Skip to main content

Biomarkers of Inflammation

Implications in Patients With Heart Failure

  • Chapter
Cardiovascular Biomarkers

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1417 Accesses

Abstract

Heart failure is characterized by an ongoing inflammatory response. The inflammation hypothesis, as it currently stands, suggests that heart failure progresses because certain inflammatory mediators such as inflammatory cytokines are activated following the initial myocardial injury and continue to exert deleterious effects on the heart and circulation contributing further to progression of heart failure and left ventricular dysfunction. Inflammatory biomarkers in heart failure comprise a portfolio of markers that include biologically active molecules, such as proinflammatory cytokines and chemokines that are involved in the pathogenesis and progression of heart failure, and others that reflect severity of inflammation such as C-reactive protein or erythrocyte sedimentation rate. Most of these biomarkers correlate with severity of disease, prognosis, and clinical outcomes in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323(4):236–241.

    PubMed  CAS  Google Scholar 

  2. Lower R. Tractatus de Corde: De Motu & Colore Sagnuinus et Chyli in Eum Tranfitu, 1st ed. Jacobi Alleftry, London, UK, 1669.

    Google Scholar 

  3. Bozkurt B, Kribbs SB, Clubb FJ Jr, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998;97(14):1382–1391.

    PubMed  CAS  Google Scholar 

  4. Aukrust P, Ueland T, Muller F, et al. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 1998;97(12):1136–1143.

    PubMed  CAS  Google Scholar 

  5. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 2002;91(11):988–998.

    Article  PubMed  CAS  Google Scholar 

  6. Mann DL. Recent insights into the role of tumor necrosis factor in the failing heart. Heart Fail Rev 2001; 6(2):71–80.

    Article  PubMed  CAS  Google Scholar 

  7. Kapadia S, Dibbs Z, Kurrelmeyer K, et al. The role of cytokines in the failing human heart. Cardiol Clin 1998;16(4):645–656, viii.

    Article  PubMed  CAS  Google Scholar 

  8. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996;27(5):1201–1206.

    Article  PubMed  CAS  Google Scholar 

  9. Torre-Amione G, Kapadia S, Lee J, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93(4):704–711.

    PubMed  CAS  Google Scholar 

  10. Kapadia SR, Yakoob K, Nader S, Thomas JD, Mann DL, Griffin BP. Elevated circulating levels of serum tumor necrosis factor-alpha in patients with hemodynamically significant pressure and volume overload. J Am Coll Cardiol 2000;36(1):208–212.

    Article  PubMed  CAS  Google Scholar 

  11. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992;257(5068):387–389.

    Article  PubMed  CAS  Google Scholar 

  12. Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004; 109(13):1594–1602.

    Article  PubMed  CAS  Google Scholar 

  13. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003;107(25):3133–3140.

    Article  PubMed  CAS  Google Scholar 

  14. Mann DL, Young JB. Basic mechanisms in congestive heart failure: recognizing the role of proinflammatory cytokines. Chest 1994;105(3):897–904.

    Article  PubMed  CAS  Google Scholar 

  15. Nathan C, Sporn M. Cytokines in context. J Cell Biol 1991;113(5):981–986.

    Article  PubMed  CAS  Google Scholar 

  16. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995;92(6):1487–1493.

    PubMed  CAS  Google Scholar 

  17. McMurray J, Abdullah I, Dargie HJ, Shapiro D. Increased concentrations of tumour necrosis factor in “cachectic” patients with severe chronic heart failure. Br Heart J 1991;66(5):356–358.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994;72(6):561–566.

    Article  PubMed  CAS  Google Scholar 

  19. Dutka DP, Elborn JS, Delamere F, Shale DJ, Morris GK. Tumour necrosis factor alpha in severe congestive cardiac failure. Br Heart J 1993;70(2):141–143.

    Article  PubMed  CAS  Google Scholar 

  20. Katz SD, Rao R, Berman JW, et al. Pathophysiological correlates of increased serum tumor necrosis factor in patients with congestive heart failure: relation to nitric oxide-dependent vasodilation in the forearm circulation. Circulation 1994;90(1):12–16.

    PubMed  CAS  Google Scholar 

  21. Wiedermann CJ, Beimpold H, Herold M, Knapp E, Braunsteiner H. Increased levels of serum neopterin and decreased production of neutrophil superoxide anions in chronic heart failure with elevated levels of tumor necrosis factor-alpha. J Am Coll Cardiol 1993;22(7):1897–1901.

    Article  PubMed  CAS  Google Scholar 

  22. Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92(6):1479–1486.

    PubMed  CAS  Google Scholar 

  23. Milani RV, Mehra MR, Endres S, et al. The clinical relevance of circulating tumor necrosis factor-alpha in acute decompensated chronic heart failure without cachexia. Chest 1996;110(4):992–995.

    Article  PubMed  CAS  Google Scholar 

  24. Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1996;77(9):723–727.

    Article  PubMed  CAS  Google Scholar 

  25. Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28(4):964–971.

    Article  PubMed  CAS  Google Scholar 

  26. Anker SD, Chua TP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997;96(2):526–534.

    PubMed  CAS  Google Scholar 

  27. MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S. Circulating interleukin-6 in severe heart failure. Am J Cardiol 1997;79(8):1128–1131.

    Article  PubMed  CAS  Google Scholar 

  28. Mohler ER III, Sorensen LC, Ghali JK, et al. Role of cytokines in the mechanism of action of amlodipine: the PRAISE Heart Failure Trial. Prospective Randomized Amlodipine Survival Evaluation. J Am Coll Cardiol 1997;30(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  29. Nishigaki K, Minatoguchi S, Seishima M, et al. Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. J Am Coll Cardiol 1997;29(6):1214–1220.

    Article  PubMed  CAS  Google Scholar 

  30. Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson PA, Coats AJ. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1997;79(10):1426–1430.

    Article  PubMed  CAS  Google Scholar 

  31. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001;103(16):2055–2059.

    PubMed  CAS  Google Scholar 

  32. de Werra I, Jaccard C, Corradin SB, et al. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med 1997;25(4):607–613.

    Article  PubMed  Google Scholar 

  33. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop 1991;262:3-11.

    Google Scholar 

  34. O’Malley WE, Achinstein B, Shear MJ. Journal of the National Cancer Institute, Vol. 29, 1962: Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr Rev 1988;46(11):389–391.

    Google Scholar 

  35. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72(9):3666–3670.

    Article  PubMed  CAS  Google Scholar 

  36. Beutler B, Greenwald D, Hulmes JD, et al. Identity of tumour necrosis factor and the macrophagesecreted factor cachectin. Nature 1985;316(6028):552–554.

    Article  PubMed  CAS  Google Scholar 

  37. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3(9):745–756.

    Article  PubMed  CAS  Google Scholar 

  38. Lefer AM, Rovetto MJ. Influence of a myocardial depressant factor on physiologic properties of cardiac muscle. Proc Soc Exp Biol Med 1970;134(1):269–273.

    PubMed  CAS  Google Scholar 

  39. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993;328(20):1471–1477.

    Article  PubMed  CAS  Google Scholar 

  40. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 1996;183(3):949–958.

    Article  PubMed  CAS  Google Scholar 

  41. Old LJ. Tumor necrosis factor (TNF). Science 1985;230(4726):630–632.

    Article  PubMed  CAS  Google Scholar 

  42. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993;92(5): 2303–2312.

    Article  PubMed  CAS  Google Scholar 

  43. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 1989;86(17):6753–6757.

    Article  PubMed  CAS  Google Scholar 

  44. Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B. The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 1992;90(3):693–698.

    Article  PubMed  CAS  Google Scholar 

  45. Bozkurt B, Torre-Amione G, Warren MS, et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 2001;103(8):1044–1047.

    PubMed  CAS  Google Scholar 

  46. Tracey KJ, Beutler B, Lowry SF, et al. Shock and tissue injury induced by recombinant human cachectin. Science 1986;234(4775):470–474.

    Article  PubMed  CAS  Google Scholar 

  47. Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 1992;90(2):389–398.

    Article  PubMed  CAS  Google Scholar 

  48. Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997;81(4):627–635.

    PubMed  CAS  Google Scholar 

  49. Franco F, Thomas GD, Giroir B, et al. Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1999;99(3):448–454.

    PubMed  CAS  Google Scholar 

  50. Hosenpud JD, Campbell SM, Mendelson DJ. Interleukin-1-induced myocardial depression in an isolated beating heart preparation. J Heart Transplant 1989;8(6):460–464.

    PubMed  CAS  Google Scholar 

  51. Kinugawa K, Takahashi T, Kohmoto O, et al. Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res 1994;75(2):285–295.

    PubMed  CAS  Google Scholar 

  52. Kelly RA, Smith TW. Cytokines and cardiac contractile function. Circulation 1997;95(4):778–781.

    PubMed  CAS  Google Scholar 

  53. Dinarello CA. Interleukin-18. Methods 1999;19(1):121–132.

    Article  PubMed  CAS  Google Scholar 

  54. Krown KA, Page MT, Nguyen C, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes: involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996;98(12): 2854–2865.

    Article  PubMed  CAS  Google Scholar 

  55. Li YY, Feng YQ, Kadokami T, et al. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 2000;97(23):12,746–12,751.

    Article  PubMed  CAS  Google Scholar 

  56. Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1998;97(14):1375–1381.

    PubMed  CAS  Google Scholar 

  57. Sivasubramanian N, Coker ML, Kurrelmeyer KM, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2001;104(7):826–831.

    Article  PubMed  CAS  Google Scholar 

  58. Murray DR, Freeman GL. Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 1996;78(1):154–160.

    PubMed  CAS  Google Scholar 

  59. Seta Y, Shan K, Bozkurt B, Oral H, Mann DL. Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 1996;2(3):243–249.

    Article  PubMed  CAS  Google Scholar 

  60. Plenz G, Song ZF, Tjan TD, et al. Activation of the cardiac interleukin-6 system in advanced heart failure. Eur J Heart Fail 2001;3(4):415–421.

    Article  PubMed  CAS  Google Scholar 

  61. Aukrust P, Ueland T, Lien E, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83(3):376–382.

    Article  PubMed  CAS  Google Scholar 

  62. Bachetti T, Comini L, Pasini E, Ferrari R. Anti-cytokine therapy in chronic heart failure: new approaches and unmet promises. Eur Heart J Suppl 2004;6(Suppl F):F16–F21.

    Article  CAS  Google Scholar 

  63. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998;334(Pt 2):297–314.

    PubMed  CAS  Google Scholar 

  64. Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol 1998;30(2):215–223.

    Article  PubMed  CAS  Google Scholar 

  65. Shioi T, Matsumori A, Kihara Y, et al. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997;81(5):664–671.

    PubMed  CAS  Google Scholar 

  66. Long CS. The role of interleukin-1 in the failing heart. Heart Fail Rev 2001;6(2):81–94.

    Article  PubMed  CAS  Google Scholar 

  67. Palmer JN, Hartogensis WE, Patten M, Fortuin FD, Long CS. Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 1995;95(6):2555–2564.

    Article  PubMed  CAS  Google Scholar 

  68. Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 1999;20(9):683–693.

    Article  PubMed  CAS  Google Scholar 

  69. Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999;353(9167):1838–1842.

    Article  PubMed  CAS  Google Scholar 

  70. Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 2003;107(11): 1486–1491.

    Article  PubMed  CAS  Google Scholar 

  71. Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998;31(2):391–398.

    Article  PubMed  CAS  Google Scholar 

  72. Dibbs Z, Thornby J, White BG, Mann DL. Natural variability of circulating levels of cytokines and cytokine receptors in patients with heart failure: implications for clinical trials. J Am Coll Cardiol 1999; 33(7):1935–1942.

    Article  PubMed  CAS  Google Scholar 

  73. Satoh M, Nakamura M, Saitoh H, et al. Tumor necrosis factor-alpha-converting enzyme and tumor necrosis factor-alpha in human dilated cardiomyopathy. Circulation 1999;99(25):3260–3265.

    PubMed  CAS  Google Scholar 

  74. Rauchhaus M, Doehner W, Francis DP, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000;102(25):3060–3067.

    PubMed  CAS  Google Scholar 

  75. Maeda K, Tsutamoto T, Wada A, et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol 2000;36(5):1587–1593.

    Article  PubMed  CAS  Google Scholar 

  76. Kell R, Haunstetter A, Dengler TJ, Zugck C, Kubler W, Haass M. Do cytokines enable risk stratification to be improved in NYHA functional class III patients? Comparison with other potential predictors of prognosis. Eur Heart J 2002;23(1):70–78.

    Article  PubMed  CAS  Google Scholar 

  77. Ferrari R. Interleukin-6: a neurohumoral predictor of prognosis in patients with heart failure: light and shadow. Eur Heart J 2002;23(1):9, 10.

    Article  PubMed  CAS  Google Scholar 

  78. Hernandez-Presa M, Bustos C, Ortego M, et al. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 1997;95(6):1532–1541.

    PubMed  CAS  Google Scholar 

  79. Wei GC, Sirois MG, Qu R, Liu P, Rouleau JL. Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 2002;39(6):842–850.

    Article  PubMed  CAS  Google Scholar 

  80. Gurlek A, Kilickap M, Dincer I, Dandachi R, Tutkak H, Oral D. Effect of losartan on circulating TNF alpha levels and left ventricular systolic performance in patients with heart failure. J Cardiovasc Risk 2001;8(5):279–282.

    Article  PubMed  CAS  Google Scholar 

  81. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 2000; 101(17):2103–2109.

    PubMed  CAS  Google Scholar 

  82. Aronson D, Burger AJ. Effect of beta-blockade on autonomic modulation of heart rate and neurohormonal profile in decompensated heart failure. Ann Noninvasive Electrocardiol 2001;6(2):98–106.

    Article  PubMed  CAS  Google Scholar 

  83. Ohtsuka T, Hamada M, Hiasa G, et al. Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J Am Coll Cardiol 2001; 37(2):412–417.

    Article  PubMed  CAS  Google Scholar 

  84. Gage JR, Fonarow G, Hamilton M, Widawski M, Martinez-Maza O, Vredevoe DL. Beta blocker and angiotensin-converting enzyme inhibitor therapy is associated with decreased Th1/Th2 cytokine ratios and inflammatory cytokine production in patients with chronic heart failure. Neuroimmunomodulation 2004;11(3):173–180.

    Article  PubMed  CAS  Google Scholar 

  85. Loppnow H, Werdan K, Werner C. The enhanced plasma levels of soluble tumor necrosis factor receptors (sTNF-R1; sTNF-R2) and interleukin-10 (IL-10) in patients suffering from chronic heart failure are reversed in patients treated with beta-adrenoceptor antagonist. Auton Autacoid Pharmacol 2002;22 (2):83–92.

    Article  PubMed  CAS  Google Scholar 

  86. Matsumura T, Tsushima K, Ohtaki E, et al. Effects of carvedilol on plasma levels of interleukin-6 and tumor necrosis factor-alpha in nine patients with dilated cardiomyopathy. J Cardiol 2002;39(5):253–257.

    PubMed  Google Scholar 

  87. Tsutamoto T, Wada A, Matsumoto T, et al. Relationship between tumor necrosis factor-alpha production and oxidative stress in the failing hearts of patients with dilated cardiomyopathy. J Am Coll Cardiol 2001;37(8):2086–2092.

    Article  PubMed  CAS  Google Scholar 

  88. Gullestad L, Aukrust P, Ueland T, et al. Effect of high-versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 1999;34(7):2061–2067.

    Article  PubMed  CAS  Google Scholar 

  89. Torre-Amione G, Stetson SJ, Youker KA, et al. Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation 1999;100(11):1189–1193.

    PubMed  CAS  Google Scholar 

  90. Kapadia S, Torre-Amione G, Yokoyama T, Mann DL. Soluble TNF binding proteins modulate the negative inotropic properties of TNF-alpha in vitro. Am J Physiol 1995;268(2 Pt 2):H517–H525.

    PubMed  CAS  Google Scholar 

  91. Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 1999;99(25):3224–3226.

    PubMed  CAS  Google Scholar 

  92. Raymond RJ, Dehmer GJ, Theoharides TC, Deliargyris EN. Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am Heart J 2001;141(3):435–438.

    Article  PubMed  CAS  Google Scholar 

  93. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factoralpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000;101 (18):2149–2153.

    PubMed  CAS  Google Scholar 

  94. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000;101(15):1767–1772.

    PubMed  CAS  Google Scholar 

  95. Murray DR, Freeman GL. Proinflammatory cytokines: predictors of a failing heart? Circulation 2003; 107(11):1460–1462.

    Article  PubMed  Google Scholar 

  96. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol 1994;55:97-179.

    Google Scholar 

  97. Rollins BJ, Yoshimura T, Leonard EJ, Pober JS. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol 1990;136(6):1229–1233.

    PubMed  CAS  Google Scholar 

  98. Behr TM, Wang X, Aiyar N, et al. Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation 2000;102(11):1315–1322.

    PubMed  CAS  Google Scholar 

  99. Kolattukudy PE, Quach T, Bergese S, et al. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am J Pathol 1998;152(1):101–111.

    PubMed  CAS  Google Scholar 

  100. Damas JK, Eiken HG, Oie E, et al. Myocardial expression of CC-and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 2000;47(4):778–787.

    Article  PubMed  CAS  Google Scholar 

  101. Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 1997;18(3):470–479.

    PubMed  CAS  Google Scholar 

  102. Frenette PS, Wagner DD. Adhesion molecules—Part I: Blood vessels and blood cells. N Engl J Med 1996;334(23):1526–1529.

    Article  PubMed  CAS  Google Scholar 

  103. Frenette PS, Wagner DD. Adhesion molecules—Part II: Blood vessels and blood cells. N Engl J Med 1996;335(1):43–45.

    Article  PubMed  CAS  Google Scholar 

  104. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart 2004; 90(4):464–470.

    Article  PubMed  CAS  Google Scholar 

  105. Tsutamoto T, Hisanaga T, Fukai D, et al. Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol 1995;76(11):803–808.

    Article  PubMed  CAS  Google Scholar 

  106. Andreassen AK, Nordoy I, Simonsen S, et al. Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. Am J Cardiol 1998;81(5):604–608.

    Article  PubMed  CAS  Google Scholar 

  107. Tousoulis D, Homaei H, Ahmed N, et al. Increased plasma adhesion molecule levels in patients with heart failure who have ischemic heart disease and dilated cardiomyopathy. Am Heart J 2001;141(2):277–280.

    Article  PubMed  CAS  Google Scholar 

  108. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem 2004;279(47):48,487–48,490.

    Article  PubMed  CAS  Google Scholar 

  109. Pye M, Rae AP, Cobbe SM. Study of serum C-reactive protein concentration in cardiac failure. Br Heart J 1990;63(4):228–230.

    Article  PubMed  CAS  Google Scholar 

  110. Kaneko K, Kanda T, Yamauchi Y, et al. C-Reactive protein in dilated cardiomyopathy. Cardiology 1999; 91(4):215–219.

    Article  PubMed  CAS  Google Scholar 

  111. Milo O, Cotter G, Kaluski E, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol 2003;92(2): 222–226.

    Article  PubMed  CAS  Google Scholar 

  112. Alonso-Martinez JL, Llorente-Diez B, Echegaray-Agara M, Olaz-Preciado F, Urbieta-Echezarreta M, Gonzalez-Arencibia C. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur J Heart Fail 2002;4(3):331–336.

    Article  PubMed  CAS  Google Scholar 

  113. Cesari M, Penninx BW, Newman AB, et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation 2003;108(19):2317–2322.

    Article  PubMed  CAS  Google Scholar 

  114. Joynt KE, Gattis WA, Hasselblad V, et al. Effect of angiotensin-converting enzyme inhibitors, beta blockers, statins, and aspirin on C-reactive protein levels in outpatients with heart failure. Am J Cardiol 2004;93(6):783–785.

    Article  PubMed  CAS  Google Scholar 

  115. Wood P. The erythrocyte sedimentation rate in diseases of the heart. Q J Med 1936;5:1–19.

    Google Scholar 

  116. Haber HL, Leavy JA, Kessler PD, Kukin ML, Gottlieb SS, Packer M. The erythrocyte sedimentation rate in congestive heart failure. N Engl J Med 1991;324(6):353–358.

    Article  PubMed  CAS  Google Scholar 

  117. Spinazzola A. [On the behavior of erythrocyte sedimentation rate (E.S.R.) in congestive heart failure]. Rass Med Sarda 1961;63:525–533.

    PubMed  CAS  Google Scholar 

  118. Parry EH. The erythrocyte sedimentation rate in heart failure. Acta Med Scand 1961;169:79–85.

    PubMed  CAS  Google Scholar 

  119. McGinnis AE, Lansche WE, Glaser RJ, Loeb LH. Observations on the erythrocyte sedimentation rate in congestive heart failure. Am J Med Sci 1953;225(6):599–604.

    Article  PubMed  CAS  Google Scholar 

  120. Sharma R, Rauchhaus M, Ponikowski PP, et al. The relationship of the erythrocyte sedimentation rate to inflammatory cytokines and survival in patients with chronic heart failure treated with angiotensinconverting enzyme inhibitors. J Am Coll Cardiol 2000;36(2):523–528.

    Article  PubMed  CAS  Google Scholar 

  121. Furman MI, Gore JM, Anderson FA, et al. Elevated leukocyte count and adverse hospital events in patients with acute coronary syndromes: findings from the Global Registry of Acute Coronary Events (GRACE). Am Heart J 2004;147(1):42–48.

    Article  PubMed  Google Scholar 

  122. Menon V, Lessard D, Yarzebski J, Furman MI, Gore JM, Goldberg RJ. Leukocytosis and adverse hospital outcomes after acute myocardial infarction. Am J Cardiol 2003;92(4):368–372.

    Article  PubMed  Google Scholar 

  123. Kyne L, Hausdorff JM, Knight E, Dukas L, Azhar G, Wei JY. Neutrophilia and congestive heart failure after acute myocardial infarction. Am Heart J 2000;139(1 Pt 1):94–100.

    Article  PubMed  CAS  Google Scholar 

  124. Maekawa Y, Anzai T, Yoshikawa T, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol 2002; 39(2):241–246.

    Article  PubMed  Google Scholar 

  125. Ommen SR, Hodge DO, Rodeheffer RJ, McGregor CG, Thomson SP, Gibbons RJ. Predictive power of the relative lymphocyte concentration in patients with advanced heart failure. Circulation 1998;97(1): 19–22.

    PubMed  CAS  Google Scholar 

  126. Acanfora D, Gheorghiade M, Trojano L, et al. Relative lymphocyte count: a prognostic indicator of mortality in elderly patients with congestive heart failure. Am Heart J 2001;142(1):167–173.

    Article  PubMed  CAS  Google Scholar 

  127. Bozkurt B, Mann DL. Use of biomarkers in the management of heart failure: are we there yet? Circulation 2003;107(9):1231–1233.

    Article  PubMed  Google Scholar 

  128. Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003; 107(9):1278–1283.

    Article  PubMed  CAS  Google Scholar 

  129. Cohn JN, Anand IS, Latini R, Masson S, Chiang YT, Glazer R. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial. Circulation 2003;108(11):1306–1309.

    Article  PubMed  CAS  Google Scholar 

  130. Suffredini AF, Fromm RE, Parker MM, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 1989;321(5):280–287.

    Article  PubMed  CAS  Google Scholar 

  131. Millar AB, Foley NM, Singer M, Johnson NM, Meager A, Rook GA. Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet 1989;2(8665):712–714.

    Article  PubMed  CAS  Google Scholar 

  132. Hegewisch S, Weh HJ, Hossfeld DK. TNF-induced cardiomyopathy. Lancet 1990;335(8684):294, 295.

    Article  PubMed  CAS  Google Scholar 

  133. Semb H, Peterson J, Tavernier J, Olivecrona T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem 1987;262(17):8390–8394.

    PubMed  CAS  Google Scholar 

  134. Oliff A, Defeo-Jones D, Boyer M, et al. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 1987;50(4):555–563.

    Article  PubMed  CAS  Google Scholar 

  135. Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG. Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes: impairment of signal transduction. Circ Res 1990;67(3):753–763.

    PubMed  CAS  Google Scholar 

  136. Lancaster JR Jr, Laster SM, Gooding LR. Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 1989;248(1-2):169–174.

    Article  PubMed  CAS  Google Scholar 

  137. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995;96(2):1093–1099.

    Article  PubMed  CAS  Google Scholar 

  138. Engel D, Peshock R, Armstong RC, Sivasubramanian N, Mann DL. Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am J Physiol Heart Circ Physiol 2004;287(3):H1303–H1311.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bozkurt, B. (2006). Biomarkers of Inflammation. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics