Skip to main content

CpG Island Methylation and Drug Resistance

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1631 Accesses

Abstract

Covalent epigenetic modifications such as DNA hypermethylation and histone posttranslational modifications are associated with transcriptional inactivation of many genes and are important during tumor development and progression. Genes involved in key DNA damage response pathways, such as cell cycle control, apoptosis signaling, and DNA repair, can frequently become methylated and epigenetically silenced in tumors. This may lead to differences in intrinsic sensitivity of tumors to chemotherapy, depending on the specific function of the gene inactivated. Furthermore, chemotherapy itself can exert a selective pressure on epigenetically silenced drug sensitivity genes present in subpopulations of cells, leading to acquired chemoresistance. Since the DNA sequences of epigenetically inactivated genes are not mutated but rather subject to reversible modifications via DNA methyltransferases (DNMTs) or histone modification, it is possible to reverse silencing using small molecule inhibitors. Such compounds show antitumor activity and can increase the sensitivity of drug-resistant preclinical tumor models. Clinical trials of epigenetic therapies are now underway. Epigenetic profiling, using DNA methylation and histone analysis, will provide guidance on optimization of these therapies with conventional chemotherapy and will help identify patient populations who may particularly benefit from such approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu K, Wang YF, Cantemir C, Muller MT. Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol 2003; 23:2709–2719.

    Article  PubMed  CAS  Google Scholar 

  2. Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell 1999; 99(5):451–454.

    Article  PubMed  CAS  Google Scholar 

  3. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300:455.

    Article  PubMed  CAS  Google Scholar 

  4. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300:489–192.

    Article  PubMed  CAS  Google Scholar 

  5. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998; 20:116–117.

    Article  PubMed  CAS  Google Scholar 

  6. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumor-type-specific patterns. Nat Genet 2000; 24:132–138.

    Article  PubMed  CAS  Google Scholar 

  7. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002; 196:1–7.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999; 96:8681–8686.

    Article  PubMed  CAS  Google Scholar 

  10. Dahl C, Guldberg P. DNA methylation analysis techniques. Biogerontology 2003; 4:233–450.

    Article  PubMed  CAS  Google Scholar 

  11. Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ. Identification and resolution of artifacts in bisulfite sequencing. Methods 2002; 27:101–107.

    Article  PubMed  CAS  Google Scholar 

  12. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 2001; 29:E65–E65.

    Article  PubMed  CAS  Google Scholar 

  13. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996; 93:9821–9826.

    Article  PubMed  CAS  Google Scholar 

  14. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25:2532–2534.

    Article  PubMed  CAS  Google Scholar 

  15. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89:1827–1831.

    Article  PubMed  CAS  Google Scholar 

  16. Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 1999; 8:459–470.

    Article  PubMed  CAS  Google Scholar 

  17. Wei SH, Chen CM, Strathdee G, et al. Methylation microarray analysis of late-stage ovarian carcinomas distinguishes progression-free survival in patients and identifies candidate epigenetic markers. Clin Cancer Res 2002; 8:2246–2252.

    PubMed  CAS  Google Scholar 

  18. Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004; 4:296–307.

    Article  PubMed  CAS  Google Scholar 

  19. Mattern J, Eichhorn U, Kaina B, Volm M. O6-methylguanine-DNA methyltransferase activity and sensitivity to cyclophosphamide and cisplatin in human lung tumor xenografts. Int J Cancer 1998; 77:919–922.

    Article  PubMed  CAS  Google Scholar 

  20. Silber JR, Bobola MS, Ghatan S, Blank A, Kolstoe DD, Berger MS. O6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res 1998; 58:1068–1073.

    PubMed  CAS  Google Scholar 

  21. Silber JR, Blank A, Bobola MS, Ghatan S, Kolstoe DD, Berger MS. O6-methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: frequency and time to tumorprogression after alkylating agent-based chemotherapy. Clin Cancer Res 1999; 5:807–814.

    PubMed  CAS  Google Scholar 

  22. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999; 59:793–797.

    PubMed  CAS  Google Scholar 

  23. Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 2004; 10:1871–1874.

    Article  PubMed  CAS  Google Scholar 

  24. Esteller M, Gaidano G, Goodman SN, et al. Hypermethylation of the DNA repair gene O-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst 2002; 94:26–32.

    PubMed  CAS  Google Scholar 

  25. Olopade OI, Wei M. FANCF methylation contributes to chemoselectivity in ovarian cancer. Cancer Cell 2003; 3:417–420.

    Article  PubMed  CAS  Google Scholar 

  26. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 2003; 9:568–574.

    Article  PubMed  CAS  Google Scholar 

  27. Tischkowitz M, Ameziane N, Waisfisz Q, et al. Bi-allelic silencing of the Fanconi anaemia gene FANCF in acute myeloid leukaemia. Br J Haematol 2003; 123:469–471.

    Article  PubMed  CAS  Google Scholar 

  28. Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT. Inactivation of the Fanconi anemia/ BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 2004; 23:1000–1004.

    Article  PubMed  CAS  Google Scholar 

  29. Papouli E, Cejka P, Jiricny J. Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells. Cancer Res 2004; 64:3391–3394.

    Article  PubMed  CAS  Google Scholar 

  30. Stojic L, Mojas N, Cejka P, et al. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev 2004; 18:1331–1344.

    Article  PubMed  CAS  Google Scholar 

  31. Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang J Y. Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci USA 2003; 100:2420–2425.

    Article  PubMed  CAS  Google Scholar 

  32. Duckett DR, Bronstein SM, Taya Y, Modrich P. hMutSa and MutLadependentphosphorylation ofp53 in response to DNA methylator damage. Proc Natl Acad Sci U S A 1999; 96:12,384–12,388.

    Article  PubMed  CAS  Google Scholar 

  33. Karran P, Hampson R. Genomic instability and tolerance to alkylating agents. Cancer Surveys 1996; 28:69–85.

    PubMed  CAS  Google Scholar 

  34. Moreland NJ, Illand M, Kim YT, Paul J, Brown R. Modulation of drug resistance mediated by loss of mismatch repair by the DNA polymerase inhibitor aphidicolin. Cancer Res 1999; 59:2102–2106.

    PubMed  CAS  Google Scholar 

  35. Fu WN, Bertoni F, Kelsey SM, et al. Role of DNA methylation in the suppression of Apaf-1 protein in human leukaemia. Oncogene 2003; 22:451–455.

    Article  PubMed  CAS  Google Scholar 

  36. Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409:207–211.

    Article  PubMed  CAS  Google Scholar 

  37. Slee EA, Adrain C, Martin SJ. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 1999; 6:1067–1074.

    Article  PubMed  CAS  Google Scholar 

  38. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999; 274:17,941–17,945.

    Article  PubMed  CAS  Google Scholar 

  39. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 2004; 23:2934–2949.

    Article  PubMed  CAS  Google Scholar 

  40. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor-or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 2001; 20:5865–5877.

    Article  PubMed  CAS  Google Scholar 

  41. Wei SH, Brown R, Huang TH. Aberrant DNA methylation in ovarian cancer: is there an epigenetic predisposition to drug response? Ann N Y Acad Sci 2003; 983:243–250.

    Article  PubMed  CAS  Google Scholar 

  42. Strathdee G, MacKean M, Illand M, Brown R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 1999; 18:2335–2341.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson PJ, Lo YMD. Plasma nucleic acids in the diagnosis and management of malignant disease. Clinical Chemistry 2002; 48:1186–1193.

    PubMed  CAS  Google Scholar 

  44. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumour suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999; 59:67–70.

    PubMed  CAS  Google Scholar 

  45. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute myeloid leukemia. Blood 2001; 97:2823–2829.

    Article  PubMed  CAS  Google Scholar 

  46. Gifford G, Paul J, Vasey PA, Kaye SB, Brown R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 2004; 10:4420–4426.

    Article  PubMed  CAS  Google Scholar 

  47. Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol 2002; 13:1699–1716.

    Article  PubMed  CAS  Google Scholar 

  48. Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003; 106:66–73.

    Article  PubMed  CAS  Google Scholar 

  49. Costa FF, Verbisck NV, Salim AC, et al. Epigenetic silencing of the adhesion molecule ADAM23 is highly frequent in breast tumors. Oncogene 2004; 23:1481–1488.

    Article  PubMed  CAS  Google Scholar 

  50. Domann FE, Rice JC, Hendrix MJ, Futscher BW. Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer 2000; 85:805–810.

    Article  PubMed  CAS  Google Scholar 

  51. Sellar GC, Watt KP, Rabiasz GJ, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat Genet 2003; 34:337–343.

    Article  PubMed  CAS  Google Scholar 

  52. Suh ER, Ha CS, Rankin EB, Toyota M, Traber PG. DNA methylation down-regulates CDX1 gene expression in colorectal cancer cell lines. J Biol Chem 2002; 277:35,795–35,800.

    Article  PubMed  CAS  Google Scholar 

  53. Toyooka KO, Toyooka S, Virmani AK, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 2001; 61:4556–560.

    PubMed  CAS  Google Scholar 

  54. Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH 1 gene promoter. Cancer Res 2000; 60:6039–6044.

    PubMed  CAS  Google Scholar 

  55. Lyons J, Bayar E, Fine G, et al. Decitabine: development of a DNA methyltransferase inhibitor for hematological malignancies. Curr Opin Investig Drugs 2003; 4:1442–1450.

    PubMed  CAS  Google Scholar 

  56. Issa JP. Decitabine. Curr Opin Oncol 2003; 15:446–451.

    Article  PubMed  CAS  Google Scholar 

  57. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T2 and 3T3 cells treated with 5-azacytidine. Cell 1979; 17:771–779.

    Article  PubMed  CAS  Google Scholar 

  58. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103:1635–1640.

    Article  PubMed  CAS  Google Scholar 

  59. Ellerhorst JA, Frost P, Abbruzzese JL, Newman RA, Chernajovsky Y. 2′-deoxy-5-azacytidineincreases binding of cisplatin to DNA by a mechanism independant of DNA hypomethylation. British Journal of Cancer 1993; 67:209–215.

    PubMed  CAS  Google Scholar 

  60. Kantharidis P, El-Osta A, deSilva M, et al. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin Cancer Res 1997; 3:2025–2032.

    PubMed  CAS  Google Scholar 

  61. Efferth T, Futscher BW, Osieka R. 5-Azacytidine modulates the response of sensitive and multidrug-resistant K562 leukemic cells to cytostatic drugs. Blood Cells Mol Dis 2001; 27:637–648.

    Article  PubMed  CAS  Google Scholar 

  62. Ando T, Nishimura M, Oka Y. Decitabine (5-aza-2′-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia 2000; 14:1915–1920.

    Article  PubMed  CAS  Google Scholar 

  63. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. Mutatorphenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci U S A 1994; 91:6319–6323.

    Article  PubMed  CAS  Google Scholar 

  64. Brown R, Strathdee G. Epigenomics and epigenetic therapy of cancer. Trends Mol Med 2002; 8(Suppl):S43–S48.

    Article  PubMed  CAS  Google Scholar 

  65. Okami J, Simeone DM, Logsdon CD. Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 2004; 64:5338–5346.

    Article  PubMed  CAS  Google Scholar 

  66. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6:529–535.

    Article  PubMed  CAS  Google Scholar 

  67. Balana C, Ramirez JL, Taron M, et al. O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin Cancer Res 2003; 9:1461–1468.

    PubMed  CAS  Google Scholar 

  68. van Noesel MM, van Bezouw S, Salomons GS, et al. Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation. Cancer Res 2002; 62:2157–2161.

    PubMed  Google Scholar 

  69. Kim TY, Jong HS, Song SH, et al. Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells. Oncogene 2003; 22:3943–3951.

    Article  PubMed  CAS  Google Scholar 

  70. Hopkins-Donaldson S, Ziegler A, Kurtz S, et al. Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 2003; 10:356–364.

    Article  PubMed  CAS  Google Scholar 

  71. Esteller M, Tortola S, Toyota M, etal. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 2000; 60:129–133.

    PubMed  CAS  Google Scholar 

  72. Kang JH, Kim SJ, Noh DY, et al. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest 2001; 81:573–579.

    PubMed  CAS  Google Scholar 

  73. Corn PG, Kuerbitz S J, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lympho-blastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res 1999; 59:3352–3356.

    PubMed  CAS  Google Scholar 

  74. Oka T, Ouchida M, Koyama M, et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 2002; 62:6390–6394.

    PubMed  CAS  Google Scholar 

  75. Stimson KM, Vertino PM. Methylation-mediated silencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem 2002; 277:4951–4958.

    Article  PubMed  CAS  Google Scholar 

  76. Mazieres J, He B, You L, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 2004; 64:4717–1720.

    Article  PubMed  CAS  Google Scholar 

  77. Byun DS, Cho K, Ryu BK, et al. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res 2003; 63:7068–7075.

    PubMed  CAS  Google Scholar 

  78. Esteller M, Guo M, Moreno V, et al. Hypermethylation-associated Inactivation of the cellular retinolbinding-protein 1 gene in human cancer. Cancer Res 2002; 62:5902–5905.

    PubMed  CAS  Google Scholar 

  79. Evron E, Umbricht CB, Korz D, et al. Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 2001; 61:2782–2787.

    PubMed  CAS  Google Scholar 

  80. Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton TC. LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J Biol Chem 2003; 278:6041–6049.

    Article  PubMed  CAS  Google Scholar 

  81. Li Y, Nagai H, Ohno T, et al. Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood 2002; 100:2572–2577.

    Article  PubMed  CAS  Google Scholar 

  82. Palmisano WA, Crume KP, Grimes MJ, et al. Aberrant promoter methylation of the transcription factor genes PAX5 alpha and beta in human cancers. Cancer Res 2003; 63:4620–4625.

    PubMed  CAS  Google Scholar 

  83. Salvesen HB, MacDonald N, Ryan A, et al. PTEN methylation is associated with advanced stage and micro satellite instability in endometrial carcinoma. Int J Cancer 2001; 91:22–26.

    Article  PubMed  CAS  Google Scholar 

  84. Honorio S, Agathanggelou A, Wernert N, Rothe M, Maher ER, Latif F. Frequentepigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours. Oncogene 2003; 22:461–466.

    Article  PubMed  CAS  Google Scholar 

  85. Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S. Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 2001; 20:3348–3353.

    Article  PubMed  CAS  Google Scholar 

  86. Strathdee G, Appleton K, Illand M, et al. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol 2001; 158:1121–1127.

    PubMed  CAS  Google Scholar 

  87. Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE. Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res 2000; 60:1211–1216.

    PubMed  CAS  Google Scholar 

  88. Yoshikawa H, Matsubara K, Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001; 28:29–35.

    Article  PubMed  CAS  Google Scholar 

  89. He B, You L, Uematsu K, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 2003; 100:14,133–14,138.

    Article  PubMed  CAS  Google Scholar 

  90. Li Q, Ahuja N, Burger PC, Issa JP. Methylation and silencing of the thrombospondin-1 promoter in human cancer. Oncogene 1999; 18:3284–3289.

    Article  PubMed  CAS  Google Scholar 

  91. Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, Goodfellow PJ. Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 2003; 9:2277–2287.

    PubMed  CAS  Google Scholar 

  92. Chan TF, Su TH, Yeh KT, et al. Mutational, epigenetic and expressional analyses of caveolin-1 gene in cervical cancers. Int J Oncol 2003; 23:599–604.

    PubMed  CAS  Google Scholar 

  93. Li X, Cowell JK, Sossey-Alaoui K. CLC A2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 2004; 23:1474–1480.

    Article  PubMed  CAS  Google Scholar 

  94. Kominsky SL, Argani P, Korz D, et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22:2021–2033.

    Article  PubMed  CAS  Google Scholar 

  95. Sathyanarayana UG, Toyooka S, Padar A, et al. Epigenetic inactivation of laminin-5-encoding genes in lung cancers. Clin Cancer Res 2003; 9:2665–2672.

    PubMed  CAS  Google Scholar 

  96. Dallol A, Krex D, Hesson L, Eng C, Maher ER, Latif F. Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 2003; 22:4611–4616.

    Article  PubMed  CAS  Google Scholar 

  97. Bachman KE, Herman JG, Corn PG, et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 1999; 59:798–802.

    PubMed  CAS  Google Scholar 

  98. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 1998; 95:6870–6875.

    Article  PubMed  CAS  Google Scholar 

  99. Anttila S, Hakkola J, Tuominen P, et al. Methylation of cytochrome P4501 A1 promoter in the lung is associated with tobacco smoking. Cancer Res 2003; 63:8623–8628.

    PubMed  CAS  Google Scholar 

  100. Lee TL, Leung WK, Chan MW, et al. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Cancer Res 2002; 8:1761–1766.

    PubMed  CAS  Google Scholar 

  101. Worm J, Kirkin AF, Dzhandzhugazyan KN, Guldberg P. Methylation-dependent silencing of the reduced f olate carrier gene in inherently methotrexate-resistant human breast cancer cells. J Biol Chem 2001; 276:39,990–40,000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Teodoridis, J.M., Brown, R. (2006). CpG Island Methylation and Drug Resistance. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics