Skip to main content

Tumor Site Implantation and Animal Model Selection in Oncology

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The goal of this chapter is to present several lines of evidence as to the importance of tumor site selection in oncology drug development. Tumor-host interactions differ according to the anatomical location of the tumor and can alter the pharmacodynamic effects of a drug candidate. In some instances, failure of a promising new drug to exhibit efficacy is attributed to drug resistance when instead, the lack of efficacy is a consequence of poor model characterization and selection. Orthotopic models are now presenting us with more-complex models to evaluate the activity of novel drug candidates. We present examples that demonstrate how implant site influences tumor growth kinetics and behavior; as a consequence of these influences, our interpretation of result with early stage drug candidates must be carefully considered.

In this chapter, we review a number of studies that support the notion that tumor implantation site represents a critical determinant for the successful and meaningful efficacy evaluation of chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dimasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 835:1–35.

    Google Scholar 

  2. Rawlins, M D. Cutting the cost of drug development. Nat Rev Drug Disc 2004; 3:360–364.

    Article  CAS  Google Scholar 

  3. Schuh JCL. Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol 2004; 32:53–66.

    Article  PubMed  CAS  Google Scholar 

  4. Bibby MC. Orthotopic models of cancer for preclinical evaluation: advantages and disadvantages. Eur J Cancer 2004; 40:852–857.

    Article  PubMed  CAS  Google Scholar 

  5. Killion JJ, Radinsky R, Fiddler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 1999; 17:279–284.

    Article  CAS  Google Scholar 

  6. Kelland LR. &quote;Of mice and men&quote;: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004; 40:827–836.

    Article  PubMed  CAS  Google Scholar 

  7. Kerbel RS. What is the optimal rodent model for anti-tumor drug testing. Cancer Metastasis Rev 1999; 17:301–304.

    Article  CAS  Google Scholar 

  8. Naito S, von Eschenbach AC, Fidler IJ. Different growth pattern and biologic behavior of human renal cell carcinoma implanted into different organs in nude mice. J Natl Cancer Inst 1987; 78:377–385.

    PubMed  CAS  Google Scholar 

  9. Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984; 44:3522–3529.

    PubMed  CAS  Google Scholar 

  10. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1:571–573.

    Article  Google Scholar 

  11. Keyes KA, Mann L, Teicher B, Alvarez E. Site-dependent angiogenic cytokine production in human tumor xenografts. Cytokine 2003; 21:98–104.

    Article  PubMed  CAS  Google Scholar 

  12. Onn A. Isobe T, Itasaka S, et al. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in mice. Clin Cancer Res 2003; 9:5532–5539.

    PubMed  CAS  Google Scholar 

  13. Farre L, Casanova I, Guerrero S, Trias M, Capella G, Mangues R. Heterotopic implantation alters the regulation of apoptosis and the cell cycle and generates a new metastatic site in a human pancreatic tumor xenograft model. FASEB J 2002; 16:975–982.

    Article  PubMed  CAS  Google Scholar 

  14. Fu X., Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopic ally from histologically intact patient specimens. Proc Natl Acad Sci USA 1992; 89:5645–5649.

    Article  PubMed  CAS  Google Scholar 

  15. Hoffman RM. Orthotopic metastatic models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 1999; 17:343–359.

    Article  PubMed  CAS  Google Scholar 

  16. Katz MH, Takimoto S, Spivack D, Moossa AR, Hoffman RM, Bouvet M. A novel red fluorescent protein orthotopic pancreatic model for the preclinical evaluation of chemotherapeutics. J Surg Res 2003; 113:151–160.

    Article  PubMed  CAS  Google Scholar 

  17. Pesce A, Blubel HC, DiPersio L, Michael JG. Human lactic dehydrogenase as a marker for human tumor cells grown in athymic mice. Cancer Res 1977; 37:1998–2003.

    PubMed  CAS  Google Scholar 

  18. Shih I-M, Torrance C, Sokoll LJ, Chan DW, Kinzler KW. Vogelstein B. Assessing tumors in living animals through measurement of urinary b-human chorionic gonadotropin. Nat Med 2000; 6:711–714.

    Article  PubMed  CAS  Google Scholar 

  19. Teicher B A, Herman TS, Holden SA, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247(4949 Pt 1): 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  20. Harrison S. Perspective on the history of tumor models. In: Teicher BA, ed. Tumor models in cancer research. Totowa: Humana Press, 2002:3–22.

    Google Scholar 

  21. Kidd JW, Rous P. A transplantable rabbit carcinoma originating in a virus-induced papilloma and containing the virus is masked or altered form. J Exp Med 1940; 71:813–837.

    Article  Google Scholar 

  22. Doppelt SH, Slovik DM, Neer RM, Nolan J, Zusman RM, Potts JT. Gut-mediated hypercalcemia in rabbits bearing VX2 carcinoma: new mechanism for tumor-induced hypercalcemia. Proc Natl Acad Sci USA 1982; 79:640–644.

    Article  PubMed  CAS  Google Scholar 

  23. Shilling T.In vivo models ofhypercalcemiaofmalignancy.RecentResults Cancer Res 1994; 137:4475.

    Google Scholar 

  24. Hubbard WC, Hough AJ, Johnson RM, Oates JA. The site of VX2 tumor transplantation affects the development of hypercalcemia in rabbits. Prostaglandins 1980; 19:881–889.

    Article  PubMed  CAS  Google Scholar 

  25. Malave I, Blanca I, Fuji H. Influence of inoculation site on development of the Lewis lung carcinoma and suppressor cell activity in syngeneic mice. J Natl Cancer Inst 1979; 62:83–88.

    PubMed  CAS  Google Scholar 

  26. Hill SA, Denekamp J. Site dependent response of tumours to combined heat and radiation. British J Radiol 1982; 55:905–912.

    Article  CAS  Google Scholar 

  27. Keyes KA, Mann L, Cox K, Treadway P, Iversen P, Chen Y, Teicher B A. Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex multiplex technology. Cancer Chemother Pharmacol 2003; 51:321–327.

    PubMed  CAS  Google Scholar 

  28. Keyes KA, Mann L, Teicher B A, Alvarez E. Site-dependent angiogenic cytokine production in human tumor xenografts. Cytokine 2003; 21: 98–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Arjona, A.A., Alvarez, E. (2006). Tumor Site Implantation and Animal Model Selection in Oncology. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics