  123. Keinanen K, et al. A family of AMPA-selective glutamate receptors. Science 1990;249(4968):556–560.

    PubMed  CAS  Google Scholar 

  124. Koh DS, Burnashev N, Jonas P. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol 1995;486(Pt 2):305–312.

    PubMed  CAS  Google Scholar 

  125. McBain CJ, Dingledine R. Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus. J Physiol 1993;462:373–92.

    PubMed  CAS  Google Scholar 

  126. Lei S, McBain CJ. Two loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J Neurosci 2004;24(9):2112–2121.

    PubMed  CAS  Google Scholar 

  127. Lei S, McBain CJ. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 2002;33(6):921–933.

    PubMed  CAS  Google Scholar 

  128. Laezza F, Doherty JJ, Dingledine R. Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 1999;285(5432):1411–1414.

    PubMed  CAS  Google Scholar 

  129. Petralia RS, Wenthold RJ. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 1992;318(3):329–354.

    PubMed  CAS  Google Scholar 

  130. Martin LJ, et al. AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 1993;53(2):327–358.

    PubMed  CAS  Google Scholar 

  131. Iino M, et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 2001;292(5518):926–929.

    PubMed  CAS  Google Scholar 

  132. Mosbacher J, et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 1994;266(5187):1059–1062.

    PubMed  CAS  Google Scholar 

  133. Pellegrini-Giampietro DE, et al. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci USA 1992;89(21):10499–104503.

    PubMed  CAS  Google Scholar 

  134. Gorter JA, et al. Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci 1997;17(16):6179–6188.

    PubMed  CAS  Google Scholar 

  135. Fitzgerald LW, et al. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 1996;16(1):274–282.

    PubMed  CAS  Google Scholar 

  136. Nayak A, et al. Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 1998;394(6694):680–683.

    PubMed  CAS  Google Scholar 

  137. Myers SJ, et al. Transcriptional regulation of the GluR2 gene: neural-specific expression, multiple promoters, and regulatory elements. J Neurosci 1998;18(17):6723–6739.

    PubMed  CAS  Google Scholar 

  138. Steward O, Levy WB. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 1982;2(3):284–291.

    PubMed  CAS  Google Scholar 

  139. Petralia RS, Rubio ME, Wenthold RJ. Selectivity in the distribution of glutamate receptors in neurons. Cell Biol Int 1998;22(9–10):603–608.

    PubMed  CAS  Google Scholar 

  140. Nusser Z, et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 1998;21(3):545–559.

    PubMed  CAS  Google Scholar 

  141. Baude A., et al. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 1995. 69(4):1031–1055.

    PubMed  CAS  Google Scholar 

  142. Baude A., et al. Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J Neurosci 1994;14(5 Pt 1):2830–2843.

    PubMed  CAS  Google Scholar 

  143. Richmond SA, et al. Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience 1996;75(1):69–82.

    PubMed  CAS  Google Scholar 

  144. Craig AM, et al. Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc Natl Acad Sci USA 1994;91(26):12373–12377.

    PubMed  CAS  Google Scholar 

  145. Silver RA, Cull-Candy SG, Takahashi T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J Physiol 1996;494(Pt 1):231–250.

    PubMed  CAS  Google Scholar 

  146. Petralia RS, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 1999;2(1):31–36.

    PubMed  CAS  Google Scholar 

  147. Tanaka J, et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci 2005;25(4):799–807.

    PubMed  CAS  Google Scholar 

  148. Momiyama A, et al. The density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell synapse in immature rats. J Physiol 2003;549(Pt 1):75–92.

    PubMed  CAS  Google Scholar 

  149. Matsuzaki M, et al. Structural basis of long-term potentiation in single dendritic spines. Nature 2004;429(6993):761–766.

    PubMed  CAS  Google Scholar 

  150. Matsuzaki M, et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 2001;4(11):1086–1092.

    PubMed  CAS  Google Scholar 

  151. Racca C, et al. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci 2000;20(7):2512–2522.

    PubMed  CAS  Google Scholar 

  152. Takumi Y, et al. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 1999;2(7):618–624.

    PubMed  CAS  Google Scholar 

  153. Bagal AA, et al. Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc Natl Acad Sci USA 2005;102(40):14434–14439.

    PubMed  CAS  Google Scholar 

  154. Isaac JT. Postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology 2003;45(4):450–460.

    PubMed  CAS  Google Scholar 

  155. Andrasfalvy BK, Magee JC. Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 2001;21(23):9151–9159.

    PubMed  CAS  Google Scholar 

  156. Andrasfalvy BK, et al. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice. J Physiol 2003;552(Pt 1):35–45.

    PubMed  CAS  Google Scholar 

  157. Vandenberghe W, Nicoll RA, Bredt DS. Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport. J Neurosci 2005;25(5):1095–1102.

    PubMed  CAS  Google Scholar 

  158. Shim J, et al. The unfolded protein response regulates glutamate receptor export from the endoplasmic reticulum. Mol Biol Cell 2004;15(11):4818–4828.

    PubMed  CAS  Google Scholar 

  159. Fukata Y, et al. Molecular constituents of neuronal AMPA receptors. J Cell Biol 2005;169(3):399–404.

    PubMed  CAS  Google Scholar 

  160. Rubio ME, Wenthold RJ. Differential distribution of intracellular glutamate receptors in dendrites. J Neurosci 1999;19(13):5549–5562.

    PubMed  CAS  Google Scholar 

  161. Cuadra AE, et al. AMPA receptor synaptic targeting regulated by stargazin interactions with the Golgi-resident PDZ protein nPIST. J Neurosci 2004;24(34):7491–7502.

    PubMed  CAS  Google Scholar 

  162. Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 2003;40(2):361–379.

    PubMed  CAS  Google Scholar 

  163. Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 2000;28(2):511–525.

    PubMed  CAS  Google Scholar 

  164. Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 2001;4(9):917–926.

    PubMed  CAS  Google Scholar 

  165. Nishimune A, et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 1998;21(1):87–97.

    PubMed  CAS  Google Scholar 

  166. Luscher C, et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 1999;24(3):649–658.

    PubMed  CAS  Google Scholar 

  167. Lledo PM, et al. Postsynaptic membrane fusion and long-term potentiation. Science 1998;279(5349):399–403.

    PubMed  CAS  Google Scholar 

  168. Kopec CD, et al. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 2006;26(7):2000–2009.

    PubMed  CAS  Google Scholar 

  169. Park M, et al. Recycling endosomes supply AMPA receptors for LTP. Science 2004;305(5692):1972–1975.

    PubMed  CAS  Google Scholar 

  170. Kennedy MJ, Ehlers MD. Organelles and trafficking machinery for postsynaptic plasticity. Annu Rev Neurosci 2006;29:325–362.

    PubMed  CAS  Google Scholar 

  171. Adesnik H, Nicoll RA, England PM. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 2005;48(6):977–985.

    PubMed  CAS  Google Scholar 

  172. Borgdorff AJ, Choquet D. Regulation of AMPA receptor lateral movements. Nature 2002;417(6889):649–653.

    PubMed  CAS  Google Scholar 

  173. Triller A, Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move? Trends Neurosci 2005;28(3):133–139.

    PubMed  CAS  Google Scholar 

  174. Groc L, et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 2004;7(7):695–696.

    PubMed  CAS  Google Scholar 

  175. Ashby MC, et al. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J Neurosci 2006;26(26):7046–7055.

    PubMed  CAS  Google Scholar 

  176. Blanpied TA, Scott DB, Ehlers MD. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 2002;36(3):435–449.

    PubMed  CAS  Google Scholar 

  177. Ashby MC, et al. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci 2004;24(22):5172–5176.

    PubMed  CAS  Google Scholar 

  178. Hayashi T, et al. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 1999;397(6714):72–76.

    PubMed  CAS  Google Scholar 

  179. Wang Y, et al. AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 1997;389(6650):502–504.

    PubMed  CAS  Google Scholar 

  180. Rothman JE. Intracellular membrane fusion. Adv Second Messenge? Phosphoprotein Res 1994;29:81–96.

    CAS  Google Scholar 

  181. Song I, et al. Interaction of th? N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 1998;21(2):393–400.

    PubMed  CAS  Google Scholar 

  182. Osten P, et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 1998;21(1):99–110.

    PubMed  CAS  Google Scholar 

  183. Noel J, et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 1999;23(2):365–376.

    PubMed  CAS  Google Scholar 

  184. Luthi A, et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 1999;24(2):389–399.

    PubMed  CAS  Google Scholar 

  185. Duprat F, et al. GluR2 protein–protein interactions and the regulation of AMPA receptors during synaptic plasticity. Phil Trans R Soc Lond B Biol Sci 2003.;358(1432):715–320.

    CAS  Google Scholar 

  186. Sorkin A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol 2004;16(4):392–399.

    PubMed  CAS  Google Scholar 

  187. Lee SH, et al. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 2002;36(4):661–674.

    PubMed  CAS  Google Scholar 

  188. Palmer CL, et al. Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 2005;47(4):487–494.

    PubMed  CAS  Google Scholar 

  189. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001;24:1–29.

    PubMed  CAS  Google Scholar 

  190. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci 2004;5(10):771–781.

    PubMed  CAS  Google Scholar 

  191. Tomita S, Nicoll RA, Bredt DS. PDZ protein interactions regulating glutamate receptor function and plasticity. J Cell Biol 2001;153(5):F19–F24.

    Google Scholar 

  192. Dong H, et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997;386(6622):279–284.

    PubMed  CAS  Google Scholar 

  193. Srivastava S, et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor–binding protein ABP. Neuron 1998;21(3):581–591.

    PubMed  CAS  Google Scholar 

  194. Xia J, et al. Clustering of AMPA receptors by the synaptic PDZ domain–containing protein PICK1. Neuron 1999;22(1):179–187.

    PubMed  CAS  Google Scholar 

  195. Dev KK, et al. The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 1999;38(5):635–644.

    PubMed  CAS  Google Scholar 

  196. Daw MI, et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 2000;28(3):873–886.

    PubMed  CAS  Google Scholar 

  197. Li P, et al. AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses. Nat Neurosci 1999;2(11):972–977.

    PubMed  CAS  Google Scholar 

  198. Chung HJ, et al. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 2000;20(19):7258–7267.

    PubMed  CAS  Google Scholar 

  199. Perez JL, et al. PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 2001;21(15):5417–5428.

    PubMed  CAS  Google Scholar 

  200. Terashima A, et al. Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J Neurosci 2004;24(23):5381–5390.

    PubMed  CAS  Google Scholar 

  201. Liu SJ, Cull-Candy SG. Subunit interaction with PICK and GRIP controls Ca(2+) permeability of AMPARs at cerebellar synapses. Nat Neurosci 2005;8(6):768–775.

    PubMed  CAS  Google Scholar 

  202. Bellone C, Luscher C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 2006;9(5):636–641.

    PubMed  CAS  Google Scholar 

  203. Steinberg JP, et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 2006;49(6):845–860.

    PubMed  CAS  Google Scholar 

  204. Chung HJ, et al. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 2003;300(5626):1751–1755.

    PubMed  CAS  Google Scholar 

  205. Xia J, et al. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 2000;28(2):499–510.

    PubMed  CAS  Google Scholar 

  206. Leonard AS, et al. SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J Biol Chem 1998;273(31):19518–19524.

    PubMed  CAS  Google Scholar 

  207. Esteban JA, et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003;6(2):136–143.

    PubMed  CAS  Google Scholar 

  208. Kolleker A, et al. Glutamatergic plasticity by synaptic delivery of GluR-B(long)–containing AMPA receptors. Neuron 2003;40(6):1199–1212.

    PubMed  CAS  Google Scholar 

  209. Hayashi Y, et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000.287(5461):2262–2267.

    PubMed  CAS  Google Scholar 

  210. Kim CH, et al. Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1. Nat Neurosci 2005;8(8):985–987.

    PubMed  CAS  Google Scholar 

  211. Stricker NL, Huganir RL. The PDZ domains of mLin-10 regulate its trans-Golgi network targeting and the surface expression of AMPA receptors. Neuropharmacology 2003;45(6):837–848.

    PubMed  CAS  Google Scholar 

  212. Kim CH, Lisman JE. A labile component of AMPA receptor-mediated synaptic transmission is dependent on microtubule motors, actin, an? N-ethylmaleimide–sensitive factor. J Neurosci 2001;21(12):4188–4194.

    PubMed  CAS  Google Scholar 

  213. Kim CH, Lisman JE. A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 1999;19(11):4314–4324.

    PubMed  CAS  Google Scholar 

  214. Shen L, et al. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association. J Neurosci 2000;20(21):7932–7940.

    PubMed  CAS  Google Scholar 

  215. Zhou Q, Xiao M, Nicoll RA. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci USA 2001;98(3):1261–1266.

    PubMed  CAS  Google Scholar 

  216. Nuriya M, Oh S, Huganir RL. Phosphorylation-dependent interactions of alpha-Actinin-1/IQGAP1 with the AMPA receptor subunit GluR4. J Neurochem 2005;95(2):544–552.

    PubMed  CAS  Google Scholar 

  217. Schulz TW, et al. Actin/alpha-actinin–dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J Neurosci 2004;24(39):8584–8594.

    PubMed  CAS  Google Scholar 

  218. O’Brien RJ, et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 1999;23(2):309–323.

    PubMed  CAS  Google Scholar 

  219. Tsui CC, et al. Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J Neurosci 1996;16(8):2463–2478.

    PubMed  CAS  Google Scholar 

  220. Chen L, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000;408(6815):936–943.

    PubMed  CAS  Google Scholar 

  221. Tomita S, et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 2003;161(4):805–816.

    PubMed  CAS  Google Scholar 

  222. Schnell E, et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA 2002;99(21):13902–13907.

    PubMed  CAS  Google Scholar 

  223. Tomita S, et al. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 2005;45(2):269–277.

    PubMed  CAS  Google Scholar 

  224. Rouach N, et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 2005;8(11):1525–1533.

    PubMed  CAS  Google Scholar 

  225. Tomita S, et al. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 2004;303(5663):1508–1511.

    PubMed  CAS  Google Scholar 

  226. Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 2004;24(4):916–927.

    PubMed  CAS  Google Scholar 

  227. Zheng, Y. et al. SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors i? Caenorhabditis elegans. Proc Natl Acad Sci USA 2006;103(4):1100–1105.

    CAS  Google Scholar 

  228. Zheng Y, et al. SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function i? C. elegans. Nature 2004;427(6973):451–457.

    CAS  Google Scholar 

  229. Walker CS, et al. Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins. Proc Natl Acad Sci USA 2006;103(28):10781–10786.

    PubMed  CAS  Google Scholar 

  230. Bleakman D, Lodge D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 1998;37(10–11):1187–1204.

    PubMed  CAS  Google Scholar 

  231. Hawkins LM, et al. Binding of the new radioligand (S)-[3H]AMPA to rat brain synaptic membranes: effects of a series of structural analogues of the non-NMDA receptor agonist willardiine. Neuropharmacology 1995;34(4):405–410.

    PubMed  CAS  Google Scholar 

  232. Honore T, et al. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 1988;241(4866):701–703.

    PubMed  CAS  Google Scholar 

  233. Kessler M, Baudry M, Lynch G. Quinoxaline derivatives are high-affinity antagonists of the NMDA receptor–associated glycine sites. Brain Res 1989;489(2):377–382.

    PubMed  CAS  Google Scholar 

  234. Mulle C, et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 2000;28(2):475–484.

    PubMed  CAS  Google Scholar 

  235. Maingret F, et al. Profound regulation of neonatal CA1 rat hippocampal GABAergic transmission by functionally distinct kainate receptor populations. J Physiol 2005;567(Pt 1):131–142.

    PubMed  CAS  Google Scholar 

  236. Wilding TJ, Huettner JE. Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol Pharmacol 1995;47(3):582–587.

    PubMed  CAS  Google Scholar 

  237. Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 1997;388(6638):182–186.

    PubMed  CAS  Google Scholar 

  238. Vignes M, et al. The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology 1997;36(11–12):1477–1481.

    PubMed  CAS  Google Scholar 

  239. Chittajallu R, et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 1996;379(6560):78–81.

    PubMed  CAS  Google Scholar 

  240. Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 2003;4(6):481–495.

    PubMed  CAS  Google Scholar 

  241. Pelletier JC, et al. Substituted 1,2-dihydrophthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor. J Med Chem 1996;39(2):343–346.

    PubMed  CAS  Google Scholar 

  242. Li P, et al. Kainate-receptor–mediated sensory synaptic transmission in mammalian spinal cord. Nature 1999;397(6715):161–164.

    PubMed  CAS  Google Scholar 

  243. Jones MG, Lodge D. Comparison of some arthropod toxins and toxin fragments as antagonists of excitatory amino acid–induced excitation of rat spinal neurones. Eur J Pharmacol 1991;204(2):203–209.

    PubMed  CAS  Google Scholar 

  244. Washburn MS, Dingledine R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther 1996;278(2):669–678.

    PubMed  CAS  Google Scholar 

  245. Toth K, McBain CJ. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci 1998;1(7):572–578.

    PubMed  CAS  Google Scholar 

  246. Ito I, et al. Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 1990;424:533–543.

    PubMed  CAS  Google Scholar 

  247. Isaacson JS, Nicoll RA. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proc Natl Acad Sci USA 1991;88(23):10936–10940.

    PubMed  CAS  Google Scholar 

  248. Partin KM, Fleck MW, Mayer ML. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 1996;16(21):6634–6647.

    PubMed  CAS  Google Scholar 

  249. Patneau DK, Vyklicky L Jr, Mayer ML. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J Neurosci 1993;13(8):3496–3509.

    PubMed  CAS  Google Scholar 

  250. Partin KM, Patneau DK, Mayer ML. Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 1994;46(1):129–138.

    PubMed  CAS  Google Scholar 

  251. Partin KM, Bowie D, Mayer ML. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 1995;14(4):833–843.

    PubMed  CAS  Google Scholar 

  252. Partin KM, et al. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 1993. 11(6):1069–82.

    PubMed  CAS  Google Scholar 

  253. Murray TK, et al. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 2003;306(2):752–762; Epub 2003 May 2.

    PubMed  CAS  Google Scholar 

  254. Ryder JW, Falcone JF, Manro JR, et al. Pharmacological characterization of cGMP regulation by the biarylpropylsulfonamide class of positive, allosteric modulators of AMPA receptors. J Pharmacol Exp Ther 2006;319:293–298.

    PubMed  CAS  Google Scholar 

  255. O’Neill MJ, et al. LY503430: pharmacology, pharmacokinetics, and effects in rodent models of Parkinson’s disease. CNS Drug Rev 2005;11(1):77–96.

    PubMed  CAS  Google Scholar 

  256. O’Neill MJ, et al. AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 2004;3(3): 181–194.

    PubMed  CAS  Google Scholar 

  257. Alt A, et al. A role for AMPA receptors in mood disorders. Biochem Pharmacol 2006;71(9):1273–1288; Epub 2006 January 24.

    PubMed  CAS  Google Scholar 

  258. Banke TG, et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 2000;20(1):89–102.

    PubMed  CAS  Google Scholar 

  259. Oh MC, Derkach VA. Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII. Nat Neurosci 2005;8:853–854.

    PubMed  CAS  Google Scholar 

  260. Lee HK, et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 2003;112(5):631–643.

    PubMed  CAS  Google Scholar 

  261. Matsuda S, Mikawa S, H. Hirai. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor–interacting protein. J Neurochem 1999;73(4):1765–1768.

    PubMed  CAS  Google Scholar 

  262. Fu J, deSouza S, Ziff EB. Intracellular membrane targeting and suppression of Ser880 phosphorylation of glutamate receptor 2 by the linker I-set II domain of AMPA receptor–binding protein. J Neurosci 2003;23(20):7592–7601.

    PubMed  CAS  Google Scholar 

  263. Hayashi T, Huganir RL. Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases. J Neurosci 2004;24(27):6152–6160.

    PubMed  CAS  Google Scholar 

  264. Gomes AR, et al. Metabotropic glutamate and dopamine receptors co-regulate AMPA receptor activity through PKA in cultured chick retinal neurones: effect on GluR4 phosphorylation and surface expression. J Neurochem 2004;90(3):673–682.

    PubMed  CAS  Google Scholar 

  265. Carvalho AL, et al. Phosphorylation of GluR4 AMPA-type glutamate receptor subunit by protein kinase C in cultured retina amacrine neurons. Eur J Neurosci 2002;15(3):465–474.

    PubMed  Google Scholar 

  266. Correia SS, et al. Protein kinase C gamma associates directly with the GluR4 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit. Effect on receptor phosphorylation. J Biol Chem 2003;278(8):6307–6313.

    Google Scholar 

  267. Zamanillo D, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 1999;284(5421):1805–1811.

    PubMed  CAS  Google Scholar 

  268. Jensen V, et al. A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J Physiol 2003;553(Pt 3):843–856.

    PubMed  CAS  Google Scholar 

  269. Schmitt WB, et al. The role of hippocampal glutamate receptor-A–dependent synaptic plasticity in conditional learning: the importance of spatiotemporal discontiguity. J Neurosci 2004;24(33):7277–7282.

    PubMed  CAS  Google Scholar 

  270. Schmitt WB, et al. Spatial reference memory in GluR-A–deficient mice using a novel hippocampal-dependent paddling pool escape task. Hippocampus 2004;14(2):216–223.

    PubMed  CAS  Google Scholar 

  271. Reisel D, et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci 2002;5(9):868–873.

    PubMed  CAS  Google Scholar 

  272. Schmitt WB, et al. Restoration of spatial working memory by genetic rescue of GluR-A–deficient mice. Nat Neurosci 2005;8(3):270–272; Epub 2005 February 20.

    PubMed  CAS  Google Scholar 

  273. Mack V, et al. Conditional restoration of hippocampal synaptic potentiation in GluR-A–deficient mice. Science 2001;292(5526):2501–2504.

    PubMed  CAS  Google Scholar 

  274. Mead AN, Stephens DN. Selective disruption of stimulus-reward learning in glutamate receptor gria1 knock-out mice. J Neurosci 2003;23(3):1041–1048.

    PubMed  CAS  Google Scholar 

  275. Jia Z, et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 1996;17(5):945–956.

    PubMed  CAS  Google Scholar 

  276. Meng Y, Zhang Y, Jia Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 2003;39(1):163–176.

    PubMed  CAS  Google Scholar 

  277. Shimshek DR, et al. Forebrain-specific glutamate receptor B deletion impairs spatial memory but not hippocampal field long-term potentiation. J Neurosci 2006;26(33):8428–8440.

    PubMed  CAS  Google Scholar 

  278. Petralia RS, et al. Loss of GLUR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor subunit differentially affects remaining synaptic glutamate receptors in cerebellum and cochlear nuclei. Eur J Neurosci 2004;19(8):2017–2029.

    PubMed  Google Scholar 

  279. Yan J, et al. Place-cell impairment in glutamate receptor 2 mutant mice. J Neurosci 2002;22(3):RC204.

    PubMed  Google Scholar 

  280. Gerlai R, et al. Multiple behavioral anomalies in GluR2 mutant mice exhibiting enhanced LTP. Behav Brain Res 1998;95(1):37–45.

    PubMed  CAS  Google Scholar 

  281. Mead AN, et al. AMPA receptor GluR2, but not GluR1, subunit deletion impairs emotional response conditioning in mice. Behav Neurosci 2006;120(2):241–248.

    PubMed  CAS  Google Scholar 

  282. Shimshek DR, et al. Impaired reproductive behavior by lack of GluR-B containing AMPA receptors but not of NMDA receptors in hypothalamic and septal neurons. Mol Endocrinol 2006;20(1):219–231.

    PubMed  CAS  Google Scholar 

  283. Sanchis-Segura C, et al. Involvement of the AMPA receptor GluR-C subunit in alcohol-seeking behavior and relapse. J Neurosci 2006;26(4):1231–1238.

    PubMed  CAS  Google Scholar 

  284. Hartmann B, et al. The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 2004;44(4):637–650.

    PubMed  CAS  Google Scholar 

  285. Feldmeyer D, et al. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat Neurosci 1999;2(1):57–64.

    PubMed  CAS  Google Scholar 

  286. Higuchi M, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000;406(6791):78–81.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Ashby, M.C., Daw, M.I., Isaac, J.T. (2008). AMPA Receptors. In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_1

Download citation

Publish with us

Policies and ethics