Skip to main content

Tumor Immune Escape Mechanisms

  • Chapter
Cancer Drug Resistance

Abstract

The immunosurveillance theory postulates that the immune system is able to identify transformed cells and eliminate them. The theory predicts that the incidence of cancer would increase, or the latency period of cancer would decrease, in the absence of a functional immune system. However, the fact that the incidence of only some cancers increases in immunosuppressed patients shows that not all cancers abide by this theory. Most cancers escape immunosurveillance because they are fundamentally ′self,′ and autoreactive immune cells are usually deleted or anergized so that they do not attack self. The tumors that do face immune pressure are virus-associated cancers and cancers expressing immunogenic tumor antigens. These tumors have, however, evolved mechanisms to escape immune eradication. An effective way of escaping immune eradication is to prevent detection. The expression of tumor-associated antigens enhances the immunogenicity of a tumor, and if it is able to reduce the presentation of such markers, then the tumor remains relatively invisible to the immune system and escapes detection. If the tumor does not manage to escape detection, then it can evolve to prevent the activation of the immune response. The immunosuppressive effects of cancer cells are mediated by the secretion of soluble factors, by the expression of inhibitory molecules, and by turning the cellular infiltrates into tolerizing cells that can in turn suppress other potentially tumor-specific immune cells. Some tumor cells have evolved to become resistant to the death effector mechanisms of the immune system. Finally, some tumors have evolved to turn the immune system against itself by causing the death of the immune cells through an activation-induced cell death mechanism that normally functions to limit the immune response under physiological conditions. These immune escape mechanisms in combination make the tumor a formidable foe for the immune system. Therefore, a well thought out immunotherapy strategy would keep in mind the escape mechanisms the tumor could adopt under immune pressure to direct the most propitious strike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrlich P. Ueber den jetzigen Stand der Karzinomforschung (in German). Ned Tijdschr Geneeskd 1909;5(Pt 1):273–290.

    Google Scholar 

  2. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970;13:1–27.

    PubMed  CAS  Google Scholar 

  3. Thomas L. Discussion. In: Lawrence HS, ed. Cellular and humoral aspects of the hypersensitive states. New York: Hoeber-Harper, 1959:529–532.

    Google Scholar 

  4. Henle W, Henle G. Epidemiologic aspects of Epstein-Barr virus (EBV)-associated diseases. Ann N Y Acad Sci 1980;354:326–331.

    PubMed  CAS  Google Scholar 

  5. Miyashita EM, Yang B, Lam KM, Crawford DH, Thorley-Lawson DA. A novel form of Epstein-Barr virus latency in normal B-cells in vivo. Cell 1995;80:593–601.

    PubMed  CAS  Google Scholar 

  6. Pinkerton CR, Hann I, Weston CL, et al. Immunodeficiency-related lymphoproliferative disorders: prospective data from the United Kingdom Children’s Cancer Study Group Registry. Br J Haematol 2002;118:456 61.

    PubMed  CAS  Google Scholar 

  7. Shapiro R, Nalesnik M, McCauley J, et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. Transplantation 1999;68:1851–1854.

    PubMed  CAS  Google Scholar 

  8. Gruhn B, Meerbach A, Hafer R, Zell R, Wutzler P, Zintl F. Pre-emptive therapy with rituximab for prevention of Epstein-B arr virus-associated lymphoproliferative disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 2003;31:1023–1025.

    PubMed  CAS  Google Scholar 

  9. Randle HW. The historical link between solid-organ transplantation, immunosuppression, and skin cancer. Dermatol Surg 2004;30(Pt 2):595–597.

    PubMed  Google Scholar 

  10. Agraharkar ML, Cinclair RD, Kuo YF, Daller JA, Shahinian VB. Risk of malignancy with long-term immunosuppression in renal transplant recipients. Kidney Int 2004;66:383–389.

    PubMed  Google Scholar 

  11. Baillargeon J, Pollock BH, Leach CT, Gao SJ. The association of neoplasms and HIV infection in the correctional setting. Int J STD AIDS 2004;15:348–351.

    PubMed  Google Scholar 

  12. Bellan C, De Falco G, Lazzi S, Leoncini L. Pathologic aspects of AIDS malignancies. Oncogene 2003;22:6639–6645.

    PubMed  CAS  Google Scholar 

  13. Velders MP, Markiewicz MA, Eiben GL, Kast WM. CD4+ T cell matters in tumor immunity. Int Rev Immunol 2003;22:113–140.

    PubMed  CAS  Google Scholar 

  14. van der Bruggen BP, Zhang Y, Chaux P, et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 2002;188:51–64.

    Google Scholar 

  15. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–293.

    PubMed  CAS  Google Scholar 

  16. Yotnda P, Firat H, Garcia-Pons F, et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 1998;101:2290–2296.

    PubMed  CAS  Google Scholar 

  17. Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC. Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 1996;88:3522–3527.

    PubMed  CAS  Google Scholar 

  18. Makita M, Azuma T, Hamaguchi H, et al. Leukemia-associated fusion proteins, dek-can and bcr-abl, represent immunogenic HLA-DR-restricted epitopes recognized by fusion peptide-specific CD4+ T lymphocytes. Leukemia 2002;16:2400–2407.

    PubMed  CAS  Google Scholar 

  19. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 2002;188:22–32.

    PubMed  CAS  Google Scholar 

  20. Overwijk WW, Lee DS, Surman DR, et al. Vaccination with a recombinant vaccinia virus encoding a ′self′ antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A 1999;96:2982–2987.

    PubMed  CAS  Google Scholar 

  21. Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273:104–106.

    PubMed  CAS  Google Scholar 

  22. Menon AG, Kuppen PJ, Van der Burg SH, et al. Safety of intravenous administration of a canarypox virus encoding the human wild-typep53 gene in colorectal cancer patients. Cancer Gene Ther 2003;10:509–517.

    PubMed  CAS  Google Scholar 

  23. He W, Staples D, Smith C, Fisher C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol 2003;77:10,566–10,574.

    PubMed  CAS  Google Scholar 

  24. Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001;20:7874–7887.

    PubMed  CAS  Google Scholar 

  25. Flores ER, Allen-Hoffmann BL, Lee D, Lambert PF. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol 2000;74:6622–6631.

    PubMed  CAS  Google Scholar 

  26. McMurray HR, Nguyen D, Westbrook TF, McAnce DJ. Biology of human papillomaviruses. Int J Exp Pathol 2001;82:15–33.

    PubMed  CAS  Google Scholar 

  27. Eiben GL, daSilva DM, Fausch SC, LePoole IC, Nishimura MI, Kast WM. Cervical cancer vaccines: recent advances in HPV research. Viral Immunol 2003;16:111–121.

    PubMed  CAS  Google Scholar 

  28. Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 2004;4:46–54.

    PubMed  CAS  Google Scholar 

  29. Baldus SE, Engelmann K, Hanisch FG. MUC1 andtheMUCs: a family of human mucins with impact in cancer biology. Crit Rev Clin Lab Sci 2004;41:189–231.

    PubMed  CAS  Google Scholar 

  30. Carraway KL, Fregien N, Carraway KL, III, Carraway CA. Tumor sialomucin complexes as tumor antigens and modulators of cellular interactions and proliferation. J Cell Sci 1992;103(Pt 2):299–307.

    PubMed  CAS  Google Scholar 

  31. Dietel M, Arps H, Klapdor R, Muller-Hagen S, Sieck M, Hoffmann L. Antigen detection by the monoclonal antibodies CA 19-9 and CA 125 in normal and tumor tissue and patients’ sera. J Cancer Res Clin Oncol 1986;111:257–265.

    PubMed  CAS  Google Scholar 

  32. Negishi Y, Furukawa T, Oka T, etal. Clinical use of C A125 and its combination assay with other tumor marker in patients with ovarian carcinoma. Gynecol Obstet Invest 1987;23:200–207.

    PubMed  CAS  Google Scholar 

  33. Taylor-Papadimitriou J, Burchell JM, et al. MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 2002;7:209–221.

    PubMed  Google Scholar 

  34. Finn OJ, Jerome KR, Henderson RA, et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev 1995;145:61–89.

    PubMed  CAS  Google Scholar 

  35. Monti P, Leone BE, Zerbi A, et al. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J Immunol 2004;172:7341–7349.

    PubMed  CAS  Google Scholar 

  36. Garcia-Lora A, Algarra I, Collado A, Garrido F. Tumour immunology, vaccination and escape strategies. Eur J Immunogenet 2003;30:177–183.

    PubMed  CAS  Google Scholar 

  37. Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: β2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 2003;61:211–219.

    PubMed  CAS  Google Scholar 

  38. Johnsen AK, Templeton DJ, Sy M, Harding CV. Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 1999;163:4224–231.

    PubMed  CAS  Google Scholar 

  39. Sanda MG, Restifo NP, Walsh JC, et al. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 1995;87:280–285.

    PubMed  CAS  Google Scholar 

  40. Korkolopoulou P, Kaklamanis L, Pezzella F, Harris AL, Gatter KC. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J Cancer 1996;73:148–153.

    PubMed  CAS  Google Scholar 

  41. Restifo NP, Esquivel F, Kawakami Y, et al. Identification of human cancers deficient in antigen processing. J Exp Med 1993;177:265–272.

    PubMed  CAS  Google Scholar 

  42. Seliger B, Hohne A, Jung D, et al. Expression and function of the peptide transporters in escape variants of human renal cell carcinomas. Exp Hematol 1997;25:608–614.

    PubMed  CAS  Google Scholar 

  43. Boyington JC, Sun PD. A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol 2002;38:1007–1021.

    PubMed  CAS  Google Scholar 

  44. Borrego F, Kabat J, Kim DK, et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002;38:637–660.

    PubMed  CAS  Google Scholar 

  45. Rouas-Freiss N, Moreau P, Menier C, Carosella ED. HLA-G in cancer: a way to turn off the immune system. Semin Cancer Biol 2003;13:325–336.

    PubMed  CAS  Google Scholar 

  46. Ibrahim EC, Aractingi S, Allory Y, et al. Analysis of HLA antigen expression in benign and malignant melanocytic lesions reveals that upregulation of HLA-G expression correlates with malignant transformation, high inflammatory infiltration and HLA-A1 genotype. Int J Cancer 2004;108:243–250.

    CAS  Google Scholar 

  47. Colonna M, Samaridis J, Cella M, et al. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 1998;160:3096–3100.

    PubMed  CAS  Google Scholar 

  48. Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999;189:1093–1100.

    PubMed  CAS  Google Scholar 

  49. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci U S A 2004;101:7064–7069.

    PubMed  CAS  Google Scholar 

  50. Rouas-Freiss N, Moreau P, Menier C, Carosella ED. HLA-G in cancer: a way to turn off the immune system. Semin Cancer Biol 2003;13:325–336.

    PubMed  CAS  Google Scholar 

  51. Bukur J, Rebmann V, Grosse-Wilde H, et al. Functional role of human leukocyte antigen-G upregulation in renal cell carcinoma. Cancer Res 2003;63:4107–4111.

    PubMed  CAS  Google Scholar 

  52. Rebmann V, Regel J, Stolke D, Grosse-Wilde H. Secretion of sHLA-G molecules in malignancies. Semin Cancer Biol 2003;13:371–377.

    PubMed  CAS  Google Scholar 

  53. Hofmeister V, Weiss EH. HLA-G modulates immune responses by diverse receptor interactions. Semin Cancer Biol 2003;13:317–323.

    PubMed  CAS  Google Scholar 

  54. Llano M, Lee N, Navarro F, et al. HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. Eur J Immunol 1998;28:2854–2863.

    PubMed  CAS  Google Scholar 

  55. Soderstrom K, Corliss B, Lanier LL, Phillips JH. CD94/NKG2 is the predominant inhibitory receptor involved in recognition of HLA-G by decidual and peripheral blood NK cells. J Immunol 1997;159:1072–1075.

    PubMed  CAS  Google Scholar 

  56. Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 2004;23:255–259.

    PubMed  CAS  Google Scholar 

  57. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419:734–738.

    PubMed  CAS  Google Scholar 

  58. Doubrovina ES, Doubrovin MM, Vider E, et al. Evasion from NK cell immunity by MHC class I chainrelated molecules expressing colon adenocarcinoma. J Immunol 2003;171:6891–6899.

    PubMed  CAS  Google Scholar 

  59. Fiore E, Fusco C, Romero P, Stamenkovic I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 2002;21:5213–5223.

    PubMed  CAS  Google Scholar 

  60. Abken H, Hombach A, Heuser C, Kronfeld K, Seliger B. Tuning tumor-specific T-cell activation: a matter of costimulation? Trends Immunol 2002;23:240–245.

    PubMed  CAS  Google Scholar 

  61. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004;4:336–347.

    PubMed  CAS  Google Scholar 

  62. Blank C, Brown I, Peterson AC, etal. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 2004;64:1140–1145.

    PubMed  CAS  Google Scholar 

  63. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002;99:12,293–12,297.

    PubMed  CAS  Google Scholar 

  64. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261–268.

    PubMed  CAS  Google Scholar 

  65. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–1034.

    PubMed  CAS  Google Scholar 

  66. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: apotential mechanism of immune evasion. Nat Med 2002;8:793–800.

    PubMed  CAS  Google Scholar 

  67. Choi IH, Zhu G, Sica GL, et al. Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J Immunol 2003;171:4650–4654.

    PubMed  CAS  Google Scholar 

  68. Ochsenbein AF, Sierro S, Odermatt B, et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 2001;411:1058–1064.

    PubMed  CAS  Google Scholar 

  69. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000;191:423–434.

    PubMed  CAS  Google Scholar 

  70. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001;194:863–869.

    PubMed  CAS  Google Scholar 

  71. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001;2:947–950.

    PubMed  CAS  Google Scholar 

  72. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 2004;199:1607–1618.

    PubMed  CAS  Google Scholar 

  73. Appleman LJ, Boussiotis VA. T cell anergy and costimulation. Immunol Rev 2003;192:161–180.

    PubMed  CAS  Google Scholar 

  74. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996;184:747–752.

    PubMed  CAS  Google Scholar 

  75. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106:263–266.

    PubMed  CAS  Google Scholar 

  76. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC. Mechanism of antigen-driven selection in germinal centres. Nature 1989;342:929–931.

    PubMed  CAS  Google Scholar 

  77. Guzman-Rojas L, Sims-Mourtada JC, Rangel R, Martinez-Valdez H. Life and death within germinal centres: a double-edged sword. Immunology 2002;107:167–175.

    PubMed  CAS  Google Scholar 

  78. Ciaravino G, Bhat M, Manbeian CA, Teng NN. Differential expression of CD40 and CD95 in ovarian carcinoma. Eur J Gynaecol Oncol 2004;25:27–32.

    PubMed  CAS  Google Scholar 

  79. Jakobson E, Jonsson G, Bjorck P, Paulie S. Stimulation of CD40 in human bladder carcinoma cells inhibits anti-Fas/APO-1 (CD95)-induced apoptosis. Int J Cancer 1998;77:849–853.

    PubMed  CAS  Google Scholar 

  80. Loro LL, Ohlsson M, Vintermyr OK, Liavaag PG, Jonsson R, Johannessen AC. Maintained CD40 and loss of polarised CD40 ligand expression in oral squamous cell carcinoma. Anticancer Res 2001;21(1A):113–117.

    PubMed  CAS  Google Scholar 

  81. Jakobson E, Jonsson G, Bjorck P, Paulie S. Stimulation of CD40 in human bladder carcinoma cells inhibits anti-Fas/APO-1 (CD95)-induced apoptosis. Int J Cancer 1998;77:849–853.

    PubMed  CAS  Google Scholar 

  82. Yamaguchi H, Tanaka F, Sadanaga N, Ohta M, Inoue H, Mori M. Stimulation of CD40 inhibits Fasor chemotherapy-mediated apoptosis and increases cell motility in human gastric carcinoma cells. Int J Oncol 2003;23:1697–1702.

    PubMed  CAS  Google Scholar 

  83. Roselli M, Mineo TC, Basili S, et al. Soluble CD40 ligand plasma levels in lung cancer. Clin Cancer Res 2004;10:610–614.

    PubMed  CAS  Google Scholar 

  84. Pammer J, Plettenberg A, Weninger W, et al. CD40 antigen is expressed by endothelial cells and tumor cells in Kaposi’s sarcoma. Am J Pathol 1996;148:1387–1396.

    PubMed  CAS  Google Scholar 

  85. Sabel MS, Yamada M, Kawaguchi Y, Chen FA, Takita H, Bankert RB. CD40 expression on human lung cancer correlates with metastatic spread. Cancer Immunol Immunother 2000;49:101–108.

    PubMed  CAS  Google Scholar 

  86. Reinders ME, Sho M, Robertson SW, Geehan CS, Briscoe DM. Proangiogenic function of CD40 ligand-CD40 interactions. J Immunol 2003;171:1534–1541.

    PubMed  CAS  Google Scholar 

  87. Flaxenburg JA, Melter M, Lapchak PH, Briscoe DM, Pal S. The CD40-induced signaling pathway in endothelial cells resulting in the o verexpression of vascular endothelial growth factor involves Ras and phosphatidylinositol 3-kinase. J Immunol 2004;172:7503–7509.

    PubMed  CAS  Google Scholar 

  88. Dong C, Flavell RA. Cell fate decision: T-helper 1 and 2 subsets in immune responses. Arthritis Res 2000;2:179–188.

    PubMed  CAS  Google Scholar 

  89. Reiner SL. Helper T cell differentiation, inside and out. Curr Opin Immunol 2001;13:351–355.

    PubMed  CAS  Google Scholar 

  90. Clerici M, Shearer GM, Clerici E. Cytokine dysregulation in invasive cervical carcinoma and other human neoplasias: time to consider the TH1/TH2 paradigm. J Natl Cancer Inst 1998;90:261–263.

    PubMed  CAS  Google Scholar 

  91. Joon YA, Bazar KA, Lee PY. Tumors may modulate host immunity partly through hypoxia-induced sympathetic bias. Med Hypotheses 2004;63:352–356.

    Google Scholar 

  92. Li R, Ruttinger D, Li R, Si LS, Wang YL. Analysis of the immunological microenvironment at the tumor site in patients with non-small cell lung cancer. Langenbecks Arch Surg 2003;388:406–412.

    PubMed  Google Scholar 

  93. Kim J, Modlin RL, Moy RL, et al. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol 1995;155:2240–2247.

    PubMed  CAS  Google Scholar 

  94. Kosiewicz MM, Alard P, Liang S, Clark SL. Mechanisms of tolerance induced by transforming growth factor-β-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand. Int Immunol 2004;16:697–706.

    PubMed  CAS  Google Scholar 

  95. Seo N, Hayakawa S, Takigawa M, Tokura Y. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity. Immunology 2001;103:449–457.

    PubMed  CAS  Google Scholar 

  96. Garcia-Hernandez ML, Hernandez-Pando R, Gariglio P, Berumen J. Interleukin-10 promotes B16melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology 2002;105:231–243.

    PubMed  CAS  Google Scholar 

  97. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991;147:3815–3822.

    PubMed  CAS  Google Scholar 

  98. Mitra RS, Judge TA, Nestle FO, Turka LA, Nickoloff BJ. Psoriatic skin-derived dendritic cell function is inhibited by exogenous IL-10. Differential modulation of B7-1 (CD80) and B7-2(CD86) expression. J Immunol 1995;154:2668–2677.

    PubMed  CAS  Google Scholar 

  99. De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997;27:1229–1235.

    PubMed  Google Scholar 

  100. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999;93:1634–1642.

    PubMed  CAS  Google Scholar 

  101. Urosevic M, Dummer R. HLA-G and IL-10 expression in human cancer-different stories with the same message. Semin Cancer Biol 2003;13:337–342.

    PubMed  CAS  Google Scholar 

  102. Mukherjee P, Ginardi AR, Madsen CS, et al. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment. Glycoconj J 2001;18:931–942.

    PubMed  CAS  Google Scholar 

  103. Garcia-Hernandez ML, Hernandez-Pando R, Gariglio P, Berumen J. Interleukin-10 promotes B16melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology 2002;105:231–243.

    PubMed  CAS  Google Scholar 

  104. Huang S, Xie K, Bucana CD, Ullrich SE, Bar-Eli M. Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin Cancer Res 1996;2:1969–1979.

    PubMed  CAS  Google Scholar 

  105. Luethviksson BR, Gunnlaugsdottir B. Transforming growth factor-β as a regulator of site-specific T-cell inflammatory response. Scand J Immunol 2003;58:129–138.

    PubMed  CAS  Google Scholar 

  106. Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci U S A 2003;100:8621–8623.

    PubMed  CAS  Google Scholar 

  107. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    PubMed  CAS  Google Scholar 

  108. Janda E, Lehmann K, Killisch I, et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002;156:299–313.

    PubMed  CAS  Google Scholar 

  109. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996;10:2462–2477.

    PubMed  CAS  Google Scholar 

  110. Oft M, Heider KH, Beug H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998;8:1243–1252.

    PubMed  CAS  Google Scholar 

  111. Weijzen S, Velders MP, Kast WM. Modulation of the immune response and tumor growth by activated Ras. Leukemia 1999;13:502–513.

    PubMed  CAS  Google Scholar 

  112. Kai T, Taketazu F, Kawakami M, et al. Distribution of transforming growth factor-β and its receptors in gastric carcinoma tissue. Jpn J Cancer Res 1996;87:296–304.

    PubMed  CAS  Google Scholar 

  113. Mizoi T, Ohtani H, Miyazono K, Miyazawa M, Matsuno S, Nagura H. Immunoelectron microscopic localization of transforming growth factor β 1 and latent transforming growth factor β 1 binding protein in human gastrointestinal carcinomas: qualitative difference between cancer cells and stromal cells. Cancer Res 1993;53:183–190.

    PubMed  CAS  Google Scholar 

  114. Roberts AB. Molecular and cell biology of TGF-β. Miner Electrolyte Metab 1998;24(2-3):111–119.

    PubMed  CAS  Google Scholar 

  115. O’Mahony CA, Albo D, Tuszynski GP, Berger DH. Transforming growth factor-β1 inhibits generation of angiostatin by human pancreatic cancer cells. Surgery 1998;124:388–393.

    PubMed  CAS  Google Scholar 

  116. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 1998;95:779–791.

    PubMed  CAS  Google Scholar 

  117. Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-βinduced transcription. Nature 1998;394:909–913.

    PubMed  CAS  Google Scholar 

  118. Ewen ME, Sluss HK, Whitehouse LL, Livingston DM. TGF β inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 1993;74:1009–1020.

    PubMed  CAS  Google Scholar 

  119. Pietenpol JA, Munger K, Howley PM, Stein RW, Moses HL. Factor-binding element in the human cmyc promoter involved in transcriptional regulation by transforming growth factor β 1 and by the retinoblastoma gene product. Proc Natl Acad Sci U S A 1991;88:10,227–10,231.

    PubMed  CAS  Google Scholar 

  120. Sola S, Ma X, Castro RE, Kren BT, Steer CJ, Rodrigues CM. Ursodeoxycholic acid modulates E2F1 and p53 expression through a caspase-independent mechanism in transforming growth factor β1-induced apoptosis of rat hepatocytes. J Biol Chem 2003;278:48,831–48,838.

    PubMed  CAS  Google Scholar 

  121. Chen T, Carter D, Garrigue-Antar L, Reiss M. Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 1998;58:4805–4810.

    PubMed  CAS  Google Scholar 

  122. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998;58:5329–5332.

    PubMed  CAS  Google Scholar 

  123. Kim IY, Ahn HJ, Zelner DJ, et al. Genetic change in transforming growth factor β (TGF-β) receptor type I gene correlates with insensitivity to TGF-β 1 in human prostate cancer cells. Cancer Res 1996;56:44–48.

    PubMed  CAS  Google Scholar 

  124. Zhou S, Buckhaults P, Zawel L, et al. Targeted deletion of Smad4 shows it is required for transforming growth factor β and activin signaling in colorectal cancer cells. Proc Natl Acad Sci USA 1998;95:2412–2416.

    PubMed  CAS  Google Scholar 

  125. Kelly JM, Takeda K, Darcy PK, Yagita H, Smyth MJ. A role for IFN-? in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J Immunol 2002;168:4472–4479.

    PubMed  CAS  Google Scholar 

  126. Qin Z, Schwartzkopff J, Pradera F, et al. A critical requirement of interferon ?-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 2003;63:4095–4100.

    PubMed  CAS  Google Scholar 

  127. Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN ? receptor expression by nonhematopoietic cells. Immunity 2000;12:677–686.

    PubMed  CAS  Google Scholar 

  128. Ruiz-Ruiz C, Ruiz dA, Rodriguez A, Ortiz-Ferron G, Redondo JM, Lopez-Rivas A. The up-regulation of human caspase-8 by interferon-? in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. J Biol Chem 2004;279:19,712–19,720.

    PubMed  CAS  Google Scholar 

  129. Seliger B, Hammers S, Hohne A, et al. IFN-?-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res 1997;3:573–578.

    PubMed  CAS  Google Scholar 

  130. Liu K, Abrams SI. Coordinate regulation of IFN consensus sequence-binding protein and caspase-1 in the sensitization of human colon carcinoma cells to Fas-mediated apoptosis by IFN-?. J Immunol 2003;170:6329–6337.

    PubMed  CAS  Google Scholar 

  131. Dovhey SE, Ghosh NS, Wright KL. Loss of interferon-? inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 2000;60:5789–5796.

    PubMed  CAS  Google Scholar 

  132. Nagao M, Nakajima Y, Kanehiro H, et al. The impact of interferon ? receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology 2000;32:491–500.

    PubMed  CAS  Google Scholar 

  133. Hassanain HH, Chon SY, Gupta SL. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-? and-a. Analysis of the regulatory region of the gene and identification of an interferon-?-inducible DNA-binding factor. J Biol Chem 1993;268:5077–5084.

    PubMed  CAS  Google Scholar 

  134. Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 2002;196:447–457.

    PubMed  CAS  Google Scholar 

  135. Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002;9:1069–1077.

    PubMed  CAS  Google Scholar 

  136. Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281:1191–1193.

    PubMed  CAS  Google Scholar 

  137. Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4(+) T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 2004;172:4100–4110.

    PubMed  CAS  Google Scholar 

  138. Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002;297:1867–1870.

    PubMed  CAS  Google Scholar 

  139. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3dioxygenase inhibit T cell responses. J Immunol 2002;168:3771–3776.

    PubMed  CAS  Google Scholar 

  140. Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004;10:15–18.

    PubMed  CAS  Google Scholar 

  141. Lee JR, Dalton RR, Messina JL, etal. Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 2003;83:1457–1466.

    PubMed  CAS  Google Scholar 

  142. Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J Leukoc Biol 2000;68:1–8.

    PubMed  CAS  Google Scholar 

  143. Kondo T, Ito F, Nakazawa H, Horita S, Osaka Y, Toma H. High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J Urol 2004;171(Pt 1):2171–2175.

    PubMed  CAS  Google Scholar 

  144. Hellmuth M, Paulukat J, Ninic R, Pfeilschifter J, Muhl H. Nitric oxide differentially regulates pro-and anti-angiogenic markers in DLD-1 colon carcinoma cells. FEBS Lett 2004;563:98–102.

    PubMed  CAS  Google Scholar 

  145. Peng JP, Zheng S, Xiao ZX, Zhang SZ. Inducible nitric oxide synthase expression is related to angiogenesis, bcl-2 and cell proliferation in hepatocellular carcinoma. J Zhejiang Univ Sci 2003;4:221–227.

    PubMed  CAS  Google Scholar 

  146. Levy DE, Lee CK. What does Stat3 do? J Clin Invest 2002;109:1143–1148.

    PubMed  CAS  Google Scholar 

  147. Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 2000;11:199–207.

    PubMed  CAS  Google Scholar 

  148. Coffer PJ, Koenderman L, de Groot RP. The role of STATs in myeloid differentiation and leukemia. Oncogene 2000;19:2511–2522.

    PubMed  CAS  Google Scholar 

  149. Mora LB, Buettner R, Seigne J, et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002;62:6659–6666.

    PubMed  CAS  Google Scholar 

  150. Song JI, Grandis JR. STAT signaling in head and neck cancer. Oncogene 2000;19:2489–2495.

    PubMed  CAS  Google Scholar 

  151. Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004;10:48–54.

    PubMed  Google Scholar 

  152. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;10:105–115.

    PubMed  CAS  Google Scholar 

  153. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002;21:2000–2008.

    PubMed  CAS  Google Scholar 

  154. Xiang ST, Zhou SW, Guan W, et al. Tumor infiltrating dendritic cells and Mucin1 gene expression in benign prostatic hyperplasia and prostate cancer (in Chinese). Zhonghua Nan Ke Xue 2003;9:497–500.

    PubMed  CAS  Google Scholar 

  155. Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 2004;16:157–162.

    PubMed  CAS  Google Scholar 

  156. Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 2002;101:151–155.

    PubMed  CAS  Google Scholar 

  157. Kagi D, Vignaux F, Ledermann B, et al. Fas and perforin pathways as major mechanisms of T cellmediated cytotoxicity. Science 1994;265:528–530.

    PubMed  CAS  Google Scholar 

  158. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediatedcytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 2000;192:755–760.

    PubMed  CAS  Google Scholar 

  159. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002;2:735–747.

    PubMed  CAS  Google Scholar 

  160. Smyth MJ, Kelly JM, Sutton VR, et al. Unlocking the secrets of cytotoxic granule proteins. J Leukoc Biol 2001;70:18–29.

    PubMed  CAS  Google Scholar 

  161. Beresford PJ, Xia Z, Greenberg AH, Lieberman J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 1999;10:585–594.

    PubMed  CAS  Google Scholar 

  162. Trapani JA, Sutton VR. Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol 2003;15:533–543.

    PubMed  CAS  Google Scholar 

  163. Sharif-Askari E, Alam A, Rheaume E, etal. Direct cleavage of the human DNA fragmentation factor45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J 2001;20:3101–3113.

    PubMed  CAS  Google Scholar 

  164. Thomas DA, Du C, Xu M, Wang X, Ley TJ. DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 2000;12:621–632.

    PubMed  CAS  Google Scholar 

  165. Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 1999;274:30,651–30,656.

    PubMed  CAS  Google Scholar 

  166. Sutton VR, Davis JE, Cancilla M, et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med 2000;192:1403–1414.

    PubMed  CAS  Google Scholar 

  167. Heibein JA, Goping IS, Barry M, et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med 2000;192:1391–1402.

    PubMed  CAS  Google Scholar 

  168. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000;20:929–935.

    PubMed  CAS  Google Scholar 

  169. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14:2060–2071.

    PubMed  CAS  Google Scholar 

  170. Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but not Bax, regulates VDAC channels. J Biol Chem 2004;279:13,575–13,583.

    PubMed  CAS  Google Scholar 

  171. Goping IS, Barry M, Liston P, et al. Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition. Immunity 2003;18:355–365.

    PubMed  CAS  Google Scholar 

  172. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    PubMed  CAS  Google Scholar 

  173. Bleackley RC, Heibein JA. Enzymatic control of apoptosis. Nat Prod Rep 2001;18:431–440.

    PubMed  CAS  Google Scholar 

  174. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11,549–11,556.

    PubMed  CAS  Google Scholar 

  175. Medema JP, de Jong J, Peltenburg LT, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 2001;98:11,515–11,520.

    PubMed  CAS  Google Scholar 

  176. Lee SH, Shin MS, Park WS, etal. Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res 1999;59:3068–3072.

    PubMed  CAS  Google Scholar 

  177. Lee SH, Shin MS, Park WS, et al. Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene 1999;18:3754–3760.

    PubMed  CAS  Google Scholar 

  178. Shin MS, Park WS, Kim SY, et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 1999;154:1785–1791.

    PubMed  CAS  Google Scholar 

  179. Maas S, Warskulat U, Steinhoff C, et al. Decreased Fas expression in advanced-stage bladder cancer is not related to p53 status. Urology 2004;63:392–397.

    PubMed  Google Scholar 

  180. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396:699–703.

    PubMed  CAS  Google Scholar 

  181. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999;11:255–260.

    PubMed  CAS  Google Scholar 

  182. Bai C, Connolly B, Metzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci US A 2000;97:1230–1235.

    CAS  Google Scholar 

  183. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396:699–703.

    PubMed  CAS  Google Scholar 

  184. Roth W, Isenmann S, Nakamura M, Platten M, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001;61:2759–2765.

    PubMed  CAS  Google Scholar 

  185. Takahama Y, Yamada Y, Emoto K, et al. The prognostic significance of overexpression of the decoy receptor for Fas ligand (DcR3) in patients with gastric carcinomas. Gastric Cancer 2002;5:61–68.

    PubMed  CAS  Google Scholar 

  186. Tsuji S, Hosotani R, Yonehara S, et al. Endogenous decoy receptor 3 blocks the growth inhibition signals mediated by Fas ligand in human pancreatic adenocarcinoma. Int J Cancer 2003;106:17–25.

    PubMed  CAS  Google Scholar 

  187. Hsu TL, Chang YC, Chen SJ, et al. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol 2002;168:4846–853.

    PubMed  CAS  Google Scholar 

  188. Chang YC, Hsu TL, Lin HH, et al. Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol 2004;75:486–94.

    PubMed  CAS  Google Scholar 

  189. Roth W, Isenmann S, Nakamura M, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001;61:2759–2765.

    PubMed  CAS  Google Scholar 

  190. Chen YL, Chen SH, Wang JY, Yang BC. Fas ligand on tumor cells mediates inactivation of neutrophils. J Immunol 2003;171:1183–1191.

    PubMed  CAS  Google Scholar 

  191. Yang CR, Hsieh SL, Teng CM, Ho FM, Su WL, Lin WW. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1 A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res 2004;64:1122–1129.

    PubMed  CAS  Google Scholar 

  192. MacFarlane M, Harper N, Snowden RT, et al. Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 2002;21:6809–6818.

    PubMed  CAS  Google Scholar 

  193. Dutton A, O’Neil JD, Milner AE, et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci USA 2004;101:6611–6616.

    PubMed  CAS  Google Scholar 

  194. Yi X, Yin XM, Dong Z. Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, B ax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 2003;278:16,992–16,999.

    PubMed  CAS  Google Scholar 

  195. Fornaro M, Plescia J, Chheang S, et al. Fibronectin protects prostate cancer cells from tumor necrosis factor-a-induced apoptosis via the AKT/survivin pathway. J Biol Chem 2003;278:50,402–50,411.

    PubMed  CAS  Google Scholar 

  196. Asanuma K, Tsuji N, Endoh T, Yagihashi A, Watanabe N. Survivin enhances Fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells. J Immunol 2004;172:3922–3929.

    PubMed  CAS  Google Scholar 

  197. Li ZY, Zou SQ. Fas counterattack in cholangiocarcinoma: a mechanism for immune evasion in human hilar cholangiocarcinomas. World J Gastroenterol 2001;7:860–863.

    PubMed  CAS  Google Scholar 

  198. Shimonishi T, Isse K, Shibata F, et al. Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance. Hepatology 2000;32(Pt 1):761–769.

    Google Scholar 

  199. Sejima T, Isoyama T, Miyagawa I. Alteration of apoptotic regulatory molecules expression during carcinogenesis and tumor progression of renal cell carcinoma. Int J Urol 2003;10:476–484.

    PubMed  CAS  Google Scholar 

  200. Kase H, Aoki Y, Tanaka K. Fas ligand expression in cervical adenocarcinoma: relevance to lymph node metastasis and tumor progression. Gynecol Oncol 2003;90:70–74.

    PubMed  CAS  Google Scholar 

  201. Thomas WD, Zhang XD, Franco AV, Nguyen T, Hersey P. TNF-related apoptosis-inducing ligandinduced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria. J Immunol 2000;165:5612–5620.

    PubMed  CAS  Google Scholar 

  202. Bennett MW, O’Connell J, O’Sullivan GC, etal. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carci-noma. J Immunol 1998;160:5669–5675.

    PubMed  CAS  Google Scholar 

  203. Koyama S, Koike N, Adachi S. Expression of TNF-related apoptosis-inducing ligand (TRAIL) and its receptors in gastric carcinoma and tumor-infiltrating lymphocytes: a possible mechanism of immune evasion of the tumor. J Cancer Res Clin Oncol 2002;128:73–79.

    PubMed  CAS  Google Scholar 

  204. Frankel B, Longo SL, Canute GW. Soluble Fas-ligand (sFasL) in human astrocytoma cyst fluid is cytotoxic to T-cells: another potential means of immune evasion. J Neurooncol 2000;48:21–26.

    PubMed  CAS  Google Scholar 

  205. Song E, Chen J, Ouyang N, Su F, Wang M, Heemann U. Soluble Fas ligand released by colon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in colon cancer. BrJ Cancer 2001;85:1047–1054.

    CAS  Google Scholar 

  206. Gerharz CD, Ramp U, Dejosez M, et al. Resistance to CD95 (APO-1/Fas)-mediated apoptosis in human renal cell carcinomas: an important factor for evasion from negative growth control. Lab Invest 1999;79:1521–1534.

    PubMed  CAS  Google Scholar 

  207. Ferrara N. VEGF:anupdateonbiologicalandtherapeuticaspects.Curr Opin Biotechnol 2000;11:617–624.

    CAS  Google Scholar 

  208. Santin AD, Hermonat PL, Ravaggi A, Cannon MJ, Pecorelli S, Parham GP. Secretion of vascular endothelial growth factor in ovarian cancer. Eur J Gynaecol Oncol 1999;20:177–181.

    PubMed  CAS  Google Scholar 

  209. Ohm JE, Gabrilovich DI, Sempowski GD, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003;101:4878–4886.

    PubMed  CAS  Google Scholar 

  210. Wang D, Dubois RN. Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol 2004;31(Suppl3):S64–S73.

    Google Scholar 

  211. Altorki N. COX-2: a target for prevention and treatment of esophageal cancer. J Surg Res 2004;117:114–120.

    PubMed  CAS  Google Scholar 

  212. Rao M, Yang W, Seifalian AM, Winslet MC. Role of cyclooxygenase-2 in the angiogenesis of colorectal cancer. Int J Colorectal Dis 2004;19:1–11.

    PubMed  Google Scholar 

  213. Eisengart CA, Mestre JR, Naama HA, et al. Prostaglandins regulate melanoma-induced cytokine production in macrophages. Cell Immunol 2000;204:143–149.

    PubMed  CAS  Google Scholar 

  214. Plescia OJ, Smith AH, Grinwich K. Subversion of immune system by tumor cells and role of prostaglandins. Proc Natl Acad Sci U S A 1975;72:1848–1851.

    PubMed  CAS  Google Scholar 

  215. Spaner DE. Amplifying cancer vaccine responses by modifying pathogenic gene programs in tumor cells. J Leukoc Biol 2004;76:338–351.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ting Koh, Y., Luz García-Hernández, M., Martin Kast, W. (2006). Tumor Immune Escape Mechanisms. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics