Skip to main content

Role of TGF-β in Tumor Progression and Metastasis

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1608 Accesses

Abstract

The development of cancer has been shown to occur through a process of malignant transformation that involves a series of genetic changes that provide a selective advantage over normal cells, and research over the past few decades has identified numerous genes and pathways involved in all stages of tumor progression. These genetic changes invariably disrupt fundamental cellular processes controlling proliferation, apoptosis, differentiation, and genome stability, and it is the combinatorial effect of these genetic changes that result in malignant transformation. Proliferating hematopoietic and epithelial cell populations are particularly susceptible to accumulation of a series of genetic changes required for full-blown malignancy, and nearly 90% of all human solid tumors arise from epithelial cells. The majority of patients who succumb to cancer die as a result of metastatic disease progression rather than from the primary tumor. The process of metastasis is extremely complex, and involves many steps including dissemination of tumor cells from the primary tumor through the vascular and lymphatic system coupled with the ability to colonize selectively distant tissues and organs. The pleiotropic cytokine transforming growth factor-β and its signaling effectors have been shown to be involved at numerous steps in the development of cancer. The role of transforming growth factor-β signaling in cancer is complex, with biphasic functions as a tumor suppressor in normal tissue and early-stage lesions and as a prometastatic agent in latestage disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nature Medicine 2004; 10:789–799.

    Article  PubMed  CAS  Google Scholar 

  2. Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat 1996; 156:217–226.

    PubMed  CAS  Google Scholar 

  3. Ahmad A, Hart IR. Mechanisms of metastasis. Crit Rev Oncol Hematol 1997; 26:163–173.

    Article  PubMed  CAS  Google Scholar 

  4. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2:563–572.

    Article  PubMed  CAS  Google Scholar 

  5. Shi Y, Massague J. Mechanisms of TGF-° signaling from cell membrane to the nucleus. Cell 2003; 113:685–700.

    Article  PubMed  CAS  Google Scholar 

  6. de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A 1978; 75:4001–4005.

    Article  PubMed  Google Scholar 

  7. Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258:7155–7160.

    PubMed  CAS  Google Scholar 

  8. Frolik CA, Dart LL, Meyers C A, et al. Purification and initial characterization of a type β transforming growth factor from human placenta. Proc Natl Acad Sci U S A 1983; 80:3676–3680.

    Article  PubMed  CAS  Google Scholar 

  9. Roberts AB, Frolik CA, Anzano MA, et al. Transforming growth factors from neoplastic and nonneo-plastic tissues. Fed Proc 1983; 42:2621–2626.

    PubMed  CAS  Google Scholar 

  10. Doetschman T. Interpretation of phenotype in genetically engineered mice. Lab Anim Sci 1999; 49:137–143.

    PubMed  CAS  Google Scholar 

  11. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFβ activation. J Cell Sci 2003; 116:217–224.

    Article  PubMed  CAS  Google Scholar 

  12. Ramirez F, Pereira L. The fibrillins. Int J Biochem Cell Biol 1999; 31:255–259.

    Article  PubMed  CAS  Google Scholar 

  13. Andreasen PA, Kjoller L, Christensen L, et al. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72:1–22.

    Article  PubMed  CAS  Google Scholar 

  14. Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β 1-like molecule by plasmin during co-culture. J Cell Biol 1989; 109:309–315.

    Article  PubMed  CAS  Google Scholar 

  15. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10:415–433.

    Article  PubMed  CAS  Google Scholar 

  16. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14:163–176.

    PubMed  Google Scholar 

  17. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 1998; 93:1159–1170.

    Article  PubMed  CAS  Google Scholar 

  18. Munger JS, Huang X, Kawakatsu H, et al. The integrin β v β 6 binds and activates latent TGF β 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96:319–328.

    Article  PubMed  CAS  Google Scholar 

  19. Ewan KB, Shyamala G, Ravani SA, et al. Latent transforming growth factor-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 2002; 160:2081–2093.

    PubMed  CAS  Google Scholar 

  20. Oursler MJ. Osteoclast synthesis and secretion and activation of latent transforming growth factor β. J Bone Miner Res 1994; 9:443–452.

    Article  PubMed  CAS  Google Scholar 

  21. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289:1504–1508.

    Article  PubMed  CAS  Google Scholar 

  22. Lopez-Casillas F, Wrana JL, Massague J. βglycan presents ligand to the TGF β signaling receptor. Cell 1993; 73:1435–1444.

    Article  PubMed  CAS  Google Scholar 

  23. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003; 425:577–584.

    Article  PubMed  CAS  Google Scholar 

  24. Hayes S, Chawla A, Corvera S. TGF β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 2002; 158:1239–1249.

    Article  PubMed  CAS  Google Scholar 

  25. Ehrlich M, Shmuely A, Henis YI. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-β receptor. J Cell Sci 2001; 114:1777–1786.

    PubMed  CAS  Google Scholar 

  26. Razani B, Zhang XL, Bitzer M, et al. Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor. J Biol Chem 2001; 276:6727–6738.

    Article  PubMed  CAS  Google Scholar 

  27. Di Guglielmo GM, Le Roy C, Goodfellow AF, et al. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 2003; 5:410–421.

    Article  PubMed  CAS  Google Scholar 

  28. Inman GJ, Hill CS. Stoichiometry of active smad-transcription factor complexes on DNA. J Biol Chem 2002; 277:51,008–51,016.

    Article  PubMed  CAS  Google Scholar 

  29. Kretzschmar M, Doody J, Timokhina I, et al. A mechanism of repression of TGFβ/ Smad signaling by oncogenic Ras. Genes Dev 1999; 13:804–816.

    PubMed  CAS  Google Scholar 

  30. Engel ME, McDonnell MA, Law BK, et al. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 1999; 274:37,413–37,420.

    Article  PubMed  CAS  Google Scholar 

  31. Yakymovych I, Ten Dijke P, Heldin CH, et al. Regulation of Smad signaling by protein kinase C. FASEB J 2001; 15:553–555.

    PubMed  CAS  Google Scholar 

  32. Yu L, Hebert MC, Zhang YE. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 2002; 21:3749–3759.

    Article  PubMed  CAS  Google Scholar 

  33. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 1999; 274:27,161–27,167.

    Article  PubMed  CAS  Google Scholar 

  34. Hocevar B A, Brown TL, Howe PH. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999; 18:1345–1356.

    Article  PubMed  CAS  Google Scholar 

  35. Yue J, Mulder KM. Activation of the mitogen-activated protein kinase pathway by transforming growth factor-β. Methods Mol Biol 2000; 142:125–131.

    PubMed  CAS  Google Scholar 

  36. Zavadil J, Bitzer M, Liang D, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci U S A 2001; 98:6686–6691.

    Article  PubMed  CAS  Google Scholar 

  37. Bakin AV, Rinehart C, Tomlinson AK, et al. p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002; 115:3193–3206.

    PubMed  CAS  Google Scholar 

  38. Engel ME, Datta PK, Moses HL. RhoB is stabilized by transforming growth factor β and antagonizes transcriptional activation. J Biol Chem 1998; 273:9921–9926.

    Article  PubMed  CAS  Google Scholar 

  39. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-β1 mediates epithelial to mes-enchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27–36.

    PubMed  CAS  Google Scholar 

  40. Shen X, Li J, Hu PP, et al. The activity of guanine exchange factor NET1 is essential for transforming growth factor-β-mediated stress fiber formation. J Biol Chem 2001; 276:15,362–15,368.

    Article  PubMed  CAS  Google Scholar 

  41. Edlund S, Landstrom M, Heldin CH, et al. Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002; 13:902–914.

    Article  PubMed  CAS  Google Scholar 

  42. Wilkes MC, Murphy SJ, Garamszegi N, et al. Cell-type-specific activation of PAK2 by transforming growth factor β independent of Smad2 and Smad3. Mol Cell Biol 2003; 23:8878–8889.

    Article  PubMed  CAS  Google Scholar 

  43. Griswold-Prenner I, Kamibayashi C, Maruoka EM, et al. Physical and functional interactions between type I transforming growth factor β receptors and Bβ, a WD-40 repeat subunit of phosphatase 2A. Mol Cell Biol 1998; 18:6595–6604.

    PubMed  CAS  Google Scholar 

  44. Petritsch C, Beug H, Balmain A, et al. TGF-β inhibits p70 S6 kinase viaprotein phosphatase 2A to induce G(1) arrest. Genes Dev 2000; 14:3093–3101.

    Article  PubMed  CAS  Google Scholar 

  45. Bakin AV, Tomlinson AK, Bhowmick NA, et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275:36,803–36,810.

    Article  PubMed  CAS  Google Scholar 

  46. Vinals F, Pouyssegur J. Transforming growth factor β1 (TGF-β1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-β signaling. Mol Cell Biol 2001; 21:7218–7230.

    Article  PubMed  CAS  Google Scholar 

  47. Remy I, Montmarquette A, Michnick SW. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat Cell Biol 2004; 6:358–365.

    Article  PubMed  CAS  Google Scholar 

  48. Conery AR, Cao Y, Thompson EA, et al. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis. Nat Cell Biol 2004; 6:366–372.

    Article  PubMed  CAS  Google Scholar 

  49. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003; 3:807–821.

    Article  PubMed  CAS  Google Scholar 

  50. Kang Y, Chen CR, Massague J. A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003; 11:915–926.

    Article  PubMed  CAS  Google Scholar 

  51. Pierce DF Jr, Johnson MD, Matsui Y, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev 1993; 7:2308–2317.

    Article  PubMed  CAS  Google Scholar 

  52. Jhappan C, Geiser AG, Kordon EC, et al. Targeting expression of a transforming growth factor β 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 1993; 12:1835–1845.

    PubMed  CAS  Google Scholar 

  53. Cui W, Fowlis DJ, Cousins FM, et al. Concerted action of TGF-β 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 1995; 9:945–955.

    Article  PubMed  CAS  Google Scholar 

  54. Lee MS, Gu D, Feng L, et al. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-β 1. Am J Pathol 1995; 147:42–52.

    PubMed  CAS  Google Scholar 

  55. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factor β 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA 1995; 92:2572–2576.

    Article  PubMed  CAS  Google Scholar 

  56. Bottinger EP, Factor VM, Tsang ML, et al. The recombinant proregion of transforming growth factor β1 (latency-associated peptide) inhibits active transforming growth factor β1 in transgenic mice. Proc Natl Acad Sci U S A 1996; 93:5877–5882.

    Article  PubMed  CAS  Google Scholar 

  57. Pierce DF, Jr., Gorska AE, Chytil A, et al. Mammary tumor suppression by transforming growth factor P 1 transgene expression. Proc Natl Acad Sci U S A 1995; 92:4254–4258.

    Article  PubMed  CAS  Google Scholar 

  58. Bottinger EP, Jakubczak JL, Haines DC, et al. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res 1997; 57:5564–5570.

    PubMed  CAS  Google Scholar 

  59. Gorska AE, Jensen RA, Shyr Y, et al. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-β receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 2003; 163:1539–1549.

    PubMed  CAS  Google Scholar 

  60. Engle SJ, Hoying JB, Boivin GP, et al. Transforming growth factor β1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 1999; 59:3379–3386.

    PubMed  CAS  Google Scholar 

  61. Zhu Y, Richardson J A, Parada LF, et al. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94:703–714.

    Article  PubMed  CAS  Google Scholar 

  62. Tang B, Bottinger EP, Jakowlew SB, et al. Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 1998; 4:802–807.

    Article  PubMed  CAS  Google Scholar 

  63. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 1995; 268:1336–1338.

    Article  PubMed  CAS  Google Scholar 

  64. Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996; 86:543–552.

    Article  PubMed  CAS  Google Scholar 

  65. Hahn S A, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271:350–353.

    Article  PubMed  CAS  Google Scholar 

  66. Chen T, Carter D, Garrigue-Antar L, et al. Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 1998; 58:4805–4810.

    PubMed  CAS  Google Scholar 

  67. Wang D, Kanuma T, Mizunuma H, et al. Analysis of specific gene mutations in the transforming growth factor-β signal transduction pathway in human ovarian cancer. Cancer Res 2000; 60:4507–4512.

    PubMed  CAS  Google Scholar 

  68. Goggins M, Shekher M, Turnacioglu K, et al. Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998; 58:5329–5332.

    PubMed  CAS  Google Scholar 

  69. Shu XO, Gao YT, Cai Q, et al. Genetic polymorphisms in the TGF-β 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res 2004; 64:836–839.

    Article  PubMed  CAS  Google Scholar 

  70. Kaklamani VG, Hou N, Bian Y, et al. TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies. J Clin Oncol 2003; 21:3236–3243.

    Article  PubMed  CAS  Google Scholar 

  71. Pasche B, Kaklamani V, Hou N, et al. TGFBR1*6A and cancer: a meta-analysis of 12 case-control studies. J Clin Oncol 2004; 22:756–758.

    Article  PubMed  Google Scholar 

  72. Kaklamani V, Baddi L, Rosman D, et al. No major association between TGFBR1*6A and prostate cancer. BMC Genet 2004; 5:28.

    Article  PubMed  CAS  Google Scholar 

  73. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999; 397:530–534.

    Article  PubMed  CAS  Google Scholar 

  74. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression by TGF-β inhibitors. Invest New Drugs 2003; 21:21–32.

    Article  PubMed  CAS  Google Scholar 

  75. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. NEngl J Med 2000; 342:1350–1358.

    Article  CAS  Google Scholar 

  76. Miettinen PJ, Ebner R, Lopez AR, et al. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994; 127:2021–2036.

    Article  PubMed  CAS  Google Scholar 

  77. Oft M, Peli J, Rudaz C, et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996; 10:2462–2477.

    Article  PubMed  CAS  Google Scholar 

  78. Itoh S, Thorikay M, Kowanetz M, et al. Elucidation of Smad requirement in transforming growth factor-(3 type I receptor-induced responses. J Biol Chem 2003; 278:3751–3761.

    Article  PubMed  CAS  Google Scholar 

  79. Janda E, Lehmann K, Killisch I, et al. Ras and TGF[β] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156:299–313.

    Article  PubMed  CAS  Google Scholar 

  80. Cui W, Fowlis DJ, Bryson S, et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86:531–542.

    Article  PubMed  CAS  Google Scholar 

  81. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998; 16:137–161.

    Article  PubMed  CAS  Google Scholar 

  82. Letterio JJ, Roberts AB. TGF-β: a critical modulator of immune cell function. Clin Immunol Immunopathol 1997; 84:244–250.

    Article  PubMed  CAS  Google Scholar 

  83. Gorelik L, Flavell RA. Transforming growth factor-β in T-cell biology. Nat Rev Immunol 2002; 2:46–53.

    Article  PubMed  CAS  Google Scholar 

  84. Letterio JJ, Geiser AG, Kulkarni AB, et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J Clin Invest 1996; 98:2109–2119.

    PubMed  CAS  Google Scholar 

  85. Kulkarni AB, Ward JM, Yaswen L, et al. Transforming growth factor-β 1 null mice. An animal model for inflammatory disorders. Am J Pathol 1995; 146:264–275.

    CAS  Google Scholar 

  86. Yaswen L, Kulkarni AB, Fredrickson T, et al. Autoimmune manifestations in the transforming growth factor-β 1 knockout mouse. Blood 1996; 87:1439–1445.

    PubMed  CAS  Google Scholar 

  87. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992; 359:693–699.

    Article  PubMed  CAS  Google Scholar 

  88. Gorelik L, Flavell RA. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12:171–181.

    Article  PubMed  CAS  Google Scholar 

  89. Shah AH, Tabayoyong WB, Kimm SY, et al. Reconstitution of lethally irradiated adult mice with dominant negative TGF-β type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J Immunol 2002; 169:3485–3491.

    PubMed  CAS  Google Scholar 

  90. Meidenbauer N, Zippelius A, Pittet MJ, et al. High frequency of functionally active Melan-a-specific T cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 2004; 64:6319–6326.

    Article  PubMed  CAS  Google Scholar 

  91. Zippelius A, Batard P, Rubio-Godoy V, et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 2004; 64:2865–2873.

    Article  PubMed  CAS  Google Scholar 

  92. Housseau F, Langer DA, Oberholtzer SD, et al. Tumor-specific CD8+ T lymphocytes derived from the peripheral blood of prostate cancer patients by in vitro stimulation with autologous tumor cell lines. Int J Cancer 2002; 98:57–62.

    Article  PubMed  CAS  Google Scholar 

  93. Pardoll D. Does the immune system see tumors as foreign or selfβ Annu Rev Immunol 2003; 21:807–839.

    Article  PubMed  CAS  Google Scholar 

  94. Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 2004; 16:157–162.

    Article  PubMed  CAS  Google Scholar 

  95. Wolf AM, Wolf D, Steurer M, et al. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9:606–612.

    PubMed  Google Scholar 

  96. Woo EY, Yeh H, Chu CS, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002; 168:4272–4276.

    PubMed  CAS  Google Scholar 

  97. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772.

    PubMed  CAS  Google Scholar 

  98. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169:2756–2761.

    PubMed  CAS  Google Scholar 

  99. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942–949.

    Article  PubMed  CAS  Google Scholar 

  100. Read S, Powrie F. CD4(+) regulatory T cells. Curr Opin Immunol 2001; 13:644–649.

    Article  PubMed  CAS  Google Scholar 

  101. Shevach EM, Piccirillo CA, Thornton AM, et al. Control of T cell activation by CD4+CD25+ suppressor T cells. Novartis Found Symp 2003; 252:24–36; discussion 36-44, 106-114.

    PubMed  CAS  Google Scholar 

  102. Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001; 167:1137–1140.

    PubMed  CAS  Google Scholar 

  103. Somasundaram R, Jacob L, Swoboda R, et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-β. Cancer Res 2002; 62:5267–5272.

    PubMed  CAS  Google Scholar 

  104. Huber S, Schramm C, Lehr HA, et al. Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 2004; 173:6526–6531.

    PubMed  CAS  Google Scholar 

  105. Schramm C, Huber S, Protschka M, et al. TGFβ regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo. Int Immunol 2004; 16:1241–1249.

    Article  PubMed  CAS  Google Scholar 

  106. Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172:5149–5153.

    PubMed  CAS  Google Scholar 

  107. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med 2001; 7:1118–1122.

    Article  PubMed  CAS  Google Scholar 

  108. Shah AH, Tabayoyong WB, Kundu SD, et al. Suppression of tumor metastasis by blockade of transforming growth factor β signaling in bone marrow cells through a retro viral-mediated gene therapy in mice. Cancer Res 2002; 62:7135–7138.

    PubMed  CAS  Google Scholar 

  109. Terabe M, Matsui S, Noben-Trauth N, et al. NKTcell-mediatedrepression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 2000; 1:515–520.

    Article  PubMed  CAS  Google Scholar 

  110. Terabe M, Matsui S, Park JM, et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003; 198:1741–1752.

    Article  PubMed  CAS  Google Scholar 

  111. Lee JC, Lee KM, Kim DW, et al. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004; 172:7335–7340.

    PubMed  CAS  Google Scholar 

  112. Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor β 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A 2003; 100:4120–4125.

    Article  PubMed  CAS  Google Scholar 

  113. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4:941–952.

    Article  PubMed  CAS  Google Scholar 

  114. O’Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104:2235–2246.

    Article  PubMed  CAS  Google Scholar 

  115. Takayama T, Morelli AE, Onai N, et al. Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol 2001; 166:7136–7143.

    PubMed  CAS  Google Scholar 

  116. Sato K, Kawasaki H, Nagayama H, et al. TGF-β1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol 2000; 164:2285–2295.

    PubMed  CAS  Google Scholar 

  117. Wu RS, Kobie JJ, Besselsen DG, et al. Comparative analysis of IFN-βB7.1 and antisense TGF-β gene transfer on the tumorigenicity of a poorly immunogenic metastatic mammary carcinoma. Cancer Immunol Immunother 2001; 50:229–240.

    Article  PubMed  CAS  Google Scholar 

  118. Kao JY, Gong Y, Chen CM, et al. Tumor-derived TGF-β reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 2003; 170:3806–3811.

    PubMed  CAS  Google Scholar 

  119. Kobie JJ, Wu RS, Kurt RA, et al. Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 2003; 63:1860–1864.

    PubMed  CAS  Google Scholar 

  120. Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci U S A 2003; 100:8621–8623.

    Article  PubMed  CAS  Google Scholar 

  121. Gorsch SM, Memoli VA, Stukel TA, et al. Immunohistochemical staining for transforming growth factor β 1 associates with disease progression in human breast cancer. Cancer Res 1992; 52:6949–6952.

    PubMed  CAS  Google Scholar 

  122. MacCallum J, Bartlett JM, Thompson AM, et al. Expression of transforming growth factor β mRNA isoforms in human breast cancer. Br J Cancer 1994; 69:1006–1009.

    PubMed  CAS  Google Scholar 

  123. Kong FM, Anscher MS, Murase T, et al. Elevated plasma transforming growth factor-β 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 1995; 222:155–162.

    Article  PubMed  CAS  Google Scholar 

  124. Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 2002; 62:497–505.

    PubMed  CAS  Google Scholar 

  125. Li C, Wilson PB, Levine E, et al. TGF-β1 levels in pre-treatment plasma identify breast cancer patients at risk of developing post-radiotherapy fibrosis. Int J Cancer 1999; 84:155–159.

    Article  PubMed  CAS  Google Scholar 

  126. Ivanovic V, Todorovic-Rakovic N, Demajo M, et al. Elevated plasma levels of transforming growth factor-β 1 (TGF-β 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 2003; 39:454–61.

    Article  PubMed  CAS  Google Scholar 

  127. Travers MT, Barrett-Lee PJ, Berger U, et al. Growth factor expression in normal, benign, and malignant breast tissue. Br Med J (Clin Res Ed) 1988; 296:1621–1624.

    Article  CAS  Google Scholar 

  128. MacCallum J, Keen JC, Bartlett JM, et al. Changes in expression of transforming growth factor β mRNA isoforms in patients undergoing tamoxifen therapy. Br J Cancer 1996; 74:474–478.

    PubMed  CAS  Google Scholar 

  129. Thompson AM, Kerr DJ, Steel CM. Transforming growth factor β 1 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 1991; 63:609–614.

    PubMed  CAS  Google Scholar 

  130. Lafon C, Mazars P, Guerrin M, et al. Early gene responses associated with transforming growth f actor-P1 growth inhibition and autoinduction in MCF-7 breast adenocarcinomacells. Biochim Biophys Acta 1995; 1266:288–295.

    Article  PubMed  Google Scholar 

  131. Herman ME, Katzenellenbogen BS. Alterations in transforming growth f actor-β and-β production and cell responsiveness during the progression of MCF-7 human breast cancer cells to estrogen-autonomous growth. Cancer Res 1994; 54:5867–5874.

    PubMed  CAS  Google Scholar 

  132. Sun L, Wu G, Willson JK, et al. Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem 1994; 269:26,449–26,455.

    PubMed  CAS  Google Scholar 

  133. Arteaga CL, Hurd SD, Winnier AR, et al. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J Clin Invest 1993; 92:2569–2576.

    PubMed  CAS  Google Scholar 

  134. Arteaga CL, Koli KM, Dugger TC, et al. Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-β. J Natl Cancer Inst 1999; 91:46–53.

    Article  PubMed  CAS  Google Scholar 

  135. Buck MB, Fritz P, Dippon J, et al. Prognostic significance of transforming growth factor β receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 2004; 10:491–498.

    Article  PubMed  CAS  Google Scholar 

  136. Muller WJ, Sinn E, Pattengale PK, et al. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54:105–115.

    Article  PubMed  CAS  Google Scholar 

  137. Guy CT, Webster MA, Schaller M, et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89:10,578–10,582.

    Article  PubMed  CAS  Google Scholar 

  138. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  139. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244:707–712.

    Article  PubMed  CAS  Google Scholar 

  140. Slamon DJ. Studies of the HER-2/neu proto-oncogene in human breast cancer. Cancer Invest 1990; 8:253.

    PubMed  CAS  Google Scholar 

  141. Siegel PM, Shu W, Cardiff RD, et al. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003; 100:8430–8435.

    Article  PubMed  CAS  Google Scholar 

  142. Muraoka RS, Koh Y, Roebuck LR, et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor β1. Mol Cell Biol 2003; 23:8691–8703.

    Article  PubMed  CAS  Google Scholar 

  143. Muraoka-Cook RS, Kurokawa H, Koh Y, et al. Conditional overexpression of active transforming growth factor β1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 2004; 64:9002–9011.

    Article  PubMed  CAS  Google Scholar 

  144. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyoma virus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12:954–961.

    PubMed  CAS  Google Scholar 

  145. Tang B, Vu M, Booker T, et al. TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003; 112:1116–1124.

    Article  PubMed  CAS  Google Scholar 

  146. Guise TA, Chirgwin JM. Transforming growth factor-β in osteolytic breast cancer bone metastases. Clin Orthop 2003;4/5Suppl.:S32–S38.

    Google Scholar 

  147. Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer 1999; 6:333–347.

    Article  PubMed  CAS  Google Scholar 

  148. Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004; 350: 1655–1664.

    Article  PubMed  CAS  Google Scholar 

  149. Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res 1988; 48:6876–6881.

    PubMed  CAS  Google Scholar 

  150. Guise TA. Parathyroid hormone-related protein and bone metastases. Cancer 1997; 80:1572–1580.

    Article  PubMed  CAS  Google Scholar 

  151. Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98:1544–1549.

    Article  PubMed  CAS  Google Scholar 

  152. Kakonen SM, Selander KS, Chirgwin JM, et al. Transforming growth factor-β stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 2002; 277:24,571–24,578.

    Article  PubMed  CAS  Google Scholar 

  153. Yin JJ, Selander K, Chirgwin JM, et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103:197–206.

    PubMed  CAS  Google Scholar 

  154. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3:537–549.

    Article  PubMed  CAS  Google Scholar 

  155. Minn AJ, Kang Y, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005; 115:44–55.

    Article  PubMed  CAS  Google Scholar 

  156. Bello-DeOcampo D, Tindall DJ. TGF-βl/Smad signaling in prostate cancer. Curr Drug Targets 2003; 4:197–207.

    Article  PubMed  CAS  Google Scholar 

  157. Gerdes MJ, Larsen M, McBride L, et al. Localization of transforming growth factor-β1 and type II receptor in developing normal human prostate and carcinoma tissues. J Histochem Cytochem 1998; 46:379–388.

    PubMed  CAS  Google Scholar 

  158. Perry KT, Anthony CT, Steiner MS. Immunohistochemical localization of TGF β 1, TGF β 2, and TGF (3 3 in normal and malignant human prostate. Prostate 1997; 33:133–140.

    Article  PubMed  CAS  Google Scholar 

  159. Eastham JA, Truong LD, Rogers E, et al. Transforming growth factor-β 1: comparative immunohistochemical localization in human primary and metastatic prostate cancer. Lab Invest 1995; 73:628–635.

    PubMed  CAS  Google Scholar 

  160. Shariat SF, Menesses-Diaz A, Kim IY, et al. Tissue expression of transforming growth factor-β1 and its receptors: correlation with pathologic features and biochemical progression in patients undergoing radical prostatectomy. Urology 2004; 63:1191–1197.

    Article  PubMed  Google Scholar 

  161. Steiner MS, Zhou ZZ, Tonb DC, et al. Expression of transforming growth factor-β 1 in prostate cancer. Endocrinology 1994; 135:2240–2247.

    Article  PubMed  CAS  Google Scholar 

  162. Wikstrom P, Stattin P, Franck-Lissbrant I, et al. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998; 37:19–29.

    Article  PubMed  CAS  Google Scholar 

  163. Djonov V, Ball RK, Graf S, et al. Transforming growth factor-β 3 is expressed in nondividing basal epithelial cells in normal human prostate and benign prostatic hyperplasia, and is no longer detectable in prostate carcinoma. Prostate 1997; 31:103–109.

    Article  PubMed  CAS  Google Scholar 

  164. Dallas SL, Zhao S, Cramer SD, et al. Preferential production of latent transforming growth factor β-2 by primary prostatic epithelial cells and its activation by prostate-specific antigen. J Cell Physiol 2005; 202:361–370.

    Article  PubMed  CAS  Google Scholar 

  165. Adler HL, McCurdy MA, Kattan MW, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-β1 in patients with metastatic prostatic carcinoma. J Urol 1999; 161:182–187.

    Article  PubMed  CAS  Google Scholar 

  166. Kattan MW, Shariat SF, Andrews B, et al. The addition of interleukin-6 soluble receptor and transforming growth factor β1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol 2003; 21:3573–3579.

    Article  PubMed  CAS  Google Scholar 

  167. Shariat SF, Kattan MW, Traxel E, et al. Association of pre-and postoperative plasma levels of transforming growth factor β(1) and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res 2004; 10:1992–1999.

    Article  PubMed  CAS  Google Scholar 

  168. Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1:203–209.

    Article  PubMed  CAS  Google Scholar 

  169. Holzbeierlein J, Lal P, LaTulippe E, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 2004; 164:217–227.

    PubMed  CAS  Google Scholar 

  170. Guo Y, Jacobs SC, Kyprianou N. Down-regulation of protein and mRNA expression for transforming growth factor-β (TGF-β1) type I and type II receptors in human prostate cancer. Int J Cancer 1997; 71:573–579.

    Article  PubMed  CAS  Google Scholar 

  171. Williams RH, Stapleton AM, Yang G, et al. Reduced levels of transforming growth factor β receptor type II in human prostate cancer: an immunohistochemical study. Clin Cancer Res 1996; 2:635–640.

    PubMed  CAS  Google Scholar 

  172. Kim IY, Ahn HJ, Zelner DJ, et al. Loss of expression of transforming growth factor β type I and type II receptors correlates with tumor grade in human prostate cancer tissues. Clin Cancer Res 1996; 2:1255–1261.

    PubMed  CAS  Google Scholar 

  173. Lee C, Sintich SM, Mathews EP, et al. Transforming growth f actor-β in benign and malignant prostate. Prostate 1999; 39:285–290.

    Article  PubMed  CAS  Google Scholar 

  174. Tang B, de Castro K, Barnes HE, et al. Loss of responsiveness to transforming growth factor β induces malignant transformation of nontumorigenic rat prostate epithelial cells. Cancer Res 1999; 59:4834–4842.

    PubMed  CAS  Google Scholar 

  175. Jakowlew SB, Moody TW, Mariano JM. Transforming growth f actor-β receptors in human cancer cell lines: analysis of transcript, protein and proliferation. Anticancer Res 1997; 17:1849–1860.

    PubMed  CAS  Google Scholar 

  176. Webber MM, Quader ST, Kleinman HK, et al. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression. Prostate 2001; 47:1–13.

    Article  PubMed  CAS  Google Scholar 

  177. CTeicher BA, Kakeji Y, Ara G, et al. Prostate carcinoma response to cytotoxic therapy: in vivo resistance. In Vivo 1997; 11:453–461.

    Google Scholar 

  178. Steiner MS, Barrack ER. Transforming growth factor-β 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol Endocrinol 1992; 6:15–25.

    Article  PubMed  CAS  Google Scholar 

  179. Matthews E, Yang T, Janulis L, et al. Down-regulation of TGF-β1 production restores immunogenicity in prostate cancer cells. Br J Cancer 2000; 83:519–525.

    Article  PubMed  CAS  Google Scholar 

  180. Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation 2002; 70:473–485.

    Article  PubMed  Google Scholar 

  181. Tuxhorn JA, Ayala GE, Smith MJ, et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002; 8:2912–2923.

    PubMed  CAS  Google Scholar 

  182. Ayala G, Tuxhorn J A, Wheeler TM, et al. Reactive stroma as apredictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res 2003; 9:4792–4801.

    PubMed  CAS  Google Scholar 

  183. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432:332–337.

    Article  PubMed  CAS  Google Scholar 

  184. Olumi AF, Grossfeld GD, Hayward SW, et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59:5002–5011.

    PubMed  CAS  Google Scholar 

  185. San Francisco IF, DeWolf WC, Peehl DM, et al. Expression of transforming growth factor-β 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. Int J Cancer 2004; 112:213–218.

    Article  PubMed  CAS  Google Scholar 

  186. Tuxhorn JA, McAlhany SJ, Dang TD, et al. Stromal cells promote angiogenesis and growth of human prostate tumors in adifferential reactive stroma (DRS)xeno graft model. Cancer Res 2002; 62:3298–3307.

    PubMed  CAS  Google Scholar 

  187. Kleinman HK, McGarvey ML, Hassell JR, et al. Basement membrane complexes with biological activity. Biochemistry 1986; 25:312–318.

    Article  PubMed  CAS  Google Scholar 

  188. Swarm RL. Transplantation of a chondrosarcoma in mice of different inbred strains. J Natl Cancer Inst 1963; 31:953–975.

    PubMed  CAS  Google Scholar 

  189. Tuxhorn JA, McAlhany SJ, Yang F, et al. Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 2002; 62:6021–6025.

    PubMed  CAS  Google Scholar 

  190. Dumont N, Arteaga CL. Targeting the TGF β signaling network in human neoplasia. Cancer Cell 2003; 3:531–536.

    Article  PubMed  CAS  Google Scholar 

  191. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004; 3:1011–1022.

    Article  PubMed  CAS  Google Scholar 

  192. Mead AL, Wong TT, Cordeiro MF, et al. Evaluation of anti-TGF-β2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 2003; 44:3394–3401.

    Article  PubMed  Google Scholar 

  193. Benigni A, Zoja C, Corna D, et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 2003; 14:1816–1824.

    Article  PubMed  CAS  Google Scholar 

  194. Dasch JR, Pace DR, Waegell W, et al. Monoclonal antibodies recognizing transforming growth factor-β. Bioactivity neutralization and transforming growth factor β 2 affinity purification. J Immunol. 1989; 142:1536–1541.

    PubMed  CAS  Google Scholar 

  195. Lucas C, Bald LN, Fendly BM, et al. The autocrine production of transforming growth factor-β 1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. J Immunol 1990; 145:1415–1422.

    CAS  Google Scholar 

  196. Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Rev 2001; 20:133–143.

    Article  PubMed  CAS  Google Scholar 

  197. Ohmori T, Yang JL, Price JO, et al. Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res 1998; 245:350–359.

    Article  PubMed  CAS  Google Scholar 

  198. Teicher B A, Herman TS, Holden SA, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247:1457–1461.

    Article  PubMed  CAS  Google Scholar 

  199. Teicher BA, Holden SA, Ara G, et al. Transforming growth factor-β in in vivo resistance. Cancer Chemother Pharmacol 1996; 37:601–609.

    Article  PubMed  CAS  Google Scholar 

  200. Teicher BA, Ikebe M, Ara G, et al. Transforming growth factor-β 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo 1997; 11:463–472.

    PubMed  CAS  Google Scholar 

  201. Komesli S, Vivien D, Dutartre P. Chimeric extracellular domain type II transforming growth factor (TGF)-β receptor fused to the Fc region of human immunoglobulin as a TGF-β antagonist. Eur J Biochem 1998; 254:505–513.

    Article  PubMed  CAS  Google Scholar 

  202. George J, Roulot D, Koteliansky VE, et al. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor β type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci U S A 1999; 96:12,719–12,724.

    Article  PubMed  CAS  Google Scholar 

  203. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002; 109:1607–1615.

    Article  PubMed  CAS  Google Scholar 

  204. Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002; 109:1551–1559.

    Article  PubMed  CAS  Google Scholar 

  205. Suzuki E, Kapoor V, Cheung HK, et al. Soluble type II transforming growth factor-β receptor inhibits established murine malignant mesothelioma tumor growth by augmenting host antitumor immunity. Clin Cancer Res 2004; 10:5907–5918.

    Article  PubMed  CAS  Google Scholar 

  206. Wojtowicz-Praga S, Verma UN, Wakefield L, et al. Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor β antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 1996; 19:169–175.

    PubMed  CAS  Google Scholar 

  207. Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-β1: differential effects on multiple myeloma versus normal B cells. Blood 1996; 87:1928–1938.

    PubMed  CAS  Google Scholar 

  208. Ge R, Rajeev V, Subramanian G, et al. Selective inhibitors of type I receptor kinase block cellular transforming growth factor-β signaling. Biochem Pharmacol 2004; 68:41–50.

    Article  PubMed  CAS  Google Scholar 

  209. Inman GJ, Nicolas FJ, Callahan JF, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62:65–74.

    Article  PubMed  CAS  Google Scholar 

  210. Sawyer JS, Anderson BD, Beight DW, et al. Synthesis and activity of new aryl-and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J Med Chem 2003; 46:3953–3956.

    Article  PubMed  CAS  Google Scholar 

  211. Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming growth factor β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype 1. Cancer Res 2004; 64:5200–5211.

    Article  PubMed  CAS  Google Scholar 

  212. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004; 64:7954–7961.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pinkas, J., Teicher, B.A. (2006). Role of TGF-β in Tumor Progression and Metastasis. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics