Skip to main content

Oncogenes and Tumor Suppressor Genes in Therapeutic Resistance

The Role of Evolving Interrelationships Between Cancer Cells and Host Tissues

  • Chapter
Cancer Drug Resistance

Abstract

Development of therapeutic resistance is intrinsic to the neoplasia and is associated with the complexity, plasticity, and dynamics of the process. Some aspects of drug resistance, such as the ability to repopulate the tumor mass by clonogenic/stem cell subsets or adhesion/aggregation-dependent changes in responsiveness to therapy may be related to genetic tumor progression, genetic instability, and expression of oncogenic proteins. Combinations of cytoreductive agents with oncogene-directed signal transduction inhibitors or angiogenic agents have already produced promising preclinical and clinical results. In the not-too-distant future, refinement and commercialization of pharmacogenomic tests in cancer will enable more-accurate predictions regarding responsiveness of individual patients to new and established agents. These data will also enable understanding of pathways of drug resistance and ways to overcome it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldie JH. Drug resistance in cancer: a perspective. Cancer Metastasis Rev 2001; 20:63–68.

    Article  PubMed  CAS  Google Scholar 

  2. McCarty MF, Liu W, Fan F, et al. Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trends Mol Med 2003; 9:53–58.

    Article  PubMed  CAS  Google Scholar 

  3. Miller BE, Miller FR, Heppner GH. Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclophospamide and methotrexate. Cancer Res 1981; 41:4378–4381.

    PubMed  CAS  Google Scholar 

  4. Miller BE, Miller FR, Heppner GH. Therapeutic perturbation of the tumor ecosystem in reconstructed heterogeneous mouse mammary tumors. Cancer Res 1989; 49:3747–3753.

    PubMed  CAS  Google Scholar 

  5. Heppner GH, Miller BE. Therapeutic implications of tumor heterogeneity. Semin Oncol 1989; 16:91–105.

    PubMed  CAS  Google Scholar 

  6. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93:1658–1667.

    PubMed  CAS  Google Scholar 

  7. Erler JT, Cawthorne CJ, Williams KJ, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and-independent mechanisms and contributes to drug resistance. Mol Cell Biol 2004; 24:2875–2889.

    Article  PubMed  CAS  Google Scholar 

  8. Durand RE. Intermittent blood flow in solid tumours-an under-appreciated source of &quote;drug resistance.&quote; Cancer Metastasis Rev 2001; 20:57–61.

    Article  PubMed  CAS  Google Scholar 

  9. Hill BT. In vitro human tumour model systems for investigating drug resistance. Cancer Surv 1986; 5:129–149.

    PubMed  CAS  Google Scholar 

  10. Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 1989; 81:570–576.

    Article  PubMed  CAS  Google Scholar 

  11. Broxterman HJ, Lankelma J, Hoekman K. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist Updat 2003; 6:111–127.

    Article  PubMed  CAS  Google Scholar 

  12. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10:789–799.

    Article  PubMed  CAS  Google Scholar 

  13. Kessel D. Modes of resistance to antitumor agents. in vivo 1994; 8:829–834.

    PubMed  CAS  Google Scholar 

  14. Blagosklonny MV. Oncogenic resistance to growth-limiting conditions. Nat Rev Cancer 2002; 2:221–225.

    Article  PubMed  CAS  Google Scholar 

  15. Schmitt CA. Senescence, apoptosis and therapy-cutting the lifelines of cancer. Nat Rev Cancer 2003; 3:286–295.

    Article  PubMed  CAS  Google Scholar 

  16. Nutt CL, Chambers AF, Cairncross JG. Wild-type p53 renders mouse astrocytes resistant to 1,3-bis(2-chloroethyl)-1-nitrosourea despite the absent of a p53-dependent cell cycle arrest. Cancer Res 1996; 56:2748–2751.

    PubMed  CAS  Google Scholar 

  17. Jarvinen TA, Liu ET. HER-2/neu and topoisomerase IIa in breast cancer. Breast Cancer Res Treat 2003; 78:299–311.

    Article  PubMed  Google Scholar 

  18. Rak JW, Yu JL, Kerbel RS, Coomber BL. What do oncogenic mutations have to do with angiogenesis/ vascular dependence of tumors. Cancer Res 2002; 62:1931–1934.

    PubMed  CAS  Google Scholar 

  19. Samid D, Miller AC, Rimoldi D, Gafner J, Clark EP. Increased radiation resistance in transformed and nontransformed cells with elevated ras proto-oncogene expression. Radiat Res 1991; 126:244–250.

    Article  PubMed  CAS  Google Scholar 

  20. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108:153–164.

    Article  PubMed  CAS  Google Scholar 

  21. Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194:23–28.

    Article  PubMed  CAS  Google Scholar 

  22. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  23. Bardin N, Moal V, Anfosso F, et al. Soluble CD146, a novel endothelial marker, is increased in physiopathological settings linked to endothelial junctional alteration. Thromb Haemost 2003; 90:915–920.

    PubMed  CAS  Google Scholar 

  24. Rak J. Preface. In: Rak J, ed. Oncogene-directed therapies. Totowa: Humana Press, 2003; v–viii.

    Google Scholar 

  25. Rak J, Kerbel RS. Prospects and progress in the development of anti-angiogenic agents. Rosenberg, S. A. Principles and practice of biologic therapy of cancer-updates 3[3], 1–13. New York: Lippincott, Willams & Wilkins, 2002.

    Google Scholar 

  26. Kerbel RS, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2:727–739.

    Article  PubMed  CAS  Google Scholar 

  27. Rak J, Kerbel RS. Oncogenes and tumor angiogenesis. In: Rak J, ed. Oncogene-directed therapies. Totowa: Humana Press, 2003; 171–218.

    Google Scholar 

  28. Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000; 5:24–33.

    Article  PubMed  CAS  Google Scholar 

  29. Moscow J, Morrow CS, Cowan KH. Drug resistance and its clinical circumvention. In: Kufe D, Pollock RE, Weichselbaum RR, et al., eds. Cancer medicine. Hamilton, London: Decker, 2003; 711–725.

    Google Scholar 

  30. Stein WD, Bates SE, Fojo T. Intractable cancers: the many faces of multidrug resistance and the many targets it presents for therapeutic attack. Curr Drug Targets 2004; 5:333–346.

    Article  PubMed  CAS  Google Scholar 

  31. Kim R, Toge T. Changes in therapy for solid tumors: potential for overcoming drug resistance in vivo with molecular targeting agents. Surg Today 2004; 34:293–303.

    Article  PubMed  Google Scholar 

  32. Wang G, Reed E, Li QQ. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (review). Oncol Rep 2004; 12:955–965.

    PubMed  CAS  Google Scholar 

  33. Dang C, Gilewski TA, Surbone A, Norton L. Cytokinetics.In: Kufe D, Pollock RE, Weichselbaum RR, et al, eds. Cancer medicine. London: Decker, 2003; 645–668.

    Google Scholar 

  34. Buick RN, Pollak MN. Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res 1984; 44:4909–4918.

    PubMed  CAS  Google Scholar 

  35. Pittillo RF, Schabel FMJ, Skipper HE. The &quote;sensitivity&quote; of resting and dividing cells. Klin Oczna 1971; 41:137–142.

    PubMed  CAS  Google Scholar 

  36. Tannock IF. Tumor growth and cell kinetics. In: Tannock IF, Hill RP, eds. The basic science of oncology. Toronto: Pergamon, 1995; 140–159.

    Google Scholar 

  37. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9:253–266.

    Article  PubMed  CAS  Google Scholar 

  38. Brunner TB, Gupta AK, Shi Y, et al. Farnesyltransferase inhibitors as radiation sensitizers. Int J Radiat Biol 2003; 79:569–576.

    Article  PubMed  CAS  Google Scholar 

  39. Saus ville E A. The challenge of pathway and environment-mediated drug resistance. Cancer Metastasis Rev 2001; 20:117–122.

    Article  Google Scholar 

  40. Tannock IF. Tumor physiology and drug resistance. Cancer Metastasis Rev 2001; 20:123–132.

    Article  PubMed  CAS  Google Scholar 

  41. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24:68–72.

    Article  PubMed  CAS  Google Scholar 

  42. Semenza GL. Hypoxia, clonal selection, andtheroleofHIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000; 35:71–103.

    Article  PubMed  CAS  Google Scholar 

  43. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2:38–47.

    Article  PubMed  CAS  Google Scholar 

  44. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58:1408–1416.

    PubMed  CAS  Google Scholar 

  45. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Sasazuki T, Kerbel RS. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55:4575–4580.

    PubMed  CAS  Google Scholar 

  46. Jain RK. Normalizing tumor vaculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med 2001; 7:987–989.

    Article  PubMed  CAS  Google Scholar 

  47. Teicher B A. Potentiation of cytotoxic cancer therapies by antiangiogenic agents. In: Teicher B A, ed. Antiangiogenic agents in cancer therapy. Totowa: Humana Press, 1999; 277–316.

    Google Scholar 

  48. Greenberger JS. Antitumor interaction of short course endostatin and ionizing radiation. Cancer J 2000; 6:279–281.

    PubMed  CAS  Google Scholar 

  49. Gorski DH, Mauceri HJ, Salloum RM, et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 1998; 58:5686–5689.

    PubMed  CAS  Google Scholar 

  50. Mauceri HJ, Hanna NN, Beckett MA, et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998; 394:287–291.

    Article  PubMed  CAS  Google Scholar 

  51. Sklar MD. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988; 239:645–647.

    Article  PubMed  CAS  Google Scholar 

  52. Teicher B A, Herman TS, Holden SA, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247:1457–1461.

    Article  PubMed  CAS  Google Scholar 

  53. Bradley G, Juranka PF, Ling V. Mechanisms of multidrug resistance. Biochim Biophys Acta 1988; 948:87–128.

    Google Scholar 

  54. Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 2003; 94:15–21.

    Article  PubMed  CAS  Google Scholar 

  55. Borst P. Genetic mechanisms of drug resistance. Rev Oncol 1991; 4:87–105.

    Google Scholar 

  56. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258:1650–1654.

    Article  PubMed  CAS  Google Scholar 

  57. Bates SE. Drug resistance: still on the learning curve. Clin Cancer Res 1999; 5:3346–3348.

    PubMed  CAS  Google Scholar 

  58. Bordow SB, Haber M, Madafiglio J, Cheung B, Marshall GM, Norris MD. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma. Cancer Res 1994; 54:5036–5040.

    PubMed  CAS  Google Scholar 

  59. Schaich M, Ritter M, Illmer T, et al. Mutations in ras proto-oncogenes are associated with lower mdr1 gene expression in adult acute myeloid leukaemia. Br J Haematol 2001; 112:300–307.

    Article  PubMed  CAS  Google Scholar 

  60. Regina A, Demeule M, Laplante A, et al. Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev 2001; 20:13–25.

    Article  PubMed  CAS  Google Scholar 

  61. Labialle S, Gayet L, Marthinet E, Rigal D, Baggetto LG. Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem Pharmacol 2002; 64:943–948.

    Article  PubMed  CAS  Google Scholar 

  62. Shtil AA. Signal transduction pathways and transcriptional mechanisms as targets for prevention of emergence of multidrug resistance in human cancer cells. Curr Drug Targets 2001; 2:57–77.

    Article  PubMed  CAS  Google Scholar 

  63. Efferth T, Grassmann R. Impact of viral oncogenesis on responses to anti-cancer drugs and irradiation. Crit Rev Oncog 2000; 11:165–187.

    PubMed  CAS  Google Scholar 

  64. el Deiry WS. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol 1997; 9:79–87.

    PubMed  Google Scholar 

  65. Masumoto N, Nakano S, Fujishima H, Kohno K, Niho Y. v-src induces cisplatin resistance by increasing the repair of cisplatin-DNA interstrand cross-links in human gallbladder adenocarcinoma cells. Int J Cancer 1999; 80:731–737.

    Article  PubMed  CAS  Google Scholar 

  66. Cho HJ, Jeong HG, Lee JS, et al. Oncogenic H-Ras enhances DNA repair through the Ras/phospha-tidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species. J Biol Chem 2002; 277:19,358–19,366.

    Article  PubMed  CAS  Google Scholar 

  67. Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ. Remission of human breast cancer xe-nografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 1998; 17:2235–2249.

    Article  PubMed  CAS  Google Scholar 

  68. El-Deiry WS. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol 1997; 9:79–87.

    Article  PubMed  CAS  Google Scholar 

  69. Xu GW, Nutt CL, Zlatescu MC, Keeney M, Chin-Yee I, Cairncross JG. Inactivation of p53 sensitizes U87MG glioma cells to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 2001; 61:4155–4159.

    PubMed  CAS  Google Scholar 

  70. Boudny V, Murakami Y, Nakano S, Niho Y. Expression of activated c-erbB-2 oncogene induces sensitivity to cisplatin in human gallbladder adenocarcinoma cells. Anticancer Res 1999; 19:5203–5206.

    PubMed  CAS  Google Scholar 

  71. Viniegra JG, Losa JH, Sanchez-Arevalo VJ, et al. Modulation of PI3K/Akt pathway by E1a mediates sensitivity to cisplatin. Oncogene 2002; 21:7131–7136.

    Article  PubMed  CAS  Google Scholar 

  72. Eastman A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 1990; 2:275–280.

    PubMed  CAS  Google Scholar 

  73. Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 2004; 23:2919–2933.

    Article  PubMed  CAS  Google Scholar 

  74. Schmitt C A, Lowe SW. Apoptosis and chemoresistance in transgenic cancer models. J Mol Med 2002; 80:137–146.

    Article  PubMed  CAS  Google Scholar 

  75. Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol 1999; 187:127–137.

    Article  PubMed  CAS  Google Scholar 

  76. Wendel HG, Lowe SW. Reversing drug resistance in vivo. Cell Cycle 2004; 3:847–849.

    PubMed  CAS  Google Scholar 

  77. Wendel HG, de Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004: 428:332–337.

    Article  PubMed  CAS  Google Scholar 

  78. Woo RA, Poon RY. Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev 2004; 18:1317–1330.

    Article  PubMed  CAS  Google Scholar 

  79. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res 2003; 63:2705–2715.

    PubMed  CAS  Google Scholar 

  80. Rak J, Mitsuhashi Y, Sheehan C, et al. Collateral expression of proangiogenic and tumorigenic properties in intestinal epithelial cell variants selected for resistance to anoikis. Neoplasia 1999; 1:23–30.

    Article  PubMed  CAS  Google Scholar 

  81. McCormick F. Signal transduction networks. Ras as a paradigm. In: Rak J, ed. Oncogene-directed therapies. Totowa: Humana Press, 2003; 35–46.

    Google Scholar 

  82. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88:593–602.

    Article  PubMed  CAS  Google Scholar 

  83. Guerra C, Mijimolle N, Dhawahir A, et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 2003; 4:111–120.

    Article  PubMed  CAS  Google Scholar 

  84. Tuveson DA, Shaw AT, Willis NA, et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 2004; 5:375–387.

    Article  PubMed  CAS  Google Scholar 

  85. Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997; 3:2703–2707.

    PubMed  CAS  Google Scholar 

  86. Lin EH, Abbruzzese J. Clinical evaluation of agents targeting epidermal growth factor receptor (EGFR) in cancer. In: Rak J, ed. Oncogene-directed therapies. Totowa: Humana Press, 2003; 313–330.

    Google Scholar 

  87. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p 185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/ neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16:2659–2671.

    PubMed  CAS  Google Scholar 

  88. Konecny GE, Arboleda J, Slamon D, Pegram M. Inhibition of the HER-2 oncogene: A translational research model for the development of future targeted therapies. In: Rak J, ed. Oncogene-directed therapies. Totowa: Humana Press, 2003; 331–352.

    Google Scholar 

  89. Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2003; 2:1113–1120.

    PubMed  CAS  Google Scholar 

  90. Sato S, Kajiyama Y, Sugano M, et al. Monoclonal antibody to HER-2/neu receptor enhances radiosen-sitivity of esophageal cancer cell lines expressing HER-2/neu oncoprotein. Int J Radiat Oncol BiolPhys 2005; 61:203–211.

    Article  CAS  Google Scholar 

  91. Gong SJ, Jin CJ, Rha SY, Chung HC. Growth inhibitory effects of trastuzumab and chemotherapeutic drugs in gastric cancer cell lines. Cancer Lett 2004; 214:215–224.

    Article  PubMed  CAS  Google Scholar 

  92. Ciardiello F, Caputo R, Borriello G, et al. ZD1839 (IRESSA), an EGFR-selective tyrosine kinase inhibitor, enhances taxane activity in bcl-2 overexpressing, multidrug-resistant MCF-7 ADR human breast cancer cells. Int J Cancer 2002; 98:463–469.

    Article  PubMed  CAS  Google Scholar 

  93. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004; 59:21–26.

    Article  PubMed  CAS  Google Scholar 

  94. Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N. eIF4E—from translation to transformation. Oncogene 2004; 23:3172–3179.

    Article  PubMed  CAS  Google Scholar 

  95. Hapke G, Yin MB, Rustum YM. Targeting molecular signals in chk1 pathways as a new approach for overcoming drug resistance. Cancer Metastasis Rev 2001; 20:109–115.

    Article  PubMed  CAS  Google Scholar 

  96. Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 1999; 5:662–668.

    Article  PubMed  CAS  Google Scholar 

  97. St. Croix B, Kerbel RS. Cell adhesion and drug resistance in cancer. Current Opin Cell Biol 1997; 9:549–556.

    CAS  Google Scholar 

  98. Dimanche-Boitrel MT, Genne P, Duchamp O, Chauffert B. Confluence dependent resistance (CDR) to doxorubicin and E-cadherin expression in murine mammary cells. Canc Letts 1994; 85:171–176.

    Article  CAS  Google Scholar 

  99. Zhang Y, Gonzalez V, Xu MJ. Expression and regulation of glutathione S-transferase P1-1 in cultured human epidermal cells. J Dermatol Sci 2002; 30:205–214.

    Article  PubMed  CAS  Google Scholar 

  100. Arber N, Han EK, Sgambato A, et al. A K-ras oncogene increases resistance to sulindac-induced apoptosis in rat enterocytes. Gastroenterology 1997; 113:1892–1900.

    Article  PubMed  CAS  Google Scholar 

  101. Ling CC, Endlich B. Radioresistance induced by oncogenic transformation. Radiat Res 1989; 120:267–279.

    Article  PubMed  CAS  Google Scholar 

  102. Riva C, el Khyari S, Rustum Y, Barra Y. Resistance to cytosine arabinoside in cells transfected with activated Ha-ras oncogene. Anticancer Res 1995; 15:1297–1302.

    PubMed  CAS  Google Scholar 

  103. Sklar MD. Increased resistance to cis-diamminedichloroplatinum(II) in NIH 3T3 cells transformed by ras oncogenes. Cancer Res 1988; 48:793–497.

    PubMed  CAS  Google Scholar 

  104. Koo HM, Monks A, Mikheev A, et al. Enhanced sensitivity to 1-β-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. Cancer Res 1996; 56:5211–5216.

    PubMed  CAS  Google Scholar 

  105. Koo HM, Mc Williams MJ, Alvord WG, Vande Woude GF. Ras oncogene-induced sensitization to 1-β-D-arabinofuranosylcytosine. Cancer Res 1999; 59:6057–6062.

    PubMed  CAS  Google Scholar 

  106. Koo HM, Gray-Goodrich M, Kohlhagen G, et al. The ras oncogene-mediated sensitization of human cells to topoisomerase II inhibitor-induced apoptosis. J Natl Cancer Inst 1999; 91:236–244.

    Article  PubMed  CAS  Google Scholar 

  107. Blagosklonny MV. Targeting cancer cells by exploiting their resistance. Trends Mol Med 2003; 9:307–312.

    Article  PubMed  CAS  Google Scholar 

  108. Brown JM, Wilson G. Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biol Ther 2003; 2:477–490.

    CAS  Google Scholar 

  109. Dempke W, Voigt W, Grothey A, Hill BT, Schmoll HJ. Cisplatin resistance and oncogenes—a review. Anticancer Drugs 2000; 11:225–236.

    Article  PubMed  CAS  Google Scholar 

  110. Perez-Soler R. HER1/EGFR targeting: refining the strategy. Oncologist 2004; 9:58–67.

    Article  PubMed  CAS  Google Scholar 

  111. Amato RJ. Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens. Ann Oncol 2005; 16:7–15.

    Article  PubMed  CAS  Google Scholar 

  112. Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 2004; 4:285–299.

    Article  PubMed  CAS  Google Scholar 

  113. McCormick F. New-age drug meets resistance. Nature 2001; 412:281–282.

    Article  PubMed  CAS  Google Scholar 

  114. Ebos JM, Tran J, Master Z, et al. Imatinib mesylate (STI-571) reduces Bcr-Abl-mediated vascular endothelial growth factor secretion in chronic myelogenous leukemia. Mol Cancer Res 2002; 1:89–95.

    PubMed  CAS  Google Scholar 

  115. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1a, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100:3767–3775.

    Article  PubMed  CAS  Google Scholar 

  116. Deininger MW, Druker BJ. SRCircumventing imatinib resistance. Cancer Cell 2004; 6:108–110.

    Article  PubMed  CAS  Google Scholar 

  117. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305:399–401.

    Article  PubMed  CAS  Google Scholar 

  118. Hingorani SR, Tuveson DA. Targeting oncogene dependence and resistance. Cancer Cell 2003; 3:414–417.

    Article  PubMed  CAS  Google Scholar 

  119. Eisenberg BL, von Mehren M. Pharmacotherapy of gastrointestinal stromal tumours. Expert Opin Pharmacother 2003; 4:869–874.

    Article  PubMed  CAS  Google Scholar 

  120. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350:2129–2139.

    Article  PubMed  CAS  Google Scholar 

  121. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305:1163–1167.

    Article  PubMed  CAS  Google Scholar 

  122. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from &quote;never smokers&quote; and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad SciUS A 2004; 101:13,306–13,311.

    Article  CAS  Google Scholar 

  123. Blagosklonny MV. Gefitinib (iressa) in oncogene-addictive cancers and therapy for common cancers. Cancer Biol Ther 2004; 3:436–440.

    PubMed  CAS  Google Scholar 

  124. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  125. Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBOJ 1996; 15:2452–2467.

    CAS  Google Scholar 

  126. Kirschbaum MH, Marmor MD, Yarden Y. Oncogenic receptor tyrosine kinases. In: Rak J, ed. Oncogene-directed therapies. Totowa: Humana Press, 2003:47–76.

    Google Scholar 

  127. Viloria-Petit AM, Rak J, Hung M-C, Rockwell P, Goldstein N, Kerbel RS. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151:1523–1530.

    Google Scholar 

  128. Yu JL, May L, Klement P, Weitz JI, Rak J. Oncogenes as regulators of tissue factor expression in cancer: implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost 2004; 30:21–30.

    Article  PubMed  CAS  Google Scholar 

  129. Crombet-Ramos T, Rak J, Perez R, Viloria-Petit A. Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: A humanized anti-EGFR antibody. Int J Cancer 2002; 101:567–575.

    Article  PubMed  CAS  Google Scholar 

  130. Viloria-Petit A, Crombet T, Jothy S, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 2001; 61:5090–5101.

    PubMed  CAS  Google Scholar 

  131. Rak J, Mitsuhashi Y, Sheehan C, et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 2000; 60:490–498.

    PubMed  CAS  Google Scholar 

  132. Gatzemeier U. Targeting the HER1/EGFRreceptor to improve outcomes in non-small-cell lung cancer. Oncology 2003; 17:7–10.

    PubMed  Google Scholar 

  133. Mellinghoff IK, Sawyers CL. The emergence of resistance to targeted cancer therapeutics. Pharmacogenomics 2002; 3:603–623.

    Article  PubMed  CAS  Google Scholar 

  134. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10:33–39.

    Article  PubMed  CAS  Google Scholar 

  135. Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999; 5:280–285.

    Article  PubMed  CAS  Google Scholar 

  136. Foley R, Hollywood D, Lawler M. Molecular pathology of prostate cancer: the key to identifying new biomarkers of disease. Endocr Relat Cancer 2004; 11:477–488.

    Article  PubMed  CAS  Google Scholar 

  137. Isaacs JT, Isaacs WB. Androgen receptor outwits prostate cancer drugs. Nat Med 2004; 10:26–27.

    Article  PubMed  CAS  Google Scholar 

  138. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  139. Rak J, Filmus J, Kerbel RS. Reciprocalparacrine interactions between tumor cells and endothelial cells. The &quote;angiogenesis progression&quote; hypothesis. Eur J Cancer 1996; 32A:2438–2450.

    Article  PubMed  CAS  Google Scholar 

  140. Hamada J, Cavanaugh PG, Miki K, Nicolson GL. A paracrine migration-stimulating factor for meta-static tumor cells secreted by mouse hepatic sinusoidal endothelial cells: identification as complement component C3b. Cancer Res 1993; 53:4418–4423.

    PubMed  CAS  Google Scholar 

  141. Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE. Halting angiogenesis suppresses carcinoma cell invasion. Nature Med 1997; 3:1222–1227.

    Article  PubMed  CAS  Google Scholar 

  142. Nicosia RF, Tchao R, Leighton J. Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res 1983; 43:2159–2166.

    PubMed  CAS  Google Scholar 

  143. Shan S, Robson ND, Cao Y, et al. Responses of vascular endothelial cells to angiogenic signaling are important for tumor cell survival. FASEB J 2004; 18:326–328.

    PubMed  CAS  Google Scholar 

  144. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284:1994–1998.

    Article  PubMed  CAS  Google Scholar 

  145. Folkman J. Tumor angiogenesis. Adv Cancer Res 1985; 43:175–203.

    PubMed  CAS  Google Scholar 

  146. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003; 3:411–421.

    Article  PubMed  CAS  Google Scholar 

  147. Folkman J, Browder T, Palmblad J. Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost 2001; 86:23–33.

    PubMed  CAS  Google Scholar 

  148. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249–257.

    Article  PubMed  CAS  Google Scholar 

  149. Scholz D, Cai WJ, Schaper W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 2001; 4:247–257.

    Article  PubMed  CAS  Google Scholar 

  150. Yu JL, Rak JW. Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 2003; 5:83–88.

    Article  PubMed  CAS  Google Scholar 

  151. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7:192–198.

    Article  PubMed  CAS  Google Scholar 

  152. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7:186–191.

    Article  PubMed  CAS  Google Scholar 

  153. Jain RK, Padera TP. Prevention and treatment of lymphatic metastasis by antilymphangiogenic therapy. J Natl Cancer Inst 2002; 94:785–787.

    PubMed  Google Scholar 

  154. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002; 1:219–227.

    Article  PubMed  CAS  Google Scholar 

  155. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6:389–395.

    Article  PubMed  CAS  Google Scholar 

  156. Scappaticci FA. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 2002; 20:3906–3927.

    Article  PubMed  CAS  Google Scholar 

  157. St. Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000; 289:1197–1202.

    Article  PubMed  CAS  Google Scholar 

  158. Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 2004; 18:2474–2478.

    Article  PubMed  CAS  Google Scholar 

  159. Tang N, Wang L, Esko J, et al. Loss of HIF-1a in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004; 6:485–495.

    Article  PubMed  CAS  Google Scholar 

  160. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111:1287–1295.

    Article  PubMed  CAS  Google Scholar 

  161. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333:1757–1763.

    Article  PubMed  CAS  Google Scholar 

  162. Thorpe PE, Burrows FJ. Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Res Treat 1995; 36:237–251.

    Article  PubMed  CAS  Google Scholar 

  163. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumori-genesis. Cell 1996; 86:353–364.

    Article  PubMed  CAS  Google Scholar 

  164. Relf M, LeJeune S, Scott PA, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997; 57:963–969.

    PubMed  CAS  Google Scholar 

  165. Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 1997; 14:1495–1502.

    Article  PubMed  CAS  Google Scholar 

  166. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med 1995; 1:149–153.

    Article  PubMed  CAS  Google Scholar 

  167. Reiher FK, Volpert OV, Jimenez B, et al. Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimetics. Int J Cancer 2002; 98:682–689.

    Article  PubMed  CAS  Google Scholar 

  168. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 2002; 94:883–893.

    PubMed  Google Scholar 

  169. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2:795–803.

    Article  PubMed  CAS  Google Scholar 

  170. Kerbel RS. A cancer therapy resistant to resistance. Nature 1997; 390:335–336.

    Article  PubMed  CAS  Google Scholar 

  171. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396:643–649.

    Article  PubMed  CAS  Google Scholar 

  172. Rak J, Kerbel RS. Treating cancer by inhibiting angiogenesis: New hopes and potential pitfalls. Cancer Metastasis Rev 1996; 15:231–236.

    Article  PubMed  CAS  Google Scholar 

  173. Kerbel RS, Yu J, Tran J, et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 2001; 20:79–86.

    Article  PubMed  CAS  Google Scholar 

  174. Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res 1997; 57:3924–3928.

    PubMed  CAS  Google Scholar 

  175. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284:808–812.

    Article  PubMed  CAS  Google Scholar 

  176. Viloria-Petit A, Miquerol L, Yu JL, et al. Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. EMBO J 2003; 22:4091–4102.

    Article  PubMed  CAS  Google Scholar 

  177. Kranenburg O, Gebbink MF, Voest EE. Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta 2004; 1654:23–37.

    PubMed  CAS  Google Scholar 

  178. Dong J, Grunstein J, Tejada M, et al. VEGF-null cells require PDGFR a signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 2004; 23:2800–2810.

    Article  PubMed  CAS  Google Scholar 

  179. Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000; 355:1688–1691.

    Article  PubMed  CAS  Google Scholar 

  180. Takahashi K, Mulliken JB, Kozakewich HPW, Rogers RA, Folkman J, Ezekowitz RAB. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 1994; 93:2357–2364.

    PubMed  CAS  Google Scholar 

  181. Holmgren L, Szeles A, Rajnavolgyi E, et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 1999; 93:3956–3963.

    PubMed  CAS  Google Scholar 

  182. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  183. Malkin D. The role of p53 in human cancer. J Neurooncol 2001; 51:231–243.

    Article  PubMed  CAS  Google Scholar 

  184. Bunz F, Hwang PM, Torrance C, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999; 104:263–269.

    PubMed  CAS  Google Scholar 

  185. Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 2003; 3:117–129.

    Article  PubMed  CAS  Google Scholar 

  186. Chang BD, Xuan Y, Broude EV, et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 1999; 18:4808–4818.

    Article  PubMed  CAS  Google Scholar 

  187. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265:1582–1584.

    Article  PubMed  CAS  Google Scholar 

  188. Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL. Heterogeneous vascular dependence of tumor cell populations. Am J Pathol 2001; 158:1325–1334.

    PubMed  CAS  Google Scholar 

  189. Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor response to antiangiogenic therapy. Science 2002; 295:1526–1528.

    Article  PubMed  CAS  Google Scholar 

  190. Tamada H, Kitazawa R, Gohji K, Kitazawa S. Epigenetic regulation of human bone morphogenetic protein 6 gene expression in prostate cancer. J Bone Miner Res 2001; 16:487–496.

    Article  PubMed  CAS  Google Scholar 

  191. Brown EB, Campbell RB, Tsuzuki Y, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 2001; 7:864–868.

    Article  PubMed  CAS  Google Scholar 

  192. Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1a in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394:485–490.

    Article  PubMed  CAS  Google Scholar 

  193. Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1a renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 2001; 61:6548–6554.

    PubMed  CAS  Google Scholar 

  194. Abdalla SA, Behzad F, Bsharah S, et al. Prognostic relevance of microvessel density in colorectal tumours. Oncol Rep 1999; 6:839–842.

    PubMed  CAS  Google Scholar 

  195. Rak J, Yu JL. Oncogenes and tumor angiogenesis: the question of vascular &quote;supply&quote; and vascular &quote;demand.&quote; Semin Cancer Biol 2004; 14:93–104.

    Article  CAS  Google Scholar 

  196. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996; 69:135–174.

    PubMed  CAS  Google Scholar 

  197. Rastinejad F, Polverini PJ, Bouck N. Regulation of the activity of a new inhibitor by angiogenesis by a cancer suppressor gene. Cell 1989; 56:345–355.

    Article  PubMed  CAS  Google Scholar 

  198. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D. Both v-Ha-ras and v-raf stimulate expression of the vascular endothelial growth factor in NIH3T3 cells. JBiol Chem 1995; 270:25,915–25,919.

    CAS  Google Scholar 

  199. Watnick RS, Cheng Y-N, Rangarajan A, Ince T A, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3:219–231.

    Article  PubMed  CAS  Google Scholar 

  200. Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carci-noma cell lines. Int J Cancer 1994; 59:191–195.

    Article  PubMed  CAS  Google Scholar 

  201. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6:447–458.

    Article  PubMed  CAS  Google Scholar 

  202. Yu JL, May L, Lhotak V, et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2004; 104:1734–1741.

    Google Scholar 

  203. Mazure NM, Chen E Y, Laderoute KR, Giaccia AJ. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90:3322–3331.

    PubMed  CAS  Google Scholar 

  204. Laderoute KR, Alarcon RM, Brody MD, et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res 2000; 6:2941–2950.

    PubMed  CAS  Google Scholar 

  205. Filleur S, Volpert OV, Degeorges A, et al. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001; 15:1373–1382.

    Article  PubMed  CAS  Google Scholar 

  206. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascular-ization and growth. Cancer Res 2003; 63:3919–3922.

    PubMed  CAS  Google Scholar 

  207. Volpert OV, Zaichuk T, Zhou W, et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 2002; 8:349–357.

    Article  PubMed  CAS  Google Scholar 

  208. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumor therapy. Br J Cancer 1982; 45:136–139.

    PubMed  CAS  Google Scholar 

  209. Tran J, Rak J, Sheehan C, et al. Marked induction of the IAP family anti-apoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 1999; 264:781–788.

    Article  PubMed  CAS  Google Scholar 

  210. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS. Induction of endothelial cell resistance to chemotherapy by VEGF mediated up-regulation of survivin. Proc Natl Acad Sci USA 2002; 99:4349–4354.

    Article  PubMed  CAS  Google Scholar 

  211. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105:R15–R24.

    PubMed  CAS  Google Scholar 

  212. Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60:1878–1886.

    PubMed  CAS  Google Scholar 

  213. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 2003; 100:12,917–12,922.

    Article  PubMed  CAS  Google Scholar 

  214. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  215. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293:293–297.

    Article  PubMed  CAS  Google Scholar 

  216. Lin X, Fuks Z, Kolesnick R. Ceramide mediates radiation-induced death of endothelium. Crit Care Med 2000; 28:N87–N93.

    Article  PubMed  CAS  Google Scholar 

  217. Garcia-Barros M, Lacorazza D, Petrie H, et al. Host acid sphingomyelinase regulates microvascular function not tumor immunity. Cancer Res 2004; 64:8285–8291.

    Article  PubMed  CAS  Google Scholar 

  218. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362:841–844.

    Article  PubMed  CAS  Google Scholar 

  219. Warren RS, Yuan H, Mati MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95:1789–1797.

    Article  PubMed  CAS  Google Scholar 

  220. Prewett M, Huber J, Li Y, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999; 59:5209–5218.

    PubMed  CAS  Google Scholar 

  221. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 2002; 99:11,393–11,398.

    Article  PubMed  CAS  Google Scholar 

  222. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002; 29:10–14.

    PubMed  CAS  Google Scholar 

  223. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376:62–66.

    Article  PubMed  CAS  Google Scholar 

  224. Fong GH, Rossant J, Gertsenstein M, Breitman6 ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376:66–70.

    Article  PubMed  CAS  Google Scholar 

  225. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380:435–439.

    Article  PubMed  CAS  Google Scholar 

  226. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380:439–442.

    Article  PubMed  CAS  Google Scholar 

  227. Shi YP, Ferrara N. Oncogenic ras fails to restore an in vivo tumorigenic phenotype in embryonic stem cells lacking vascular endothelial growth factor (VEGF). Biochem Biophys Res Commun 1999; 254:480–483.

    Article  PubMed  CAS  Google Scholar 

  228. Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 2000; 20:7282–7291.

    Article  PubMed  CAS  Google Scholar 

  229. Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 1999; 59:1592–1598.

    PubMed  CAS  Google Scholar 

  230. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell 2002; 1:193–202.

    Article  PubMed  CAS  Google Scholar 

  231. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leuco-vorin for metastatic colorectal cancer. N Engl J Med 2004; 350:2335–2342.

    Article  PubMed  CAS  Google Scholar 

  232. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349:427–434.

    Article  PubMed  CAS  Google Scholar 

  233. Malik AK, Gerber HP. Targeting VEGF ligands and receptors in cancer. Targets 2003; 2:48–57.

    Article  CAS  Google Scholar 

  234. Miller KD. Recent translational research: antiangiogenic therapy for breast cancer—where do we stand? Breast Cancer Res 2004; 6:128–132.

    CAS  Google Scholar 

  235. Brown LF, Detmar M, Claffey KP, et al. Vascular permeability factor/vascular endothelial growth factor: A multifunctional angiogenic cytokine. In: Goldberg ID, Rosen EM, eds. Regulation of angiogenesis. Basel, Switzerland: Birkhauser, 1997:233–269.

    Google Scholar 

  236. Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications fortumor angiogenesis. Proc Natl Acad Sci U S A 1995; 92:768–772.

    Article  PubMed  CAS  Google Scholar 

  237. Yu J, Rak JW, Klement G, Kerbel RS. VEGF isoform expression as a determinant of blood vessel patterning in human melanoma xenografts. Cancer Res 2002; 62:1838–1846.

    PubMed  CAS  Google Scholar 

  238. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 2003; 162:183–193.

    PubMed  Google Scholar 

  239. Inai T, Mancuso M, Hashizume H, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 2004; 165:35–52.

    PubMed  CAS  Google Scholar 

  240. Baffert F, Thurston G, Rochon-Duck M, Le T, Brekken R, McDonald DM. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res 2004; 94:984–992.

    Article  PubMed  CAS  Google Scholar 

  241. Streubel B, Chott A, Huber D, et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351:250–259.

    Article  PubMed  CAS  Google Scholar 

  242. Ebos JM, Tran J, Master Z, et al. Imatinib mesylate (STI-571) reduces Bcr-Abl-mediated vascular endothelial growth factor secretion in chronic myelogenous leukemia. Mol Cancer Res 2002; 1:89–95.

    PubMed  CAS  Google Scholar 

  243. van der Schaft DW, Seftor RE, Seftor EA, et al. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 2004; 96:1473–1477.

    Article  PubMed  Google Scholar 

  244. Miller KD, Rugo H, Cobleigh M, et al. Phase III trial of capecitabine plus bevacizumab versus capecitabine alone in women with previously treated metastatic breast cancer. Breast Cancer Res Treat 2002; 76:S37.

    Article  Google Scholar 

  245. Hurwitz H, Fehrenbacher L, Cartwright T, et al. Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): results of a phase III trial of bevacizumbab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC. Proc Am Soc Clin Oncol 2003; 22:Abstract 3646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rak, J.W., Coomber, B., Yu, J.L. (2006). Oncogenes and Tumor Suppressor Genes in Therapeutic Resistance. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics