Skip to main content

Clinical and Research Applications of Markers of Thrombosis

  • Chapter
Cardiovascular Biomarkers

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1377 Accesses

Abstract

We provide a brief overview of vascular thrombosis as applied to the arterial circulatory system. This background serves as a template for understanding potential biomarkers of thrombosis. Additionally, the integrated relationship between genotype and phenotypic expression of disease, measurable as circulating (soluble) proteins and cell-based products, including fibrinogen, thrombin, thrombomodulin, tissue factor, tissue factor pathway inhibitor, platelet surface markers, and others, is highlighted. Finally, the role of endothelial cell and endothelial cell-surface markers as biomarkers of thrombosis is discussed. As applicable, the clinical and potential research applications of specific biomarkers of thrombosis are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker RC, Bovill EG, Seghatchian MJ, Samama MM. Pathobiology of thrombin in acute coronary syndromes. Am Heart J 1998;136:S19–S31.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg RD, Aird WC. Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med 1999;340:1555–1564.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman M, Monroe DM 3rd. A cell-based model of hemostasis. Thromb Haemost 2001;85:958–965.

    PubMed  CAS  Google Scholar 

  4. Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues: implications for disorders of hemostasis and thrombosis. Am J Pathol 1989;134(5):1087–1097.

    PubMed  CAS  Google Scholar 

  5. Narahara N, Enden T, Wiiger M, Prydz H. Polar expression of tissue factor in human umbilical vein endothelial cells. Arterioscl Thromb 1994;14(11):1815–1820.

    PubMed  CAS  Google Scholar 

  6. Rapaport SI, Rao LV. The tissue factor pathway: how it has become a “ima ballerina”. Thromb Haemost 1995;74(1):7–17.

    PubMed  CAS  Google Scholar 

  7. Ryan J, Brett J, Tijburg P, Bach RR, Kisiel W, Stern D. Tumor necrosis factor-induced endothelial tissue factor is associated with subendothelial matrix vesicles but is not expressed on the apical surface. Blood 1992;80(4):966–974.

    PubMed  CAS  Google Scholar 

  8. Broze CJJ. The tissue factor pathway of coagulation. In: Loscalzo J, Schafer AI, eds. Thrombosis and Hemorrhage, 2nd ed. Williams & Wilkins, Baltimore, 1998, pp. 77–104.

    Google Scholar 

  9. Roberts HR, Monroe DM 3rd, Oliver JA, Chang JY, Hoffman M. Newer concepts in blood coagulation. Heamophilia 1998;4:331–334.

    Article  CAS  Google Scholar 

  10. Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature 1979;279:636–638.

    Article  PubMed  CAS  Google Scholar 

  11. Tschopp TB, Weiss HJ, Baumgartner HR. Decreased adhesion of platelets to subendothelium in von Willebrand’s disease. J Lab Clin Med 1974;83:296–300.

    PubMed  CAS  Google Scholar 

  12. Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscl Thromb Vasc Biol 2003; 23:2131–2137.

    Article  PubMed  CAS  Google Scholar 

  13. Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982;95(1):355–360.

    Article  PubMed  CAS  Google Scholar 

  14. Wagner DD. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost 1993;70(1):105–110.

    PubMed  CAS  Google Scholar 

  15. De Marco L, Girolami A, Russell S, Ruggeri ZM. Interaction of asialo von Willebrand factor with glycoprotein Ib induces fibrinogen binding to the glycoprotein IIb/IIIa complex and mediates platelet aggregation. J Clin Invest 1985;75:1198–1203.

    Article  PubMed  Google Scholar 

  16. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000;407:258–264.

    Article  PubMed  CAS  Google Scholar 

  17. Bajaj MS, Birktoft JJ, Steer SA, Bajaj SP. Structure and biology of tissue factor pathway inhibitor. Thromb Haemost 2001;86:959–972.

    PubMed  CAS  Google Scholar 

  18. Perry DJ. Antithrombin and its inherited deficiencies. Blood Rev 1994;8:37–55.

    Article  PubMed  CAS  Google Scholar 

  19. Marcum JA, McKenney JB, Rosenberg RD. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium. J Clin Invest 1984;74:341–350.

    Article  PubMed  CAS  Google Scholar 

  20. Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem 1982;257:7944–7947.

    PubMed  CAS  Google Scholar 

  21. Esmon CT. Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit Care Med 2001;29:S48–S51; discussion 51, 52.

    Article  PubMed  CAS  Google Scholar 

  22. Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator: role of fibrin. J Biol Chem 1982;257:2912–2919.

    PubMed  CAS  Google Scholar 

  23. Collen D. On the regulation and control of fibrinolysis: Edward Kowalski Memorial Lecture. Thromb Haemost 1980;43:77–89.

    PubMed  CAS  Google Scholar 

  24. Voetsch B, Loscalzo J. Genetic determinants of arterial thrombosis. Arterioscl Thromb Vasc Biol 2004; 24:216–229.

    Article  PubMed  CAS  Google Scholar 

  25. Lee AJ, Lowe GD, Smith WC, Tunstall-Pedoe H. Plasma fibrinogen in women: relationships with oral contraception, the menopause and hormone replacement therapy. Br J Haematol 1993;83:616–621.

    Article  PubMed  CAS  Google Scholar 

  26. Green F, Humphries S. Control of plasma fibrinogen levels. Baillières Clin Haematol 1898;2:945–959.

    Article  Google Scholar 

  27. Ma J, Hennekens CH, Ridker PM, Stampfer MJ. A prospective study of fibrinogen and risk of myocardial infarction in the Physicians’ Health Study. J Am Coll Cardiol 1999;33:1347–1352.

    Article  PubMed  CAS  Google Scholar 

  28. Scarabin PY, Aillaud MF, Amouyel P, et al. Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500 male participants in a prospective study of myocardial infarction—the PRIME Study. Prospective Epidemiological Study of Myocardial Infarction. Thromb Haemost 1998; 80:749–756.

    PubMed  CAS  Google Scholar 

  29. Sweetnam PM, Thomas HF, Yarnell JW, Beswick AD, Baker IA, Elwood PC. Fibrinogen, viscosity and the 10-year incidence of ischaemic heart disease [see comment]. Eur Heart J 1996;17:1814–1820.

    PubMed  CAS  Google Scholar 

  30. Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk of cardiovascular disease: the Framingham Study. JAMA 1987;258:1183–1186.

    Article  PubMed  CAS  Google Scholar 

  31. Yarnell JW, Baker IA, Sweetnam PM, et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease: the Caerphilly and Speedwell collaborative heart disease studies [see comment]. Circulation 1991;83:836–844.

    PubMed  CAS  Google Scholar 

  32. Woodward M, Lowe GD, Rumley A, Tunstall-Pedoe H. Fibrinogen as a risk factor for coronary heart disease and mortality in middle-aged men and women: the Scottish Heart Health Study. Eur Heart J 1998;19:55–62.

    Article  PubMed  CAS  Google Scholar 

  33. Meade TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study [see comment]. Lancet 1986;2:533–537.

    Article  PubMed  CAS  Google Scholar 

  34. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984;311:501–505.

    PubMed  CAS  Google Scholar 

  35. Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995;332:635–641.

    Article  PubMed  CAS  Google Scholar 

  36. Benderly M, Graff E, Reicher-Reiss H, Behar S, Brunner D, Goldbourt U. Fibrinogen is a predictor of mortality in coronary heart disease patients. The Bezafibrate Infarction Prevention (BIP) Study Group. Arterioscl Thromb Vasc Biol 1996;16:351–356.

    PubMed  CAS  Google Scholar 

  37. Thompson SG, Fechtrup C, Squire E, et al. Antithrombin III and fibrinogen as predictors of cardiac events in patients with angina pectoris. Arterioscl Thromb Vasc Biol 1996;16:357–362.

    PubMed  CAS  Google Scholar 

  38. Banerjee AK, Pearson J, Gilliland EL, et al. A six year prospective study of fibrinogen and other risk factors associated with mortality in stable claudicants. Thromb Haemost 1992;68:261–263.

    PubMed  CAS  Google Scholar 

  39. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996;347:849–853.

    Article  PubMed  CAS  Google Scholar 

  40. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Int Med 1993;118:956–963.

    PubMed  CAS  Google Scholar 

  41. Reiner AP, Siscovick DS, Rosendaal FR. Hemostatic risk factors and arterial thrombotic disease. Thromb Haemost 2001;85:584–595.

    PubMed  CAS  Google Scholar 

  42. Inbal A, Freimark D, Modan B, et al. Synergistic effects of prothrombotic polymorphisms and atherogenic factors on the risk of myocardial infarction in young males. Blood 1999;93(7):2186–2190.

    PubMed  CAS  Google Scholar 

  43. Doggen CJ, Kunz G, Rosendaal FR, et al. A mutation in the thrombomodulin gene, 127G to A coding for Ala25Thr, and the risk of myocardial infarction in men. Thromb Haemost 1998;80:743–748.

    PubMed  CAS  Google Scholar 

  44. Mann KG. Prothrombin and thrombin. In: Coleman RW, Hirsch J, Merder VJ, Salzman EW, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Lippincott, Philadelphia, 1994, pp. 184–199.

    Google Scholar 

  45. Degen SJ, Davie EW. Nucleotide sequence of the gene for human prothrombin. Biochemistry 1987;26: 6165–6177.

    Article  PubMed  CAS  Google Scholar 

  46. Doyle MF, Mann KG. Multiple active forms of thrombin. IV. Relative activities of meizothrombins. J Biol Chem 1990;265:10,693–10,701.

    PubMed  CAS  Google Scholar 

  47. Mann KG, Yip R, Heldebrant CM, Fass DN. Multiple active forms of thrombin. 3. Polypeptide chain location of active site serine and carbohydrate. J Biol Chem 1973;248:1868–1875.

    PubMed  CAS  Google Scholar 

  48. Mann KG, Heldebrant CM, Fass DN. Multiple active forms of thrombin. II. Mechanism of production from prothrombin. J Biol Chem 1971;246:6106–6114.

    PubMed  CAS  Google Scholar 

  49. Reganon E, Vila V, Martinez-Sales V, Vaya A, Aznar J. Inflammation, fibrinogen and thrombin generation in patients with previous myocardial infarction. Haematologica 2002;87:740–745; discussion 745.

    PubMed  CAS  Google Scholar 

  50. Figueras J, Monasterio Y, Lidon RM, Nieto E, Soler-Soler J. Thrombin formation and fibrinolytic activity in patients with acute myocardial infarction or unstable angina: in-hospital course and relationship with recurrent angina at rest. J Am Coll Cardiol 2000;36:2036–2043.

    Article  PubMed  CAS  Google Scholar 

  51. Ardissino D, Merlini PA, Gamba G, et al. Thrombin activity and early outcome in unstable angina pectoris. Circulation 1996;93:1634–1639.

    PubMed  CAS  Google Scholar 

  52. Li YH, Teng JK, Tsai WC, et al. Prognostic significance of elevated hemostatic markers in patients with acute myocardial infarction. J Am Coll Cardiol 1999;33:1543–1548.

    Article  PubMed  CAS  Google Scholar 

  53. Galvani M, Ferrini D, Ottani F, Eisenberg PR. Early risk stratification of unstable angina/non-Q myocardial infarction: biochemical markers of coronary thrombosis. Int J Cardiol 1999;68:S55–S61.

    Article  PubMed  Google Scholar 

  54. Amengual O, Atsumi T, Khamashta MA, Hughes GR. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost 1998;79:276–281.

    PubMed  CAS  Google Scholar 

  55. Segal J, Kickler T, Petri M. Tissue factor activity in patients with systemic lupus erythematosus: association with disease activity. J Rheumatol 2000;27:2827–2832.

    PubMed  CAS  Google Scholar 

  56. Moons AH, Levi M, Peters RJ. Tissue factor and coronary artery disease. Cardiovasc Res 2002;53: 313–325.

    Article  PubMed  CAS  Google Scholar 

  57. Arnaud E, Barbalat V, Nicaud V, et al. Polymorphisms in the 5′ regulatory region of the tissue factor gene and the risk of myocardial infarction and venous thromboembolism: the ECTIM and PATHROS studies. Etude Cas-Temoins de l’Infarctus du Myocarde. Paris Thrombosis case-control Study. Arterioscl Thromb Vasc Biol 2000;20:892–898.

    PubMed  CAS  Google Scholar 

  58. Annex BH, Denning SM, Channon KM, et al. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 1995;91:619–622.

    PubMed  CAS  Google Scholar 

  59. Suefuji H, Ogawa H, Yasue H, et al. Increased plasma tissue factor levels in acute myocardial infarction. Am Heart J 1997;134:253–259.

    Article  PubMed  CAS  Google Scholar 

  60. Soejima H, Ogawa H, Yasue H, et al. Heightened tissue factor associated with tissue factor pathway inhibitor and prognosis in patients with unstable angina. Circulation 1999;99:2908–2913.

    PubMed  CAS  Google Scholar 

  61. Misumi K, Ogawa H, Yasue H, et al. Comparison of plasma tissue factor levels in unstable and stable angina pectoris. Am J Cardiol 1998;81:22–26.

    Article  PubMed  CAS  Google Scholar 

  62. Marco J, Ariens RA, Fajadet J, et al. Effect of aspirin and ticlopidine on plasma tissue factor levels in stable and unstable angina pectoris. Am J Cardiol 2000;85:527–531.

    Article  PubMed  CAS  Google Scholar 

  63. Ferro D, Basili S, Alessandri C, Mantovani B, Cordova C, Violi F. Simvastatin reduces monocytetissue-factor expression type IIa hypercholesterolaemia. Lancet 1997;350(9086):1222.

    Article  PubMed  CAS  Google Scholar 

  64. Badimon JJ, Lettino M, Toschi V, et al. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 1999;99:1780–1787.

    PubMed  CAS  Google Scholar 

  65. Norlund L, Holm J, Zoller B, Ohlin AK. A common thrombomodulin amino acid dimorphism is associated with myocardial infarction. Thromb Haemost 1997;77:248–251.

    PubMed  CAS  Google Scholar 

  66. Wu KK, Aleksic N, Ahn C, et al. Thrombomodulin Ala455Val polymorphism and risk of coronary heart disease. Circulation 2001;103:1386–1389.

    Article  PubMed  CAS  Google Scholar 

  67. Salomaa V, Matei C, Aleksic N, et al. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet 1999;353:1729–1734.

    Article  PubMed  CAS  Google Scholar 

  68. Saksela O, Rifkin DB. Cell-associated plasminogen activation: regulation and physiological functions. Ann Rev Cell Biol 1988;4:93–126.

    PubMed  CAS  Google Scholar 

  69. Dawson SJ, Wiman B, Hamsten A, Green F, Humphries S, Henney AM. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 1993;268:10,739–10,745.

    PubMed  CAS  Google Scholar 

  70. Dawson S, Hamsten A, Wiman B, Henney A, Humphries S. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscl Thromb 1991;11:183–190.

    PubMed  CAS  Google Scholar 

  71. Festa A, D’Agostino R Jr, Rich SS, Jenny NS, Tracy RP, Haffner SM. Promoter (4G/5G) plasminogen activator inhibitor-1 genotype and plasminogen activator inhibitor-1 levels in blacks, Hispanics, and non-Hispanic whites: the Insulin Resistance Atherosclerosis Study. Circulation 2003;107:2422–2427.

    Article  PubMed  CAS  Google Scholar 

  72. Mansfield MW, Stickland MH, Grant PJ. Environmental and genetic factors in relation to elevated circulating levels of plasminogen activator inhibitor-1 in Caucasian patients with non-insulin-dependent diabetes mellitus. Thromb Haemost 1995;74:842–847.

    PubMed  CAS  Google Scholar 

  73. Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arteriosclerosis, Thromb Vasc Biol 1998;18:20–26.

    CAS  Google Scholar 

  74. Panahloo A, Mohamed-Ali V, Lane A, Green F, Humphries SE, Yudkin JS. Determinants of plasminogen activator inhibitor 1 activity in treated NIDDM and its relation to a polymorphism in the plasminogen activator inhibitor 1 gene. Diabetes 1995;44:37–42.

    Article  PubMed  CAS  Google Scholar 

  75. Iacoviello L, Burzotta F, Di Castelnuovo A, Zito F, Marchioli R, Donati MB. The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction: a meta-analysis. Thromb Haemost 1998;80:1029–1030.

    PubMed  CAS  Google Scholar 

  76. Collet JP, Montalescot G, Vicaut E, et al. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality [see comment]. rculation 2003;108:391–394.

    CAS  Google Scholar 

  77. Hamsten A, Wiman B, de Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985;313:1557–1563.

    Article  PubMed  CAS  Google Scholar 

  78. Thogersen AM, Jansson JH, Boman K, et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998;98:2241–2247.

    PubMed  CAS  Google Scholar 

  79. Ridker PM, Brown NJ, Vaughan DE, Harrison DG, Mehta JL. Established and emerging plasma biomarkers in the prediction of first atherothrombotic events. Circulation 2004;108:6–19.

    Google Scholar 

  80. Ludwig M, Wohn KD, Schleuning WD, Olek K. Allelic dimorphism in the human tissue-type plasminogen activator (TPA) gene as a result of an Alu insertion/deletion event. Hum Genet 1992;88:388–392.

    Article  PubMed  CAS  Google Scholar 

  81. van der Bom JG, de Knijff P, Haverkate F, et al. Tissue plasminogen activator and risk of myocardial infarction: the Rotterdam Study. Circulation 1997;95:2623–2627.

    PubMed  Google Scholar 

  82. Ridker PM, Baker MT, Hennekens CH, Stampfer MJ, Vaughan DE. Alu-repeat polymorphism in the gene coding for tissue-type plasminogen activator (t-PA) and risks of myocardial infarction among middle-aged men. Arterioscl Thromb Vasc Biol 1997;17:1687–1690.

    PubMed  CAS  Google Scholar 

  83. Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 1993;341:1165–1168.

    Article  PubMed  CAS  Google Scholar 

  84. Folsom AR, Aleksic N, Park E, Salomaa V, Juneja H, Wu KK. Prospective study of fibrinolytic factors and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscl Thromb Vasc Biol 2001;21:611–617.

    PubMed  CAS  Google Scholar 

  85. The PURSUIT Investigators. Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. N Engl J Med 1998;339:436–443.

    Article  Google Scholar 

  86. The EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 1994;330:956–961.

    Article  Google Scholar 

  87. The EPILOG Investigators. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. N Engl J Med 1997;336:1689–1696.

    Article  Google Scholar 

  88. The EPILOG Investigators. Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction. N Engl J Med 1998;338:1488–1497.

    Article  Google Scholar 

  89. Kong DF, Califf RM, Miller DP, et al. Clinical outcomes of therapeutic agents that block the platelet glyocprotein IIb/IIIa integrin in ischemic heart disease. Circulation 1998;98:2829–2835.

    PubMed  CAS  Google Scholar 

  90. Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996;334:1090–1094.

    Article  PubMed  CAS  Google Scholar 

  91. Ridker PM, Hennekens CH, Schmitz C, Stampfer MJ, Lindpaintner K. PIA1/A2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet 1997; 349:385–388.

    Article  PubMed  CAS  Google Scholar 

  92. Poirier O, Georges JL, Ricard S, et al. New polymorphisms of the angiotensin II type 1 receptor gene and their associations with myocardial infarction and blood pressure: the ECTIM study. Etude Cas-Temoin de l’Infarctus du Myocarde. J Hypertens 1998;16:1443–1447.

    Article  PubMed  CAS  Google Scholar 

  93. Andre P, Prasad KS, Denis CV, et al. CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 2002;8:247–252.

    Article  PubMed  CAS  Google Scholar 

  94. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591–594.

    Article  PubMed  CAS  Google Scholar 

  95. Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003;348:1104–1111.

    Article  PubMed  CAS  Google Scholar 

  96. Tsai HM, Lian E C. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998;339:1585–1594.

    Article  PubMed  CAS  Google Scholar 

  97. Furlan M, Robles R, Galbusera M, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 1998;339:1578–1584.

    Article  PubMed  CAS  Google Scholar 

  98. Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood. 2003; 101:2661–2666.

    Article  PubMed  CAS  Google Scholar 

  99. Hrachovinova I, Cambien B, Hafezi-Moghadam A, et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 2003;9:1020–1025.

    Article  PubMed  CAS  Google Scholar 

  100. Blann AD, Miller JP, McCollum CN. von Willebrand factor and soluble E-selectin in the prediction of cardiovascular disease progression in hyperlipidaemia. Atherosclerosis 1997;132:151–156.

    Article  PubMed  CAS  Google Scholar 

  101. Morange PE, Simon C, Alessi MC, et al. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation 2004;109: 1343–1348.

    Article  PubMed  CAS  Google Scholar 

  102. Blann AD, de Romeuf C, Mazurier C, McCollum CN. Circulating von Willebrand factor antigen II in atherosclerosis: a comparison with von Willebrand factor and soluble thrombomodulin. Blood Coagulation Fibrinolysis 1998;9:261–266.

    Article  PubMed  CAS  Google Scholar 

  103. Montalescot G, Philippe F, Ankri A, et al. Early increase of von Willebrand factor predicts adverse outcome in unstable coronary artery disease: beneficial effects of enoxaparin. French Investigators of the ESSENCE Trial. Circulation 1998;98:294–299.

    PubMed  CAS  Google Scholar 

  104. Whincup PH, Danesh J, Walker M, et al. von Willebrand factor and coronary heart disease: prospective study and meta-analysis. Eur Heart J 2002;23:1764–1770.

    Article  PubMed  CAS  Google Scholar 

  105. Gurbel PA, Serebruany VL, Shustov AR, et al. Increased baseline levels of platelet P-selectin, and platelet-endothelial cell adhesion molecule-1 in patients with acute myocardial infarction as predictors of unsuccessful thrombolysis. Coron Artery Dis 1998;9:451–456.

    Article  PubMed  CAS  Google Scholar 

  106. Montalescot G, Collet JP, Lison L, et al. Effects of various anticoagulant treatments on von Willebrand factor release in unstable angina. J Am Coll Cardiol 2000;36:110–114.

    Article  PubMed  CAS  Google Scholar 

  107. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024–1032.

    Article  PubMed  Google Scholar 

  108. Francis S. Endothelial progenitor cells and coronary artery disease. Heart (British Cardiac Society) 2004; 90:591–592.

    CAS  Google Scholar 

  109. Goldschmidt-Clermont PJ. Loss of bone marrow-derived vascular progenitor cells leads to inflammation and atherosclerosis. Am Heart J 2003;46(4 Suppl):S5–12.

    Article  CAS  Google Scholar 

  110. Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 1999;93:2951–2958.

    PubMed  CAS  Google Scholar 

  111. Eizawa T, Ikeda U, Murakami Y, et al. Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 2004;90(6):685–686.

    Article  PubMed  CAS  Google Scholar 

  112. Becker RC. Antithrombotic therapy after myocardial infarction. N Engl J Med 2002;347:1019–1022.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Patel, M.R., Becker, R.C. (2006). Clinical and Research Applications of Markers of Thrombosis. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics