Skip to main content

Biology of Natriuretic Peptides

  • Chapter
  • 1393 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The natriuretic peptide family consists of a group of structurally similar, but genetically distinct, peptide hormones that play a major role in the regulation of cardiovascular, endocrine, and renal homeostasis. Since the discovery of atrial natriuretic peptide almost 25 yr ago, remarkable progress has been made in the field of natriuretic peptide research. This chapter reviews current knowledge in biology of the natriuretic peptides, including mechanisms of synthesis and release, biological effects, and clearance.

The predominant stimulus controlling the synthesis and release of natriuretic peptides from cardiac atria and ventricles is wall stretch. However, recent evidence suggests ischemia per se may be an additional factor influencing synthesis and release. The biological effects of the natriuretic peptides are mediated via binding to cell surface-associated natriuretic peptide receptors. The natriuretic peptide receptors are expressed widely in the cardiovascular system and have also been identified in the lungs, kidneys, skin, platelets and pre-synaptic sympathetic nerve fibers. Natriuretic peptides are functional antagonists to the major vasoconstrictor neurohormonal axes, exert potent natriuretic and diuretic effects in the kidneys, and modulate cell growth, apoptosis, and proliferation in vascular smooth muscle cells and cardiomyocytes. The natriuretic peptide system is activated in a broad spectrum of cardiovascular diseases, including systolic diastolic right and left ventricular dysfunction, acute coronary syndromes, stable coronary heart disease, valvular heart disease, and left- and right-ventricular hypertrophy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilkins MR, Redondo J, Brown LA. The natriuretic-peptide family. Lancet 1997;349(9061):1307–1310.

    Article  PubMed  CAS  Google Scholar 

  2. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998;339(5):321–328.

    Article  PubMed  CAS  Google Scholar 

  3. Sugawara A, Nakao K, Morii N, et al. Alpha-human atrial natriuretic polypeptide is released from the heart and circulates in the body. Biochem Biophys Res Commun 1985;129(2):439–446.

    Article  PubMed  CAS  Google Scholar 

  4. Mukoyama M, Nakao K, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans: evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 1991;87(4):1402–1412.

    Article  PubMed  CAS  Google Scholar 

  5. Minamino N, Makino Y, Tateyama H, Kangawa K, Matsuo H. Characterization of immunoreactive human C-type natriuretic peptide in brain and heart. Biochem Biophys Res Commun 1991;179(1):535–542.

    Article  PubMed  CAS  Google Scholar 

  6. Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 1992;267(20): 13,928–13,932.

    PubMed  CAS  Google Scholar 

  7. Schirger JA, Heublein DM, Chen HH, et al. Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc 1999;74(2): 26–130.

    Article  Google Scholar 

  8. Gunning M, Brenner BM. Urodilatin: a potent natriuretic peptide of renal origin. Curr Opin Nephrol Hypertens 1993;2(6):857–862.

    Article  PubMed  CAS  Google Scholar 

  9. Forte LR, Currie MG. Guanylin: a peptide regulator of epithelial transport. FASEB J 1995;9(8):643–650.

    PubMed  CAS  Google Scholar 

  10. Forte LR, London RM, Freeman RH, Krause WJ. Guanylin peptides: renal actions mediated by cyclic GMP. Am J Physiol Renal Physiol 2000;278(2):F180–F191.

    PubMed  CAS  Google Scholar 

  11. Hamra FK, Forte LR, Eber SL, et al. Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 1993;90(22):10,464–10,468.

    Article  PubMed  CAS  Google Scholar 

  12. Schirger JA, Grantham JA, Kullo IJ, et al. Vascular actions of brain natriuretic peptide: modulation by atherosclerosis and neutral endopeptidase inhibition. J Am Coll Cardiol 2000;35(3):796–801.

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa Y, Tamura N, Chusho H, Nakao K. Brain natriuretic peptide appears to act locally as an antifibrotic factor in the heart. Can J Physiol Pharmacol 2001;79(8):723–729.

    Article  PubMed  CAS  Google Scholar 

  14. Brunner-La Rocca HP, Kaye DM, Woods RL, Hastings J, Esler MD. Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J Am Coll Cardiol 2001;37(5):1221–1227.

    Article  PubMed  CAS  Google Scholar 

  15. Kisch B. Electron microscopy of the atrium of the heart. I. Guinea pig. Exp Med Surg 1956;14(2–3): 99–112.

    PubMed  CAS  Google Scholar 

  16. Jamieson JD, Palade GE. Specific granules in atrial muscle cells. J Cell Biol 1964;23:151–172.

    Article  PubMed  CAS  Google Scholar 

  17. Henry JP, Pearce JW. The possible role of cardiac atrial stretch receptors in the induction of changes in urine flow. J Physiol 1956;131(3):572–585.

    PubMed  CAS  Google Scholar 

  18. Henry JP, Gauer OH, Reeves JL. Evidence of the atrial location of receptors influencing urine flow. Circ Res 1956;4(1):85–90.

    PubMed  CAS  Google Scholar 

  19. De Bold AJ. Heart atria granularity effects of changes in water-electrolyte balance. Proc Soc Exp Biol Med 1979;161(4):508–511.

    PubMed  Google Scholar 

  20. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 1981;28(1):89–94.

    Article  PubMed  Google Scholar 

  21. Atlas SA, Kleinert HD, Camargo MJ, et al. Purification, sequencing and synthesis of natriuretic and vasoactive rat atrial peptide. Nature 1984;309(5970):717–719.

    Article  PubMed  CAS  Google Scholar 

  22. Kangawa K, Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 1984;118(1):131–139.

    Article  PubMed  CAS  Google Scholar 

  23. Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcine brain. Nature 1988; 332(6159):78–81.

    Article  PubMed  CAS  Google Scholar 

  24. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP):a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 1990;168(2):863–870.

    Article  PubMed  CAS  Google Scholar 

  25. Oikawa S, Imai M, Ueno A, et al. Cloning and sequence analysis of cDNA encoding a precursor for human atrial natriuretic polypeptide. Nature 1984;309(5970):724–726.

    Article  PubMed  CAS  Google Scholar 

  26. Yandle TG. Biochemistry of natriuretic peptides. J Intern Med 1994;235(6):561–576.

    Article  PubMed  CAS  Google Scholar 

  27. Wu F, Yan W, Pan J, Morser J, Wu Q. Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J Biol Chem 2002;277(19):16,900–16,905.

    Article  PubMed  CAS  Google Scholar 

  28. Buckley MG, Sagnella GA, Markandu ND, Singer DR, MacGregor GA. Concentrations of N-terminal ProANP in human plasma: evidence for ProANP (1–98) as the circulating form. Clin Chim Acta 1990; 191(1–2):1–14.

    Article  PubMed  CAS  Google Scholar 

  29. Vesely DL, Douglass MA, Dietz JR, et al. Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans. Circulation 1994;90(3):1129–1140.

    PubMed  CAS  Google Scholar 

  30. Cameron VA, Aitken GD, Ellmers LJ, Kennedy MA, Espiner EA. The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology 1996;137(3):817–824.

    Article  PubMed  CAS  Google Scholar 

  31. Mercadier JJ, Zongazo MA, Wisnewsky C, et al. Atrial natriuretic factor messenger ribonucleic acid and peptide in the human heart during ontogenic development. Biochem Biophys Res Commun 1989;159 (2):777–782.

    Article  PubMed  CAS  Google Scholar 

  32. Gu J, D’Andrea M, Seethapathy M. Atrial natriuretic peptide and its messenger ribonucleic acid in overloaded and overload-released ventricles of rat. Endocrinology 1989;125(4):2066–2074.

    Article  PubMed  CAS  Google Scholar 

  33. Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr. Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 1988;62(2): 191–195.

    PubMed  CAS  Google Scholar 

  34. Lang RE, Tholken H, Ganten D, Luft FC, Ruskoaho H, Unger T. Atrial natriuretic factor—a circulating hormone stimulated by volume loading. Nature 1985;314(6008):264–266.

    Article  PubMed  CAS  Google Scholar 

  35. Raine AE, Erne P, Burgisser E, et al. Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. N Engl J Med 1986;315(9):533–537.

    PubMed  CAS  Google Scholar 

  36. Burnett JC Jr, Kao PC, Hu DC, et al. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 1986;231(4742):1145–1147.

    Article  PubMed  Google Scholar 

  37. Ruskoaho H. Cardiac hormones as diagnostic tools in heart failure. Endocr Rev 2003;24(3):341–356.

    Article  PubMed  CAS  Google Scholar 

  38. Kinnunen P, Vuolteenaho O, Uusimaa P, Ruskoaho H. Passive mechanical stretch releases atrial natriuretic peptide from rat ventricular myocardium. Circ Res 1992;70(6):1244–1253.

    PubMed  CAS  Google Scholar 

  39. Yasue H, Obata K, Okumura K, et al. Increased secretion of atrial natriuretic polypeptide from the left ventricle in patients with dilated cardiomyopathy. J Clin Invest 1989;83(1):46–51.

    Article  PubMed  CAS  Google Scholar 

  40. Thibault G, Nemer M, Drouin J, et al. Ventricles as a major site of atrial natriuretic factor synthesis and release in cardiomyopathic hamsters with heart failure. Circ Res 1989;65(1):71–82.

    PubMed  CAS  Google Scholar 

  41. Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 1992;44(4): 479–602.

    PubMed  CAS  Google Scholar 

  42. Wiese S, Breyer T, Dragu A, et al. Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 2000; 102(25):3074–3079.

    PubMed  CAS  Google Scholar 

  43. Bruneau BG, Piazza LA, De Bold AJ. BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria. Am J Physiol 1997;273(6 Pt 2):H2678–H2686.

    PubMed  CAS  Google Scholar 

  44. Nishimori T, Tsujino M, Sato K, Imai T, Marumo F, Hirata Y. Dexamethasone-induced up-regulation of adrenomedullin and atrial natriuretic peptide genes in cultured rat ventricular myocytes. J Mol Cell Cardiol 1997;29(8):2125–2130.

    Article  PubMed  CAS  Google Scholar 

  45. De Bold AJ, Bruneau BG, Kuroski de Bold ML. Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc Res 1996;31(1):7–18.

    Article  PubMed  Google Scholar 

  46. Toth M, Vuorinen KH, Vuolteenaho O, et al. Hypoxia stimulates release of ANP and BNP from perfused rat ventricular myocardium. Am J Physiol 1994;266(4 Pt 2):H1572–H1580.

    PubMed  CAS  Google Scholar 

  47. Riddervold F, Smiseth OA, Hall C, Groves G, Risoe C. Rate-induced increase in plasma atrial natriuretic factor can occur independently of changes in atrial wall stretch. Am J Physiol 1991;260(6 Pt 2): H1953–H1958.

    PubMed  CAS  Google Scholar 

  48. Ogawa Y, Itoh H, Nakagawa O, et al. Characterization of the 5′-flanking region and chromosomal assignment of the human brain natriuretic peptide gene. J Mol Med 1995;73(9):457–463.

    Article  PubMed  CAS  Google Scholar 

  49. Tamura N, Ogawa Y, Yasoda A, Itoh H, Saito Y, Nakao K. Two cardiac natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes. J Mol Cell Cardiol 1996;28(8):1811–1815.

    Article  PubMed  CAS  Google Scholar 

  50. Sawada Y, Suda M, Yokoyama H, et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proprotein-processing endoprotease furin. J Biol Chem 1997;272(33):20,545–20,554.

    Article  PubMed  CAS  Google Scholar 

  51. Tateyama H, Hino J, Minamino N, et al. Concentrations and molecular forms of human brain natriuretic peptide in plasma. Biochem Biophys Res Commun 1992;185(2):760–767.

    Article  PubMed  CAS  Google Scholar 

  52. Yandle TG, Richards AM, Gilbert A, Fisher S, Holmes S, Espiner EA. Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J Clin Endocrinol Metab 1993;76(4):832–838.

    Article  PubMed  CAS  Google Scholar 

  53. Hunt PJ, Yandle TG, Nicholls MG, Richards AM, Espiner EA. The amino-terminal portion of probrain natriuretic peptide (Pro-BNP) circulates in human plasma. Biochem Biophys Res Commun 1995; 214(3):1175–1183.

    Article  PubMed  CAS  Google Scholar 

  54. Hunt PJ, Espiner EA, Nicholls MG, Richards AM, Yandle TG. The role of the circulation in processing pro-brain natriuretic peptide (proBNP) to amino-terminal BNP and BNP-32. Peptides 1997;18(10): 1475–1481.

    Article  PubMed  CAS  Google Scholar 

  55. Hunt PJ, Richards AM, Nicholls MG, Yandle TG, Doughty RN, Espiner EA. Immunoreactive aminoterminal pro-brain natriuretic peptide (NT-PROBNP):a new marker of cardiac impairment. Clin Endocrinol (Oxf) 1997;47(3):287–296.

    Article  CAS  Google Scholar 

  56. Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 1994;90(1):195–203.

    PubMed  CAS  Google Scholar 

  57. Lang CC, Choy AM, Struthers AD. Atrial and brain natriuretic peptides: a dual natriuretic peptide system potentially involved in circulatory homeostasis. Clin Sci (Lond) 1992;83(5):519–527.

    CAS  Google Scholar 

  58. Tsuruda T, Boerrigter G, Huntley BK, et al. Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 2002;91(12):1127–1134.

    Article  PubMed  CAS  Google Scholar 

  59. Ogawa Y, Nakao K, Mukoyama M, et al. Natriuretic peptides as cardiac hormones in normotensive and spontaneously hypertensive rats: the ventricle is a major site of synthesis and secretion of brain natriuretic peptide. Circ Res 1991;69(2):491–500.

    PubMed  CAS  Google Scholar 

  60. Kinnunen P, Vuolteenaho O, Ruskoaho H. Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: effect of stretching. Endocrinology 1993;132(5):1961–1970.

    Article  PubMed  CAS  Google Scholar 

  61. Hama N, Itoh H, Shirakami G, et al. Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 1995;92(6):1558–1564.

    PubMed  CAS  Google Scholar 

  62. Takahashi T, Allen PD, Izumo S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles: correlation with expression of the Ca(2+)-ATPase gene. Circ Res 1992;71(1):9–17.

    PubMed  CAS  Google Scholar 

  63. Luchner A, Stevens TL, Borgeson DD, et al. Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Physiol 1998;274(5 Pt 2):H1684–H1689.

    PubMed  CAS  Google Scholar 

  64. Murakami Y, Shimada T, Inoue S, et al. New insights into the mechanism of the elevation of plasma brain natriuretic polypeptide levels in patients with left ventricular hypertrophy. Can J Cardiol 2002; 18(12):1294–1300.

    PubMed  CAS  Google Scholar 

  65. Mantymaa P, Vuolteenaho O, Marttila M, Ruskoaho H. Atrial stretch induces rapid increase in brain natriuretic peptide but not in atrial natriuretic peptide gene expression in vitro. Endocrinology 1993;133 (3):1470–1473.

    Article  PubMed  CAS  Google Scholar 

  66. Magga J, Marttila M, Mantymaa P, Vuolteenaho O, Ruskoaho H. Brain natriuretic peptide in plasma, atria, and ventricles of vasopressin-and phenylephrine-infused conscious rats. Endocrinology 1994; 134(6):2505–2515.

    Article  PubMed  CAS  Google Scholar 

  67. Bruneau BG, Piazza LA, De Bold AJ. Alpha 1-adrenergic stimulation of isolated rat atria results in discoordinate increases in natriuretic peptide secretion and gene expression and enhances Egr-1 and c-Myc expression. Endocrinology 1996;137(1):137–143.

    Article  PubMed  CAS  Google Scholar 

  68. Leskinen H, Vuolteenaho O, Ruskoaho H. Combined inhibition of endothelin and angiotensin II receptors blocks volume load-induced cardiac hormone release. Circ Res 1997;80(1):114–123.

    PubMed  CAS  Google Scholar 

  69. Bianciotti LG, De Bold AJ. Modulation of cardiac natriuretic peptide gene expression following endothelin type A receptor blockade in renovascular hypertension. Cardiovasc Res 2001;49(4):808–816.

    Article  PubMed  CAS  Google Scholar 

  70. Liang F, Gardner DG. Autocrine/paracrine determinants of strain-activated brain natriuretic peptide gene expression in cultured cardiac myocytes. J Biol Chem 1998;273(23):14,612–14,619.

    Article  PubMed  CAS  Google Scholar 

  71. Magga J, Vuolteenaho O, Marttila M, Ruskoaho H. Endothelin-1 is involved in stretch-induced early activation of B-type natriuretic peptide gene expression in atrial but not in ventricular myocytes: acute effects of mixed ET(A)/ET(B) and AT1 receptor antagonists in vivo and in vitro. Circulation 1997;96 (9):3053–3062.

    PubMed  CAS  Google Scholar 

  72. Lang CC, Choy AM, Turner K, Tobin R, Coutie W, Struthers AD. The effect of intravenous saline loading on plasma levels of brain natriuretic peptide in man. J Hypertens 1993;11(7):737–741.

    Article  PubMed  CAS  Google Scholar 

  73. Richards AM, Crozier IG, Holmes SJ, Espiner EA, Yandle TG, Frampton C. Brain natriuretic peptide: natriuretic and endocrine effects in essential hypertension. J Hypertens 1993;11(2):163–170.

    Article  PubMed  CAS  Google Scholar 

  74. Lang CC, Coutie WJ, Khong TK, Choy AM, Struthers AD. Dietary sodium loading increases plasma brain natriuretic peptide levels in man. J Hypertens 1991;9(9):779–782.

    Article  PubMed  CAS  Google Scholar 

  75. Ogawa Y, Nakao K, Nakagawa O, et al. Human C-type natriuretic peptide: characterization of the gene and peptide. Hypertension 1992;19(6 Pt 2):809–813.

    PubMed  CAS  Google Scholar 

  76. Minamino N, Aburaya M, Kojima M, Miyamoto K, Kangawa K, Matsuo H. Distribution of C-type natriuretic peptide and its messenger RNA in rat central nervous system and peripheral tissue. Biochem Biophys Res Commun 1993;197(1):326–335.

    Article  PubMed  CAS  Google Scholar 

  77. Suga S, Nakao K, Itoh H, et al. Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta: possible existence of “vascular natriuretic peptide system”. J Clin Invest 1992;90(3):1145–1149.

    Article  PubMed  CAS  Google Scholar 

  78. Horio T, Tokudome T, Maki T, et al. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 2003;144(6):2279–2284.

    Article  PubMed  CAS  Google Scholar 

  79. Yamamoto K, Ikeda U, Shimada K. Natriuretic peptides modulate nitric oxide synthesis in cytokinestimulated cardiac myocytes. J Mol Cell Cardiol 1997;29(9):2375–2382.

    Article  PubMed  CAS  Google Scholar 

  80. Kalra PR, Clague JR, Bolger AP, et al. Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation 2003;107(4):571–573.

    Article  PubMed  CAS  Google Scholar 

  81. Wright SP, Prickett TC, Doughty RN, et al. Amino-terminal pro-C-type natriuretic peptide in heart failure. Hypertension 2004;43(1):94–100.

    Article  PubMed  CAS  Google Scholar 

  82. Porter JG, Arfsten A, Fuller F, Miller JA, Gregory LC, Lewicki JA. Isolation and functional expression of the human atrial natriuretic peptide clearance receptor cDNA. Biochem Biophys Res Commun 1990; 171(2):796–803.

    Article  PubMed  CAS  Google Scholar 

  83. Maack T. Receptors of atrial natriuretic factor. Annu Rev Physiol 1992;54:11–27.

    Article  PubMed  CAS  Google Scholar 

  84. Misono KS. Natriuretic peptide receptor: structure and signaling. Mol Cell Biochem 2002;230(1-2): 49–60.

    Article  PubMed  CAS  Google Scholar 

  85. Tremblay J, Desjardins R, Hum D, Gutkowska J, Hamet P. Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 2002;230(1–2):31–47.

    Article  PubMed  CAS  Google Scholar 

  86. Matsukawa N, Grzesik WJ, Takahashi N, et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 1999; 96(13):7403–7408.

    Article  PubMed  CAS  Google Scholar 

  87. Chinkers M, Garbers DL, Chang MS, et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 1989;338(6210):78–83.

    Article  PubMed  CAS  Google Scholar 

  88. Koller KJ, Goeddel DV. Molecular biology of the natriuretic peptides and their receptors. Circulation 1992;86(4):1081–1088.

    PubMed  CAS  Google Scholar 

  89. Gutkowska J, Nemer M. Structure, expression, and function of atrial natriuretic factor in extraatrial tissues. Endocr Rev 1989;10(4):519–536.

    Article  PubMed  CAS  Google Scholar 

  90. Nakao K, Itoh H, Kambayashi Y, et al. Rat brain natriuretic peptide: isolation from rat heart and tissue distribution. Hypertension 1990;15(6 Pt 2):774–778.

    PubMed  CAS  Google Scholar 

  91. Garbers DL, Lowe DG. Guanylyl cyclase receptors. J Biol Chem 1994;269(49):30,741–30,744.

    PubMed  CAS  Google Scholar 

  92. Potter LR, Hunter T. Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 2001;276(9):6057–6060.

    Article  PubMed  CAS  Google Scholar 

  93. Maack T, Suzuki M, Almeida FA, et al. Physiological role of silent receptors of atrial natriuretic factor. Science 1987;238(4827):675–678.

    Article  PubMed  CAS  Google Scholar 

  94. Murthy KS, Teng BQ, Zhou H, Jin JG, Grider JR, Makhlouf GM. G(i−1)/G(i−2)-dependent signaling by single-transmembrane natriuretic peptide clearance receptor. Am J Physiol Gastrointest Liver Physiol 2000;278(6):G974–G980.

    PubMed  CAS  Google Scholar 

  95. Kone BC. Molecular biology of natriuretic peptides and nitric oxide synthases. Cardiovasc Res 2001;51 (3):429–441.

    Article  PubMed  CAS  Google Scholar 

  96. Maack T, Okolicany J, Koh GY, Price DA. Functional properties of atrial natriuretic factor receptors. Semin Nephrol 1993;13(1):50–60.

    PubMed  CAS  Google Scholar 

  97. Suga S, Nakao K, Hosoda K, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 1992;130(1):229–239.

    Article  PubMed  CAS  Google Scholar 

  98. Feil R, Lohmann SM, de JH, Walter U, Hofmann F. Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res 2003;93(10):907–916.

    Article  PubMed  CAS  Google Scholar 

  99. Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J 1993;291 (Pt 1):83–88.

    PubMed  CAS  Google Scholar 

  100. Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J Hypertens 1992;10(10):1111–1114.

    Article  PubMed  CAS  Google Scholar 

  101. Sonnenberg JL, Sakane Y, Jeng AY, et al. Identification of protease 3.4.24.11 as the major atrial natriuretic factor degrading enzyme in the rat kidney. Peptides 1988;9(1):173–180.

    Article  PubMed  CAS  Google Scholar 

  102. Charles CJ, Espiner EA, Nicholls MG, et al. Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am J Physiol 1996;271(2 Pt 2):R373–R380.

    PubMed  CAS  Google Scholar 

  103. Rademaker MT, Charles CJ, Kosoglou T, et al. Clearance receptors and endopeptidase: equal role in natriuretic peptide metabolism in heart failure. Am J Physiol 1997;273(5 Pt 2):H2372–H2379.

    PubMed  CAS  Google Scholar 

  104. Smith MW, Espiner EA, Yandle TG, Charles CJ, Richards AM. Delayed metabolism of human brain natriuretic peptide reflects resistance to neutral endopeptidase. J Endocrinol 2000;167(2):239–246.

    Article  PubMed  CAS  Google Scholar 

  105. McCullough PA, Sandberg KR. B-type natriuretic peptide and renal disease. Heart Fail Rev 2003;8(4): 355–358.

    Article  PubMed  CAS  Google Scholar 

  106. Ng LL, Geeranavar S, Jennings SC, Loke I, O’Brien RJ. Diagnosis of heart failure using urinary natriuretic peptides. Clin Sci (Lond) 2004;106(2):129–133.

    Article  CAS  Google Scholar 

  107. Mehra MR, Uber PA, Park MH, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol 2004;43(9):1590–1595.

    Article  PubMed  CAS  Google Scholar 

  108. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004;109(5):594–600.

    Article  PubMed  CAS  Google Scholar 

  109. Sarzani R, ssi-Fulgheri P, Paci VM, Espinosa E, Rappelli A. Expression of natriuretic peptide receptors in human adipose and other tissues. J Endocrinol Invest 1996;19(9):581–585.

    PubMed  CAS  Google Scholar 

  110. Sarzani R, Paci VM, Zingaretti CM, et al. Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens 1995;13(11):1241–1246.

    Article  PubMed  CAS  Google Scholar 

  111. Crandall DL, Ferraro GD, Cervoni P. Effect of experimental obesity and subsequent weight reduction upon circulating atrial natriuretic peptide. Proc Soc Exp Biol Med 1989;191(4):352–356.

    PubMed  CAS  Google Scholar 

  112. Thibault G, Murthy KK, Gutkowska J, et al. NH2-terminal fragment of rat pro-atrial natriuretic factor in the circulation: identification, radioimmunoassay and half-life. Peptides 1988;9(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  113. Sundsfjord JA, Thibault G, Larochelle P, Cantin M. Identification and plasma concentrations of the N-terminal fragment of proatrial natriuretic factor in man. J Clin Endocrinol Metab 1988;66(3):605–610.

    Article  PubMed  CAS  Google Scholar 

  114. Espiner EA, Richards AM, Yandle TG, Nicholls MG. Natriuretic hormones. Endocrinol Metab Clin North Am 1995;24(3):481–509.

    PubMed  CAS  Google Scholar 

  115. Pemberton CJ, Johnson ML, Yandle TG, Espiner EA. Deconvolution analysis of cardiac natriuretic peptides during acute volume overload. Hypertension 2000;36(3):355–359.

    PubMed  CAS  Google Scholar 

  116. Charles CJ, Espiner EA, Richards AM, Nicholls MG, Yandle TG. Biological actions and pharmacokinetics of C-type natriuretic peptide in conscious sheep. Am J Physiol 1995;268(1 Pt 2):R201–R207.

    PubMed  CAS  Google Scholar 

  117. Charles CJ, Espiner EA, Richards AM. Cardiovascular actions of ANF: contributions of renal, neurohumoral, and hemodynamic factors in sheep. Am J Physiol 1993;264(3 Pt 2):R533–R538.

    PubMed  CAS  Google Scholar 

  118. Richards AM, Tonolo G, Montorsi P, et al. Low dose infusions of 26-and 28-amino acid human atrial natriuretic peptides in normal man. J Clin Endocrinol Metab 1988;66(3):465–472.

    Article  PubMed  CAS  Google Scholar 

  119. Tonolo G, Richards AM, Manunta P, et al. Low-dose infusion of atrial natriuretic factor in mild essential hypertension. Circulation 1989;80(4):893–902.

    PubMed  CAS  Google Scholar 

  120. Wei CM, Aarhus LL, Miller VM, Burnett JC Jr. Action of C-type natriuretic peptide in isolated canine arteries and veins. Am J Physiol 1993;264(1 Pt 2):H71–H73.

    PubMed  CAS  Google Scholar 

  121. Cody RJ, Covit AB, Schaer GL, Laragh JH, Sealey JE, Feldschuh J. Sodium and water balance in chronic congestive heart failure. J Clin Invest 1986;77(5):1441–1452.

    Article  PubMed  CAS  Google Scholar 

  122. Wijeyaratne CN, Moult PJ. The effect of alpha human atrial natriuretic peptide on plasma volume and vascular permeability in normotensive subjects. J Clin Endocrinol Metab 1993;76(2):343–346.

    Article  PubMed  CAS  Google Scholar 

  123. Burnett JC Jr, Granger JP, Opgenorth TJ. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 1984;247(5 Pt 2):F863–F866.

    PubMed  CAS  Google Scholar 

  124. Atarashi K, Mulrow PJ, Franco-Saenz R. Effect of atrial peptides on aldosterone production. J Clin Invest 1985;76(5):1807–1811.

    Article  PubMed  CAS  Google Scholar 

  125. Uemasu J, Matsumoto H, Kitano M, Kawasaki H. Suppression of plasma endothelin-1 level by alphahuman atrial natriuretic peptide and angiotensin converting enzyme inhibition in normal men. Life Sci 1993;53(11):969–974.

    Article  PubMed  CAS  Google Scholar 

  126. Floras JS. Sympathoinhibitory effects of atrial natriuretic factor in normal humans. Circulation 1990; 81(6):1860–1873.

    PubMed  CAS  Google Scholar 

  127. Yang RH, Jin HK, Wyss JM, Chen YF, Oparil S. Pressor effect of blocking atrial natriuretic peptide in nucleus tractus solitarii. Hypertension 1992;19(2):198–205.

    PubMed  CAS  Google Scholar 

  128. Burnett JC Jr, Rubanyi GM, Edwards BS, Schwab TR, Zimmerman RS, Vanhoutte PM. Atrial natriuretic peptide decreases cardiac output independent of coronary vasoconstriction. Proc Soc Exp Biol Med 1987;186(3):313–318.

    PubMed  CAS  Google Scholar 

  129. Clarkson PB, Wheeldon NM, Macleod C, Coutie W, MacDonald TM. Brain natriuretic peptide: effect on left ventricular filling patterns in healthy subjects. Clin Sci (Lond) 1995;88(2):159–164.

    CAS  Google Scholar 

  130. Kishimoto I, Rossi K, Garbers DL. A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 2001;98(5):2703–2706.

    Article  PubMed  CAS  Google Scholar 

  131. Holtwick R, van EM, Skryabin BV, et al. Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 2003;111(9):1399–1407.

    PubMed  CAS  Google Scholar 

  132. Knowles JW, Esposito G, Mao L, et al. Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 2001;107(8):975–984.

    Article  PubMed  CAS  Google Scholar 

  133. John SW, Krege JH, Oliver PM, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 1995;267(5198):679–681.

    Article  PubMed  CAS  Google Scholar 

  134. Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 2000;97(8):4239–4244.

    Article  PubMed  CAS  Google Scholar 

  135. Oliver PM, Fox JE, Kim R, et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 1997;94(26):14,730–14,735.

    Article  PubMed  CAS  Google Scholar 

  136. Brown J, Chen Q, Hong G. An autocrine system for C-type natriuretic peptide within rat carotid neointima during arterial repair. Am J Physiol 1997;272(6 Pt 2):H2919–H2931.

    PubMed  CAS  Google Scholar 

  137. Wennberg PW, Miller VM, Rabelink T, Burnett JC Jr. Further attenuation of endothelium-dependent relaxation imparted by natriuretic peptide receptor antagonism. Am J Physiol 1999;277(4 Pt 2):H1618–H1621.

    PubMed  CAS  Google Scholar 

  138. Komatsu Y, Itoh H, Suga S, et al. Regulation of endothelial production of C-type natriuretic peptide in coculture with vascular smooth muscle cells: role of the vascular natriuretic peptide system in vascular growth inhibition. Circ Res 1996;78(4):606–614.

    PubMed  CAS  Google Scholar 

  139. Furuya M, Aisaka K, Miyazaki T, et al. C-type natriuretic peptide inhibits intimal thickening after vascular injury. Biochem Biophys Res Commun 1993;93(1):248–253.

    Article  Google Scholar 

  140. Naruko T, Ueda M, van der Wal AC, et al. C-type natriuretic peptide in human coronary atherosclerotic lesions. Circulation 1996;94(12):3103–3108.

    PubMed  CAS  Google Scholar 

  141. Tokudome T, Horio T, Soeki T, et al. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology 2004;145(5):2131–214).

    Article  PubMed  CAS  Google Scholar 

  142. Marin-Grez M, Fleming JT, Steinhausen M. A trial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 1986;324(6096):473–476.

    Article  PubMed  CAS  Google Scholar 

  143. Grantham JA, Borgeson DD, Burnett JC Jr. BNP: pathophysiological and potential therapeutic roles in acute congestive heart failure. Am J Physiol 1997;272(4 Pt 2):R1077–R1083.

    PubMed  CAS  Google Scholar 

  144. Fried TA, McCoy RN, Osgood RW, Stein JH. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am J Physiol 1986;250(6 Pt 2):F1119–F1122.

    PubMed  CAS  Google Scholar 

  145. Harris PJ, Thomas D, Morgan TO. A trial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature 1987;326(6114):697–698.

    Article  PubMed  CAS  Google Scholar 

  146. Dillingham MA, Anderson RJ. Inhibition of vasopressin action by atrial natriuretic factor. Science 1986; 231(4745):1572, 1573.

    Article  PubMed  CAS  Google Scholar 

  147. Zeidel ML, Kikeri D, Silva P, Burrowes M, Brenner BM. Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Invest 1988;82(3):1067–1074.

    Article  PubMed  CAS  Google Scholar 

  148. Wada A, Tsutamoto T, Matsuda Y, Kinoshita M. Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation 1994;89(5):2232–224).

    PubMed  CAS  Google Scholar 

  149. Hunt PJ, Richards AM, Espiner EA, Nicholls MG, Yandle TG. Bioactivity and metabolism of C-type natriuretic peptide in normal man. J Clin Endocrinol Metab 1994;78(6):1428–1435.

    Article  PubMed  CAS  Google Scholar 

  150. Hunt PJ, Espiner EA, Nicholls MG, Richards AM, Yandle TG. Differing biological effects of equimolar atrial and brain natriuretic peptide infusions in normal man. J Clin Endocrinol Metab 1996;81(11):3871–3876.

    Article  PubMed  CAS  Google Scholar 

  151. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992;20(1):248–254.

    Article  PubMed  CAS  Google Scholar 

  152. Richards AM, Cleland JG, Tonolo G, et al. Plasma alpha natriuretic peptide in cardiac impairment. Br Med J (Clin Res Ed) 1986;293(6544):409–412.

    Article  CAS  Google Scholar 

  153. Richards AM, Crozier IG, Yandle TG, Espiner EA, Ikram H, Nicholls MG. Brain natriuretic factor: regional plasma concentrations and correlations with haemodynamic state in cardiac disease. Br Heart J 1993;69(5):414–417.

    Article  PubMed  CAS  Google Scholar 

  154. Wei CM, Heublein DM, Perrella MA, et al. Natriuretic peptide system in human heart failure. Circulation 1993;88(3):1004–1009.

    PubMed  CAS  Google Scholar 

  155. Omland T, Aakvaag A, Vik-Mo H. Plasma cardiac natriuretic peptide determination as a screening test for the detection of patients with mild left ventricular impairment. Heart 1996;76(3):232–237.

    Article  PubMed  CAS  Google Scholar 

  156. Remes J, Tikkanen I, Fyhrquist F, Pyorala K. Neuroendocrine activity in untreated heart failure. Br Heart J 1991;65(5):249–255.

    Article  PubMed  CAS  Google Scholar 

  157. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol 2001;37(2): 386–391.

    Article  PubMed  CAS  Google Scholar 

  158. Krishnaswamy P, Lubien E, Clopton P, et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med 2001;111(4):274–279.

    Article  PubMed  CAS  Google Scholar 

  159. Maisel AS, McCord J, Nowak RM, et al. Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction: results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol 2003;41(11):2010–2017.

    Article  PubMed  Google Scholar 

  160. Lerman A, Gibbons RJ, Rodeheffer RJ, et al. Circulating N-terminal atrial natriuretic peptide as a marker for symptomless left-ventricular dysfunction. Lancet 1993;341(8853):1105–1109.

    Article  PubMed  CAS  Google Scholar 

  161. Yamamoto K, Burnett JC Jr, Jougasaki M, et al. Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension 1996; 28(6):988–994.

    PubMed  CAS  Google Scholar 

  162. Sumida H, Yasue H, Yoshimura M, et al. Comparison of secretion pattern between A-type and B-type natriuretic peptides in patients with old myocardial infarction. J Am Coll Cardiol 1995;25(5):1105–111).

    Article  PubMed  CAS  Google Scholar 

  163. McCullough PA, Duc P, Omland T, et al. B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am J Kidney Dis 2003;41(3):571–579.

    Article  PubMed  CAS  Google Scholar 

  164. Stevens TL, Burnett JC Jr, Kinoshita M, Matsuda Y, Redfield MM. A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J Clin Invest 1995;95(3): 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  165. Cataliotti A, Boerrigter G, Costello-Boerrigter LC, et al. Brain natriuretic peptide enhances renal actions of furosemide and suppresses furosemide-induced aldosterone activation in experimental heart failure. Circulation 2004;109(13):1680–1685.

    Article  PubMed  CAS  Google Scholar 

  166. de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet 2003;362(9380):316–322.

    Article  PubMed  CAS  Google Scholar 

  167. Marcus LS, Hart D, Packer M, et al. Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion in patients with congestive heart failure: a double-blind, placebo-controlled, randomized crossover trial. Circulation 1996;94(12):3184–3189.

    PubMed  CAS  Google Scholar 

  168. Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med 2000;343(4):246–253.

    Article  PubMed  CAS  Google Scholar 

  169. VMAC investigators. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 2002;287(12):1531–154).

    Article  Google Scholar 

  170. Chen HH, Redfield MM, Nordstrom LJ, Horton DP, Burnett JC Jr. Subcutaneous administration of the cardiac hormone BNP in symptomatic human heart failure. J Card Fail 2004;10(2):115–119.

    Article  PubMed  CAS  Google Scholar 

  171. McClean DR, Ikram H, Garlick AH, Richards AM, Nicholls MG, Crozier IG. The clinical, cardiac, renal, arterial and neurohormonal effects of omapatrilat, a vasopeptidase inhibitor, in patients with chronic heart failure. J Am Coll Cardiol 2000;36(2):479–486.

    Article  PubMed  CAS  Google Scholar 

  172. Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 2002;106(8):920–926.

    Article  PubMed  CAS  Google Scholar 

  173. Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 1990;16(3):301–307.

    PubMed  CAS  Google Scholar 

  174. Ogawa Y, Itoh H, Tamura N, et al. Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest 1994;93(5):1911–1921.

    Article  PubMed  CAS  Google Scholar 

  175. John SW, Veress AT, Honrath U, et al. Blood pressure and fluid-electrolyte balance in mice with reduced or absent ANP. Am J Physiol 1996;271(1 Pt 2):R109–R114.

    PubMed  CAS  Google Scholar 

  176. Lopez MJ, Wong SK, Kishimoto I, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 1995;378(6552):65–68.

    Article  PubMed  CAS  Google Scholar 

  177. Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E. Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 2002;87(4):368–374.

    Article  PubMed  CAS  Google Scholar 

  178. Wang TJ, Larson MG, Levy D, et al. Heritability and genetic linkage of plasma natriuretic peptide levels. Circulation 2003;108(1):13–16.

    Article  PubMed  Google Scholar 

  179. Nannipieri M, Manganiello M, Pezzatini A, De BA, Seghieri G, Ferrannini E. Polymorphisms in the hANP (human atrial natriuretic peptide) gene, albuminuria, and hypertension. Hypertension 2001;37(6): 1416–1422.

    PubMed  CAS  Google Scholar 

  180. Nannipieri M, Posadas R, Williams K, et al. Association between polymorphisms of the atrial natriuretic peptide gene and proteinuria: a population-based study. Diabetologia 2003;46(3):429–432.

    PubMed  CAS  Google Scholar 

  181. Ono K, Mannami T, Baba S, Tomoike H, Suga S, Iwai N. A single-nucleotide polymorphism in C-type natriuretic peptide gene may be associated with hypertension. Hypertens Res 2002;25(5):727–73.

    Article  PubMed  CAS  Google Scholar 

  182. Talwar S, Downie PF, Squire IB, Davies JE, Barnett DB, Ng LL. Plasma N-terminal pro BNP and cardiotrophin-1 are elevated in aortic stenosis. Eur J Heart Fail 2001;3(1):15–19.

    Article  PubMed  CAS  Google Scholar 

  183. Qi W, Mathisen P, Kjekshus J, et al. Natriuretic peptides in patients with aortic stenosis. Am Heart J 2001;142(4):725–732.

    Article  PubMed  CAS  Google Scholar 

  184. Gerber IL, Stewart RA, Legget ME, et al. Increased plasma natriuretic peptide levels reflect symptom onset in aortic stenosis. Circulation 2003;107(14):1884–189).

    Article  PubMed  Google Scholar 

  185. Sutton TM, Stewart RA, Gerber IL, et al. Plasma natriuretic peptide levels increase with symptoms and severity of mitral regurgitation. J Am Coll Cardiol 2003;41(12):2280–2287.

    Article  PubMed  CAS  Google Scholar 

  186. Jougasaki M, Yasue H, Mukoyama M, Nakao K, Takahashi K. Appearance of atrial natriuretic peptide in the ventricles in patients with myocardial infarction. Am Heart J 1990;119(1):92–96.

    Article  PubMed  CAS  Google Scholar 

  187. Morita E, Yasue H, Yoshimura M, et al. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 1993;88(1):82–91.

    PubMed  CAS  Google Scholar 

  188. Omland T, Aakvaag A, Bonarjee VV, et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction: comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation 1996;93(11): 1963–1969.

    PubMed  CAS  Google Scholar 

  189. Richards AM, Nicholls MG, Yandle TG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: new neurohormonal predictors of left ventricular function and prognosis after myocardial infarction. Circulation 1998;97(19):1921–1929.

    PubMed  CAS  Google Scholar 

  190. Omland T, Persson A, Ng L, et al. N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation 2002;106(23):2913–2918.

    Article  PubMed  CAS  Google Scholar 

  191. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 2001;345(14):1014–1021.

    Article  PubMed  Google Scholar 

  192. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation 2003;107(22):2786–2792.

    Article  PubMed  CAS  Google Scholar 

  193. James SK, Lindahl B, Siegbahn A, et al. N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in patients with unstable coronary artery disease: a Global Utilization of Strategies To Open occluded arteries (GUSTO)-IV substudy. Circulation 2003;108(3):275–281.

    Article  PubMed  CAS  Google Scholar 

  194. Kikuta K, Yasue H, Yoshimura M, et al. Increased plasma levels of B-type natriuretic peptide in patients with unstable angina. Am Heart J 1996;132(1 Pt 1):101–107.

    Article  PubMed  CAS  Google Scholar 

  195. Talwar S, Squire IB, Downie PF, Davies JE, Ng LL. Plasma N terminal pro-brain natriuretic peptide and cardiotrophin 1 are raised in unstable angina. Heart 2000;84(4):421–424.

    Article  PubMed  CAS  Google Scholar 

  196. Kyriakides ZS, Markianos M, Michalis L, Antoniadis A, Nikolaou NI, Kremastinos DT. Brain natriuretic peptide increases acutely and much more prominently than atrial natriuretic peptide during coronary angioplasty. Clin Cardiol 2000;23(4):285–288.

    Article  PubMed  CAS  Google Scholar 

  197. Tateishi J, Masutani M, Ohyanagi M, Iwasaki T. Transient increase in plasma brain (B-type) natriuretic peptide after percutaneous transluminal coronary angioplasty. Clin Cardiol 2000;23(10):776–78).

    Article  PubMed  CAS  Google Scholar 

  198. Marumoto K, Hamada M, Hiwada K. Increased secretion of atrial and brain natriuretic peptides during acute myocardial ischaemia induced by dynamic exercise in patients with angina pectoris. Clin Sci (Lond) 1995; 88(5):551–556.

    CAS  Google Scholar 

  199. Goetze JP, Christoffersen C, Perko M, et al. Increased cardiac BNP expression associated with myocardial ischemia. FASEB J 2003;17(9):1105–1107.

    PubMed  CAS  Google Scholar 

  200. Bibbins-Domingo K, Ansari M, Schiller NB, Massie B, Whooley MA. B-type natriuretic peptide and ischemia in patients with stable coronary disease: data from the Heart and Soul study. Circulation 2003; 108(24):2987–2992.

    Article  PubMed  CAS  Google Scholar 

  201. D’Souza SP, Yellon DM, Martin C, et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol 2003;284(5):H1592–H160).

    PubMed  Google Scholar 

  202. D’Souza SP, Baxter GF. B Type natriuretic peptide: a good omen in myocardial ischaemia? Heart 2003;89(7):707–709.

    Article  PubMed  Google Scholar 

  203. Steiner G. Diabetes and atherosclerosis: an overview. Diabetes 1981;30(Suppl 2):1–7.

    PubMed  CAS  Google Scholar 

  204. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham Study. JAMA 1979; 241(19):2035–2038.

    Article  PubMed  CAS  Google Scholar 

  205. Butler R, MacDonald TM, Struthers AD, Morris AD. The clinical implications of diabetic heart disease. Eur Heart J 1998;19(11):1617–1627.

    CAS  Google Scholar 

  206. Grossman E, Shemesh J, Shamiss A, Thaler M, Carroll J, Rosenthal T. Left ventricular mass in diabetes-hypertension. Arch Intern Med 1992;152(5):1001–1004.

    Article  PubMed  CAS  Google Scholar 

  207. Siebenhofer A, Ng LL, Plank J, Berghold A, Hodl R, Pieber TR. Plasma N-terminal pro-brain natriuretic peptide in Type 1 diabetic patients with and without diabetic nephropathy. Diabet Med 2003;20(7): 535–539.

    Article  PubMed  CAS  Google Scholar 

  208. Yano Y, Katsuki A, Gabazza EC, et al. Plasma brain natriuretic peptide levels in normotensive noninsulin-dependent diabetic patients with microalbuminuria. J Clin Endocrinol Metab 1999;84(7):2353–2356.

    Article  PubMed  CAS  Google Scholar 

  209. Asakawa H, Fukui T, Tokunaga K, Kawakami F. Plasma brain natriuretic peptide levels in normotensive Type 2 diabetic patients without cardiac disease and macroalbuminuria. J Diabetes Complication 2002;16(3):209–213.

    Article  Google Scholar 

  210. Magnusson M, Melander O, Israelsson B, Grubb A, Groop L, Jovinge S. Elevated plasma levels of NtproBNP in patients with type 2 diabetes without overt cardiovascular disease. Diabetes Care 2004;27(8): 1929–1935.

    Article  PubMed  CAS  Google Scholar 

  211. Christoffersen C, Goetze JP, Bartels ED, et al. Chamber-dependent expression of brain natriuretic peptide and its mRNA in normal and diabetic pig heart. Hypertension 2002;40(1):54–6).

    Article  PubMed  CAS  Google Scholar 

  212. Rosenkranz AC, Hood SG, Woods RL, Dusting GJ, Ritchie RH. B-type natriuretic peptide prevents acute hypertrophic responses in the diabetic rat heart: importance of cyclic GMP. Diabetes 2003;52(9): 2389–2395.

    Article  PubMed  CAS  Google Scholar 

  213. McKenna K, Smith D, Tormey W, Thompson CJ. Acute hyperglycaemia causes elevation in plasma atrial natriuretic peptide concentrations in Type 1 diabetes mellitus. Diabet Med 2000;17(7):512–517.

    Article  PubMed  CAS  Google Scholar 

  214. Epshteyn V, Morrison K, Krishnaswamy P, et al. Utility of B-type natriuretic peptide (BNP) as a screen for left ventricular dysfunction in patients with diabetes. Diabetes Care 2003;26(7):2081–2087.

    Article  PubMed  CAS  Google Scholar 

  215. Struthers AD, Morris AD. Screening for and treating left-ventricular abnormalities in diabetes mellitus: a new way of reducing cardiac deaths. Lancet 2002;359(9315):1430–1432.

    Article  PubMed  Google Scholar 

  216. Wang TJ, Larson MG, Levy D, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol 2002;90(3):254–258.

    Article  PubMed  CAS  Google Scholar 

  217. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC Jr. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002;40(5):976–982.

    Article  PubMed  CAS  Google Scholar 

  218. Raymond I, Groenning BA, Hildebrandt PR, et al. The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart 2003;89(7):745–751.

    Article  PubMed  CAS  Google Scholar 

  219. Chusho H, Tamura N, Ogawa Y, et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 2001;98(7):4016–4021.

    Article  PubMed  CAS  Google Scholar 

  220. Suda M, Ogawa Y, Tanaka K, et al. Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc Natl Acad Sci USA 1998;95(5):2337–2342.

    Article  PubMed  CAS  Google Scholar 

  221. Oliver PM, John SW, Purdy KE, et al. Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA 1998;95(5):2547–2551.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kragelund, C., Omland, T. (2006). Biology of Natriuretic Peptides. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics