Skip to main content

Resistance to Antiestrogens

  • Chapter
Book cover Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Discovery of the estrogen receptors (ERs) has been critical for the development of endocrine therapy in breast cancer. Expression of ER-?, the predominant isoform, in breast tumors of both pre- and postmenopausal women is a highly predictive marker for response to antiestrogen treatment. Tamoxifen, an antiestrogen, that competitively blocks the actions of 17β-estradiol (E2), binds and activates ER-? in breast tumors and is used for treating all stages of breast cancer. Although tamoxifen is effective in reducing recurrence fromER-positive early stage breast cancer, approximately 50% of patients do not benefit from its use, because their breast cancers have intrinsic or de novo tamoxifen-resistance. Additionally, most patients that do initially benefit from tamoxifen, will develop acquired resistance to the drug during the treatment regimen. Despite increasing use of the aromatase inhibitors as breast cancer therapies, tamoxifen remains the hormonal therapy of choice in premenopausal women, and is the only hormonal therapy approved for breast cancer prevention. Therefore, a current goal in breast cancer research is to elucidate the mechanisms of both intrinsic and acquired resistance to tamoxifen and other antiestrogens in order to develop new therapeutic strategies to prevent and/or treat resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jensen EV J,HI.Basic Guides to the mechanism of estrogen action. Recent Prog Horm Res 1962; 18:387–414

    CAS  Google Scholar 

  2. Jordan VC, Dowse LJ. Tamoxifen as an anti-tumour agent: effect on oestrogen binding. J Endocrinol 1976; 68:297–303.

    PubMed  CAS  Google Scholar 

  3. Cole MP, Jones CT, Todd ID. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br J Cancer 1971; 25:270–275.

    PubMed  CAS  Google Scholar 

  4. Horwitz KBMW, Pearson OH, et al. Predicting response to endocrine therapy in human breast cancer. Science 1975; 189:726–727.

    PubMed  CAS  Google Scholar 

  5. Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials [see comment]. Lancet 1998; 351:1451–1467.

    Google Scholar 

  6. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham KDL, Cronin WM. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 1994; 86:527–537.

    PubMed  CAS  Google Scholar 

  7. Gottardis MM, Robinson SP, Satyaswaroop PG, Jordan VC. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res 1988; 48:812–815.

    PubMed  CAS  Google Scholar 

  8. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998; 90:1371–1388.

    PubMed  CAS  Google Scholar 

  9. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study [see comment]. J Natl Cancer Inst 1998; 90:1371–1388.

    PubMed  CAS  Google Scholar 

  10. Jordan VC, Phelps E, Lindgren JU. Effects of anti-estrogens on bone in castrated and intact female rats. Breast Cancer Res Treat 1987; 10:31–35.

    PubMed  CAS  Google Scholar 

  11. Jordan VC, Lababidi MK, Langan-Fahey S. Suppression of mouse mammary tumorigenesis by longterm amoxifen therapy. J Natl Cancer Inst 1991; 83:492–496.

    PubMed  CAS  Google Scholar 

  12. Jordan VC. Selective estrogen receptor modulation: a personal perspective. Cancer Res 2001; 61:5683–5687.

    PubMed  CAS  Google Scholar 

  13. Love RR, Wiebe DA, Feyzi JM, Newcomb PA, Chappell RJ. Effects of tamoxifen on cardiovascular risk factors in postmenopausal women after 5 years of treatment. J Natl Cancer Inst 1994; 86:1534–1539.

    PubMed  CAS  Google Scholar 

  14. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial [see comment]. Lancet 1999; 353:1993–2000.

    PubMed  CAS  Google Scholar 

  15. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83:835–839.

    PubMed  CAS  Google Scholar 

  16. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 2001; 29:2905-2919.

    Google Scholar 

  17. Kushner PJ, Agard DA, Greene GL, etal. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 2000; 74:311–317.

    PubMed  CAS  Google Scholar 

  18. Bjornstrom L, Sjoberg M. Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. Nucl Recept 2004; 2:3.

    Google Scholar 

  19. Green S, Walter P, Greene G, et al. Cloning of the human oestrogen receptor cDNA. J Steroid Biochem 1986; 24:77–83.

    PubMed  CAS  Google Scholar 

  20. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996; 93:5925-5930.

    Google Scholar 

  21. Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392:49–53.

    PubMed  CAS  Google Scholar 

  22. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P. Functional domains of the human estrogen receptor. Cell 1987; 51:941–951.

    PubMed  CAS  Google Scholar 

  23. Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ER? and ER? at AP1 sites. Science 1997; 277:1508–1510.

    PubMed  CAS  Google Scholar 

  24. Tonetti DA, Rubenstein R, DeLeon M, et al. Stable transfection of an estrogen receptor ? cDNA isoform into MDA-MB-231 breast cancer cells. J Steroid Biochem Mol Biol 2003; 87:47–55.

    PubMed  CAS  Google Scholar 

  25. Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995; 270:1491-1494.

    Google Scholar 

  26. Palmieri C, Cheng GJ, Saji S, et al. Estrogen receptor ? in breast cancer. Endocr Relat Cancer 2002; 9:1–13.

    PubMed  CAS  Google Scholar 

  27. Omoto Y, Eguchi H, Yamamoto-Yamaguchi Y, Hayashi S. Estrogen receptor (ER) ?1 and ER?cx/?2 inhibit ER? function differently in breast cancer cell line MCF7. Oncogene 2003; 22:5011–5020.

    PubMed  CAS  Google Scholar 

  28. Santen RJ, Song RX, Zhang Z, et al. Adaptive hypersensitivity to estrogen: mechanism for superiority of aromatase inhibitors over selective estrogen receptor modulators for breast cancer treatment and prevention. Endocr Relat Cancer 2003; 10:111–130.

    PubMed  CAS  Google Scholar 

  29. Kumar R, Wang RA, Mazumdar A, et al. A naturally occurring MTA1 variant sequesters oestrogen receptor-? in the cytoplasm. Nature 2002; 418:654–657.

    PubMed  CAS  Google Scholar 

  30. Hall JM, Couse JF, Korach KS. The multif aceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 2001; 276:36, 869–36,872.

    Google Scholar 

  31. Anzick SL, Kononen J, Walker RL, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277:965–968.

    PubMed  CAS  Google Scholar 

  32. Chen H, Lin RJ, Schiltz RL, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997; 90:569–5680.

    PubMed  CAS  Google Scholar 

  33. Li H, Gomes PJ, Chen JD. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A 1997; 94:8479–8484.

    PubMed  CAS  Google Scholar 

  34. Suen CS, Berrodin TJ, Mastroeni R, Cheskis BJ, Lyttle CR, Frail DE. A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. J Biol Chem 1998; 273:27, 645–27,653.

    Google Scholar 

  35. Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270:1354-1357.

    Google Scholar 

  36. Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 1997; 17:2735-2744.

    Google Scholar 

  37. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 1996; 15:3667-3675.

    Google Scholar 

  38. Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387:733–736.

    PubMed  CAS  Google Scholar 

  39. DiRenzo J, Shang Y, Phelan M, et al. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol 2000; 20:7541–7549.

    PubMed  CAS  Google Scholar 

  40. Rosenfeld MG, Glass CK. Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001; 276:36, 865–36,868.

    Google Scholar 

  41. Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. Science 2002; 295:2465-2468.

    Google Scholar 

  42. Huang HJ, Norris JD, McDonnell DP. Identification of a negative regulatory surface within estrogen receptor ? provides evidence in support of a role for corepressors in regulating cellular responses to agonists and antagonists. Mol Endocrinol 2002;16:1778–1792.

    PubMed  CAS  Google Scholar 

  43. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000;103:843–852.

    PubMed  CAS  Google Scholar 

  44. Webb P, Nguyen P, Kushner PJ. Differential SERM effects on corepressor binding dictate ER? activity in vivo. J Biol Chem 2003;278:6912–6920.

    PubMed  CAS  Google Scholar 

  45. Wei LN, Hu X, Chandra D, Seto E, Farooqui M. Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 2000;275:40,782–40,787.

    PubMed  CAS  Google Scholar 

  46. Oesterreich S, Zhang Q, Hopp T, et al. Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein HET/S AF-B, a novel inhibitor of ER-mediated transactivation. Mol Endocrinol 2000;14:369–381.

    PubMed  CAS  Google Scholar 

  47. Johansson L, Thomsen JS, Damdimopoulos AE, Spyrou G, Gustafsson JA, Treuter E. The orphan nuclear receptor S HP inhibits agonist-dependent transcriptional activity of estrogen receptors ER? and ER?. J Biol Chem 1999;274:345–353.

    PubMed  CAS  Google Scholar 

  48. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS. An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci U S A 1999;96:6947–6952.

    PubMed  CAS  Google Scholar 

  49. Fisher B, Redmond C, Brown A, et al. Adjuvant chemotherapy with and without tamoxifen in the treatment of primary breast cancer: 5-year results from the National Surgical Adj uvant Breast and B owel Project Trial. J Clin Oncol 1986;4:459–471.

    PubMed  CAS  Google Scholar 

  50. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 1996;14:2584–2589.

    PubMed  CAS  Google Scholar 

  51. Bachleitner-Hofmann T, Pichler-Gebhard B, et al. Pattern of hormone receptor status of secondary contralateral breast cancers in patients receiving adjuvant tamoxifen. ClinCancerRes 2002;8:3427–3432.

    CAS  Google Scholar 

  52. Johnston SR, Saccani-Jotti G, Smith IE, et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 1995;55:3331–3338.

    PubMed  CAS  Google Scholar 

  53. Hopp TA, Fuqua SA. Estrogen receptor variants. J Mammary Gland Biol Neoplasia 1998;3:73–83.

    PubMed  CAS  Google Scholar 

  54. Murphy LC, Dotzlaw H, Leygue E, Coutts A, Watson P. The pathophysiological role of estrogen receptor variants in human breast cancer. J Steroid Biochem Mol Biol 1998;65:175–180.

    PubMed  CAS  Google Scholar 

  55. Fuqua S A. The role of estrogen receptors in breast cancer metastasis. J Mammary Gland Biol Neoplasia 2001;6:407–417.

    PubMed  CAS  Google Scholar 

  56. Jiang SY, Langan-Fahey SM, Stella AL, McCague R, Jordan VC. Point mutation of estrogen receptor (ER) in the ligand-binding domain changes the pharmacology of antiestrogens in ER-negative breast cancer cells stably expressing complementary DNAs for ER. Mol Endocrinol 1992; 6:2167-2174.

    Google Scholar 

  57. Liu H, Park WC, Bentrem DJ, etal. Structure-function relationships of the raloxifene-estrogen receptora complex for regulating transforming growth factor-? expression in breast cancer cells. J Biol Chem 2002;277:9189–9198.

    PubMed  CAS  Google Scholar 

  58. Schwartz JA, Zhong L, Deighton-Collins S, Zhao C, Skafar DF. Mutations targeted to a predicted helix in the extreme carboxyl-terminal region of the human estrogen receptor-? alter its response to estradiol and 4-hydroxytamoxifen. J Biol Chem 2002;277:13,202–13,209.

    PubMed  CAS  Google Scholar 

  59. Kelly MJ, Lagrange AH, Wagner EJ, Ronnekleiv OK. Rapid effects of estrogen to modulate G proteincoupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 1999;64:64–75.

    PubMed  CAS  Google Scholar 

  60. Migliaccio A, Di Domenico M, Castoria G, et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996;15:1292–1300.

    PubMed  CAS  Google Scholar 

  61. Song RX, Mor G, Naftolin F, et al.Effect of long-term estrogen deprivation on apoptotic responses of breast cancer cells to 17?-estradiol. J Natl Cancer Inst 2001;93:1714–1723.

    PubMed  CAS  Google Scholar 

  62. Baum M, Buzdar A, Cuzick J, et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer 2003;98:1802–1810.

    PubMed  CAS  Google Scholar 

  63. Dowsett M, Group obot AT. Analysis of time to recurrence in the ATAC (arimidex, tamoxifen, alone or in combination) trial according to estrogen and progesterone receptor status. Breast Cancer Res Treat 2003;82(Suppl 1):S7.

    Google Scholar 

  64. Hopp TA, Weiss HL, Hilsenbeck SG, et al. Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 2004;10:2751–2760.

    PubMed  CAS  Google Scholar 

  65. Smith CL, Nawaz Z, O’Malley BW. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 1997;11:657–666.

    PubMed  CAS  Google Scholar 

  66. Osborne CK, Bardou V, Hopp TA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 2003;95:353–361.

    PubMed  CAS  Google Scholar 

  67. Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNAmethyltransferases 1, 3A, and3B in sporadic breast carcinomas. Clin Cancer Res 2003;9:4415–4422.

    PubMed  CAS  Google Scholar 

  68. Kurokawa H, Arteaga CL. ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res 2003; 9(Pt 2):511S–515S.

    PubMed  CAS  Google Scholar 

  69. De Laurentis M, Bianco AR, De Placido S. Ameta-analysis of the interaction between HER2 expression and response to endocrine treatment in advanced breast cancer. Biol Ther Breast Cancer 2000;2:11–14.

    Google Scholar 

  70. Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1-and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial [see comment]. J Clin Oncol 2001;19:3808–3816.

    PubMed  CAS  Google Scholar 

  71. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–137.

    PubMed  CAS  Google Scholar 

  72. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001;37(Suppl 4):S3–S8.

    PubMed  CAS  Google Scholar 

  73. Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001;61(Suppl 2):S1–S13.

    Google Scholar 

  74. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol 2001;12(Suppl 1):S3–S8.

    PubMed  Google Scholar 

  75. Spigel DR, Burstein HJ. HER2 overexpressing metastatic breast cancer. Curr Treat Options Oncol 2002;3:163–174.

    PubMed  Google Scholar 

  76. Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 1993;24:85–95.

    CAS  Google Scholar 

  77. Smith I, Dowsett M, Trialists ObotI. Comparison of anastrozole versus tamoxifen alone and in combination as neoadjuvant treatment of estrogen receptor-positive (ER+) operable breast cancer in postmenopausal women: the IMPACT trial. Breast Cancer Res Treat 2003;82(Suppl 1):S6.

    Google Scholar 

  78. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 2004;96:926–935.

    PubMed  CAS  Google Scholar 

  79. Osipo C, Liu H, Gajdos C, Jordan VC. HER2/neu and EGFR mRNA expression in tamoxifen resistant breast cancer. Proc Am Assoc Cancer Res 2002; 43.

    Google Scholar 

  80. Morris C. The role of EGFR-directed therapy in the treatment of breast cancer. Breast Cancer Res Treat 2002;75(Suppl 1):S51–S55; discussion S57-S59.

    PubMed  CAS  Google Scholar 

  81. Shao W, Brown M. Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 2004;6:39–52.

    PubMed  CAS  Google Scholar 

  82. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783–792.

    PubMed  CAS  Google Scholar 

  83. Nahta R, Hortobagyi GN, Esteva FJ. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist 2003;8:5–17.

    PubMed  CAS  Google Scholar 

  84. Wong ZW, Isaacs C, Harris L, Ellis M. A phase II trial of letrozole and trastuzumab for ER and/or PR and HER positive metastatic breast cancer. Breast Cancer Res Treat 2003;82(Suppl 1):S106.

    Google Scholar 

  85. Kurokawa H, Lenferink AE, Simpson JF, et al. Inhibition of HER2/neu (erbB-2) andmitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 2000;60:5887–5894.

    PubMed  CAS  Google Scholar 

  86. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D. Hyperactivation of MAPK induces loss of ER? expression in breast cancer cells. Mol Endocrinol 2001;15:1344–1359.

    PubMed  CAS  Google Scholar 

  87. Bunone G, Briand PA, Miksicek RJ, Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996;15:2174–2183.

    PubMed  CAS  Google Scholar 

  88. Fry MJ. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001; 3:304–312.

    CAS  Google Scholar 

  89. Castoria G, Migliaccio A, Bilancio A, et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 2001;20:6050–6059.

    PubMed  CAS  Google Scholar 

  90. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor ?: a new model for anti-estrogen resistance. J Biol Chem 2001;276:9817–9824.

    PubMed  CAS  Google Scholar 

  91. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321–333.

    PubMed  CAS  Google Scholar 

  92. Dauvois S, White R, Parker MG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 1993;106(Pt 4):1377–1388.

    Google Scholar 

  93. Dauvois S, Danielian PS, White R, Parker MG. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci U S A 1992;89:4037–4041.

    PubMed  CAS  Google Scholar 

  94. Pukkala E, Kyyronen P, Sankila R, Holli K. Tamoxifen and toremifene treatment of breast cancer and risk of subsequent endometrial cancer: a population-based case-control study. Int J Cancer 2002;100:337–341.

    PubMed  CAS  Google Scholar 

  95. Holli K. Tamoxifen versus toremifene in the adjuvant treatment of breast cancer. Eur J Cancer 2002;38(Suppl 6):S37–S38.

    Google Scholar 

  96. Howel SJ, Johnston SR, Howell A. The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract Res Clin Endocrinol Metab 2004;18:47–66.

    Google Scholar 

  97. Buzdar AU, Marcus C, Holmes F, Hug V, Hortobagyi G. Phase II evaluation of Ly156758 in metastatic breast cancer. Oncology 1988;45:344–345.

    PubMed  CAS  Google Scholar 

  98. Kelminski A. The Study of Tamoxifen and Raloxifene (STAR trial) for the prevention of breast cancer. Hawaii Med J 2002;61:209–210.

    PubMed  Google Scholar 

  99. Black LJ, Sato M, Rowley ER, et al. Raloxifene (LY139481HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 1994;93:63–69.

    PubMed  CAS  Google Scholar 

  100. O’Regan RM, Gajdos C, Dardes RC, et al. Effects of raloxifene after tamoxifen on breast and endometrial tumor growth in athymic mice [see comment]. J Natl Cancer Inst 2002;94:274–283.

    PubMed  CAS  Google Scholar 

  101. Osborne CK, Wakeling A, Nicholson RI. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 2004;90(Suppl 1):S2–S6.

    PubMed  CAS  Google Scholar 

  102. Howell A, Robertson JF, Abram P, et al. Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J Clin Oncol 2004;22:1605–1613.

    PubMed  CAS  Google Scholar 

  103. Johnston SR, Dowsett M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 2003;3:821–831.

    PubMed  CAS  Google Scholar 

  104. Bonneterre J, Buzdar A, Nabholtz JM, et al. Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer 2001;92:2247–2258.

    PubMed  CAS  Google Scholar 

  105. Mouridsen H, Gershanovich M, Sun Y, et al. Superior efficacy of letrozole versus tamoxifen as firstline therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 2001;19:2596–2606.

    PubMed  CAS  Google Scholar 

  106. Paridaens R, Dirix L, Lohrisch C, et al. Mature results of a randomized phase II multicenter study of exemestane versus tamoxifen as first-line hormone therapy for postmenopausal women with metastatic breast cancer. Ann Oncol 2003;14:1391–1398.

    PubMed  CAS  Google Scholar 

  107. Fisher B, Dignam J, Bryant J, Wolmark N. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial [see comment]. J Natl Cancer Inst 2001;93:684–690.

    PubMed  CAS  Google Scholar 

  108. Goss PE. Final results of MA-17 trial. Special Presentation ASCO 2004.

    Google Scholar 

  109. Coombes RC, Hall E, Gibson LJ, et al. Special Presentation ASCO 2004 A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 2004;350:1081–1092.

    PubMed  CAS  Google Scholar 

  110. Goss PE, Ingle JN, Martino S, et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer [see comment]. N Engl J Med 2003;349:1793–1802.

    PubMed  CAS  Google Scholar 

  111. Buzdar A, Jonat W, Howell A, et al. Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J Clin Oncol 1996;14:2000–2011.

    PubMed  CAS  Google Scholar 

  112. Dombernowsky P, Smith I, Falkson G, et al. Letrozole, a new oral aromatase inhibitor for advanced breast cancer: double-blind randomized trial showing a dose effect and improved efficacy and tolerability compared with megestrol acetate. J Clin Oncol 1998;16:453–461.

    PubMed  CAS  Google Scholar 

  113. Kao YC, Cam LL, Laughton CA, Zhou D, Chen S. Binding characteristics of seven inhibitors of human aromatase: a site-directed mutagenesis study. Cancer Res 1996;56:3451–3460.

    PubMed  CAS  Google Scholar 

  114. Sourdaine P, Parker MG, Telford J, Miller WR. Analysis of the aromatase cytochrome P450 gene in human breast cancers. J Mol Endocrinol 1994;13:331–337.

    PubMed  CAS  Google Scholar 

  115. Masamura S, Santner SJ, Heitjan DF, Santen RJ. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab 1995;80:2918–2925.

    PubMed  CAS  Google Scholar 

  116. Santen R, Jeng MH, Wang JP, et al. Adaptive hypersensitivity to estradiol: potential mechanism for secondary hormonal responses in breast cancer patients. J Steroid Biochem Mol Biol 2001;79:115–125.

    PubMed  CAS  Google Scholar 

  117. Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M. Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. J Steroid Biochem Mol Biol 2002;81:333–341.

    PubMed  CAS  Google Scholar 

  118. Martin LA, Farmer I, Johnston SR, Ali S, Marshall C, Dowsett M. Enhanced estrogen receptor (ER) ?, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. sJ Biol Chem 2003;278:30,458–30,468.

    CAS  Google Scholar 

  119. Jeng MH, Yue W, Eischeid A, Wang JP, Santen RJ. Role of MAP kinase in the enhanced cell proliferation of long-term estrogen deprived human breast cancer cells. Breast Cancer Res Treat 2000;62:167–175.

    PubMed  CAS  Google Scholar 

  120. Shim WS, Conaway M, Masamura S, et al. Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology 2000;141:396–405.

    PubMed  CAS  Google Scholar 

  121. Stephen RL, Shaw LE, Larsen C, Corcoran D, Darbre PD. Insulin-like growth factor receptor levels are regulated by cell density and by long term estrogen deprivation in MCF7 human breast cancer cells. J Biol Chem 2001;276:40,080–40,086.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Osipo, C., O’Regan, R.M. (2006). Resistance to Antiestrogens. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics