Skip to main content

New and Revised Concepts in Multidrug Resistance

Sestamibi, SNPs, Substrates, and Stem Cells

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Drug resistance resulting from the outward efflux of anticancer agents by ATP binding cassette (ABC) transporters such as P-glycoprotein (P-gp) has been well described in vitro in laboratory models. The extent to which multidrug transporters are responsible for clinical drug resistance has been more difficult to determine. In one sense, P-gp can be viewed as a molecular target that was tested in the clinic before there was an adequate understanding of the diseases that were best to study, and before the best inhibitors had been identified. We now recognize that several factors may have impeded the results of clinical trials testing P-gp modulators. First, inhibitors either were not sufficiently potent or required areduction in anticancer drug dose. Alternatively, the presence of other ABC transporters, such as the multidrug resistance-associated protein (MRP1) and the ABC half-transporter ABCG2, may have confounded the results. A single-nucleotide polymorphism (SNP) that limits the expression of P-gp could prevent inhibitor therapy from benefiting patients, and increase toxicity as well. The goal of this chapter is to evaluate new directions in the study of ABC transporters in multidrug resistance, offering fresh approaches to the fundamental question that asks whether ABC transporters are important molecular targets for anticancer drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burchenal JH, Robinson E, Johnston SF, Kushida, MN. The induction of resistance to 4-amino-N10-methyl-pteroylglutamic acid in a strain of transmitted mouse leukemia. Science 1950; 111:116.

    Article  PubMed  CAS  Google Scholar 

  2. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 1973; 323:466–183.

    Article  PubMed  CAS  Google Scholar 

  3. Beck WT, Mueller TJ, Tanzer LR. Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res 1979; 39:2070–2076.

    PubMed  CAS  Google Scholar 

  4. Riordan JR, Ling V. Purification of P-glycoprotein from plasma membrane vesicles of chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem 1979; 254:12,701–12,705.

    PubMed  CAS  Google Scholar 

  5. Tsuruo T, Iida H, Tsukagoshi S, et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhancing cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981; 41:1967–1972.

    PubMed  CAS  Google Scholar 

  6. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11:1156–1166.

    Article  PubMed  CAS  Google Scholar 

  7. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75:13–33.

    Article  PubMed  CAS  Google Scholar 

  8. Kruh GD, Zeng H, Rea PA, Liu G, Chen ZS, Lee K, Belinsky MG. MRP subfamily transporters and resistance to anticancer agents. J Bioenerg Biomembr 2001; 33:493–501.

    Article  PubMed  CAS  Google Scholar 

  9. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22:7340–7358.

    Article  PubMed  CAS  Google Scholar 

  10. Leonard GD, Polgar O, Bates SE. ABC transporters and inhibitors: new targets, new agents. Curr Opin Investig Drugs 2002; 3:1652–1659.

    PubMed  CAS  Google Scholar 

  11. Joly F, Mangioni C, Nicoletto M, et al. A phase 3 study of PSC 833 in combination with paclitaxel and carboplatin (PC-PSC) versus paclitaxel and carboplatin (PC) alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary cancer of the peritoneum. Proc Am Soc Clin Oncol 2002.

    Google Scholar 

  12. Baer MR, George SL, Dodge RK, O’Loughlin KL, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100, 1224–1232.

    PubMed  CAS  Google Scholar 

  13. List AF, Spier C, Greer J, et al. Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol 1993; 11:1652–1660.

    PubMed  CAS  Google Scholar 

  14. Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003; 8:411–424.

    Article  PubMed  CAS  Google Scholar 

  15. Bates SE. Solving the problems of multidrug resistance: ABC transporters in clinical oncology, in ABC Proteins: From Bacteria to Man (Holland IB, Cole SPC, Kuchler K, Higgins CF, Eds ), Elsevier Science, London, 2002:359–391.

    Google Scholar 

  16. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  17. Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Symmans WF, Pusztai, Hortobagyi GN.Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics 2004; 3:379–398.

    Article  PubMed  CAS  Google Scholar 

  18. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20:719–726.

    Article  PubMed  CAS  Google Scholar 

  19. Suvannasankha A, Minderman H, O’Loughlin KL, et al. Breast cancer resistance protein (BCRP/ MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function. Leukemia 2004; 18:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  20. Benderra Z, Faussat AM, Sayada L, et al. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res 2004; 10:7896–7902.

    Article  PubMed  CAS  Google Scholar 

  21. Larkin A, O’Driscoll L, Kennedy S, etal. Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: a prognostic study. Int J Cancer 2004; 112:286–294.

    Article  PubMed  CAS  Google Scholar 

  22. Penson RT, Oliva E, Skates SJ, et al. Expression of multidrug resistance-1 protein inversely correlates with paclitaxel response and survival in ovarian cancer patients: a study in serial samples. Gynecol Oncol 2004; 93:98–106.

    Article  PubMed  CAS  Google Scholar 

  23. Materna V, Pleger J, Hoffmann U, Lage H. RNA expression of MDR1/P-glycoprotein, DNA-topoisomerase I, and MRP2 in ovarian carcinoma patients: correlation with chemotherapeutic response. Gynecol Oncol 2004; 94:152–160.

    Article  PubMed  CAS  Google Scholar 

  24. Arts HJ, Katsaros D, de Vries EG, Massobrio M, et al. Drug resistance-associated markers P-glycoprotein, multidrug resistance-associated protein 1, multidrug resistance-associated protein 2, and lung resistance protein as prognostic factors in ovarian carcinoma. Clin Cancer Res 1999; 5:2798–2805.

    PubMed  CAS  Google Scholar 

  25. Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer 2003; 98:581–589.

    Article  PubMed  CAS  Google Scholar 

  26. Komdeur R, Plaat BE, Hoekstra HJ, Molenaar et al. Expression of P-glycoprotein, multidrug resistance-associated protein 1, and lung resistance-related protein in human soft tissue sarcomas before and after hyperthermic isolated limb perfusion with tumor necrosis factor-a and melphalan. Cancer 2001; 91:1940–1948.

    Article  PubMed  CAS  Google Scholar 

  27. Oda Y, Saito T, Tateishi N, Ohishi Y, et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int J Cancer 2005; 114(6):854–862.

    Article  PubMed  CAS  Google Scholar 

  28. Posl M, Amling M, Grahl K, et al. P-glycoprotein expression in high grade central osteosarcoma and normal bone cells. An immunohistochemical study. Gen Diagn Pathol 1997; 142:317–325.

    PubMed  CAS  Google Scholar 

  29. Burger H, Foekens JA, Look MP, et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 2003; 9:827–836.

    PubMed  CAS  Google Scholar 

  30. Diestra JE, Condom E, Del Muro XG, et al. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: biological and clinical implications. J Urol 2003; 170:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  31. Agrawal M, Abraham J, Balis FM, et al. Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin Cancer Res 2003; 9:650–656.

    PubMed  CAS  Google Scholar 

  32. Luker GD, Facasso PM, Dobkin J, Piwnica-Worms D. Modulation of the multidrug resistance P-glycoprotein: detection with technetium-99m-sestamibi in vivo. J Nucl Med 1997; 38:369–372.

    PubMed  CAS  Google Scholar 

  33. Bakker M, van der Graaf WT, Piers DA, et al. 99mTc-Sestamibi scanning with SDZ PSC 833 as a functional detection method for resistance modulation in patients with solid tumours. Anticancer Res 1999; 19:2349–2353.

    PubMed  CAS  Google Scholar 

  34. Chen CC, Meadows B, Regis J, Kalafsky G, Fojo T, Carrasquillo JA, Bates SE. Detection of in vivo p-glycoprotein inhibition by PSC 833 using Tc-99m sestamibi. Clin Cancer Res 1997; 4:545–552.

    Google Scholar 

  35. Peck RA, Hewett J, Harding MW, et al. Phase I and pharmacokinetic study of the novel MDR1 and MRP 1 inhibitor biricodar administered alone and in combination with doxorubicin. J Clin Oncol 2001; 19:3130–3141.

    PubMed  CAS  Google Scholar 

  36. Fuster D, Munoz M, Pavia J, et al. Quantified 99mTc-MIBI scintigraphy for predicting chemotherapy response in breast cancer patients: factors that influence the level of 99m Tc-MIBI uptake. Nucl Med Commun 2002; 23:31–38.

    Article  PubMed  CAS  Google Scholar 

  37. Mubashar M, Harrington KJ, Chaudhary KS, et al. 99mTc-sestamibi imaging in the assessment of toremifene as a modulator of multidrug resistance in patients with breast cancer. J Nucl Med 2002; 43:519–525.

    PubMed  CAS  Google Scholar 

  38. Wang H, Chen XP, Qiu FZ. Correlation of expression of multidrug resistance protein and messenger RNA with 99mTc-methoxyisobutyl isonitrile (MIBI) imaging in patients with hepatocellular carcinoma. World J Gastroenterol 2004; 10:1281–1285.

    PubMed  CAS  Google Scholar 

  39. Kawata K, Kanai M, Sasada T, Iwata S, Yamamoto N, Takabayashi A. Usefulness of 99mTc-sestamibi scintigraphy in suggesting the therapeutic effect of chemotherapy against gastric cancer. Clin Cancer Res 2004; 10:3788–3793.

    Article  PubMed  CAS  Google Scholar 

  40. Chen WS, Luker KE, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D. Effects of MDR1 and MDR3 P-glycoproteins, MRP1, and BCRP/MXR/ABCP on the transport of (99m)Tc-tetrofosmin. Biochem Pharmacol 2000; 60:413–426.

    Article  PubMed  CAS  Google Scholar 

  41. Hendrikse NH, Franssen EJ, van der Graaf WT, et al. 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer 1998; 77:353–358.

    PubMed  CAS  Google Scholar 

  42. Burak Z, Moretti JL, Ersoy O, et al. 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med 2003; 44:1394–1401.

    PubMed  CAS  Google Scholar 

  43. Baldari S, Restifo Pecorella G, Cosentino S, Minutoli F. Investigation of brain tumours with (99m)Tc-MIBI SPET. Q J Nucl Med 2002; 46:336–345.

    PubMed  CAS  Google Scholar 

  44. Fuster D, Vinolas N, Mallafre C, Pavia J, Martin F, Pons F. Tetrofosmin as predictors of tumour response. Q J Nucl Med 2003; 47:58–62.

    PubMed  CAS  Google Scholar 

  45. Liang JA, Shiau YC, Yang SN, et al. Using technetium-99m-tetrofosmin scan to predict chemotherapy response of malignant lymphomas, compared with P-glycoprotein and multidrug resistance related protein expression. Oncol Rep 2002; 9:307–312.

    PubMed  Google Scholar 

  46. Yeh JJ, Hsu WH, Huang WT, Wang JJ, Ho ST, Kao A. Technetium-99m tetrofosmin SPECT predicts chemotherapy response in small cell lung cancer. Tumour Biol 2003; 24:151–155.

    Article  PubMed  Google Scholar 

  47. Liu TJ, Shiau YC, Tsai SC, Wang JJ, Ho ST, Kao A. Predicting multidrug resistance-related protein and P-glycoprotein expression with technetium-99m tetrofosmin mammoscintigraphy. Breast 2003; 12:58–62.

    Article  PubMed  Google Scholar 

  48. Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch, P. Biodistribution, radiation dose estimates, and in vivo P-gp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 2003; 44:1330–1339.

    PubMed  CAS  Google Scholar 

  49. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97:3473–3478.

    Article  PubMed  CAS  Google Scholar 

  50. Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2001; 69:169–174.

    Article  PubMed  CAS  Google Scholar 

  51. Nakamura T, Sakaeda T, Horinouchi M, et al. Effect of the mutation (C3435T) atexon26oftheMDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther 2002; 71:297–303.

    Article  PubMed  CAS  Google Scholar 

  52. Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70:189–99.

    Article  PubMed  CAS  Google Scholar 

  53. Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359:30–36.

    Article  PubMed  CAS  Google Scholar 

  54. Hitzl M, Drescher S, van der Kuip H, et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics 2001; 11:293–298.

    Article  PubMed  CAS  Google Scholar 

  55. Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of MDR1 and its impact on the pharmaco-kinetics and pharmacodynamics of drugs. Pharmacogenomics 2003; 4:397–410.

    Article  PubMed  CAS  Google Scholar 

  56. Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat 2003; 6:71–84.

    Article  PubMed  CAS  Google Scholar 

  57. Yi SY, Hong KS, Lim HS, et al. variant 2677 A allele of the MDR1 gene affects fexofenadine disposition. Clin Pharmacol Ther 2004; 76:418–427.

    Article  PubMed  CAS  Google Scholar 

  58. Drescher S, Schaeffeler E, Hitzl M, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 2002; 53:526–534.

    Article  PubMed  CAS  Google Scholar 

  59. Tang K, Ngoi SM, Gwee PC, et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002; 12:437–450.

    Article  PubMed  CAS  Google Scholar 

  60. Schwab M, Schaeffeler E, Marx C, et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003; 124:26–33.

    Article  PubMed  CAS  Google Scholar 

  61. Drozdzik M, Bialecka M, Mysliwiec K, Honczarenko K, Stankiewicz J, Sych Z. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 2003; 13:259–263.

    Article  PubMed  CAS  Google Scholar 

  62. Jamroziak K, Mlynarski W, Balcerczak E, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004; 72:314–321.

    Article  PubMed  CAS  Google Scholar 

  63. Kafka A, Sauer G, Jaeger C, et al. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int J Oncol 2003; 22:1117–1121.

    PubMed  CAS  Google Scholar 

  64. Woodahl EL, Yang Z, Bui T, Shen DD, Ho RJ. Multidrug resistance gene G1199A polymorphism alters efflux transport activity of P-glycoprotein. J Pharmacol Exp Ther 2004; 310:1199–1207.

    Article  PubMed  CAS  Google Scholar 

  65. Kuppens IE, Bosch TM, van Maanen MJ, et al. Oral bioavailability of docetaxel in combination with OC144-093 (ONT-093; Cancer Chemother Pharmacol 2005; 55:72–78.

    Article  PubMed  CAS  Google Scholar 

  66. Robey RW, Honjo Y, Morisaki K, et al. Mutations at amino acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 2003; 89:1971–1978.

    Article  PubMed  CAS  Google Scholar 

  67. Minderman H, Brooks TA, O’Loughlin KL, Ojima I, Bernacki RJ, Baer MR. Broad-spectrum modulation of ATP-binding cassette transport proteins by the taxane derivatives ortataxel (IDN-5109, BAY 59-8862; andtRA96023. Cancer Chemother Pharmacol 2004; 53:363–369.

    Article  PubMed  CAS  Google Scholar 

  68. Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 2001; 61:6635–6639.

    PubMed  CAS  Google Scholar 

  69. Allen JD, Jackson SC, Schinkel AH. A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance. Cancer Res 2002; 62:2294–2299.

    PubMed  CAS  Google Scholar 

  70. Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002; 1:611–616.

    PubMed  CAS  Google Scholar 

  71. Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 2004; 109:238–246.

    Article  PubMed  CAS  Google Scholar 

  72. Morisaki K, Robey RW, Ozvegy-Laczka C, et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 2005; 56(2): 161–172.

    Article  PubMed  CAS  Google Scholar 

  73. de Jong FA, Marsh S, Mathijssen RH, et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 2004; 10:5889–5894.

    Article  PubMed  Google Scholar 

  74. Eichelbaum M, Fromm MF, Schwab M. Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit 2004; 26:180–185.

    Article  PubMed  CAS  Google Scholar 

  75. Lee JS, Paull K, Alvarez M, et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute Drug Screen. Mol Pharmacol 1994; 46:627–638.

    PubMed  CAS  Google Scholar 

  76. Alvarez M, Paull K, Monks A, et al. Generation of a drug resistance profile by quantitation of mdr-1/ P-glycoprotein in the cell lines of the NCI anticancer drug screen. J Clin Invest. 1995; 95:2205–2214.

    PubMed  CAS  Google Scholar 

  77. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183:1797–1806.

    Article  PubMed  CAS  Google Scholar 

  78. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7:1028–1034.

    Article  PubMed  CAS  Google Scholar 

  79. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99:507–512.

    Article  PubMed  CAS  Google Scholar 

  80. Kim M, Turnquist H, Jackson J, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 2002; 8:22–28.

    PubMed  CAS  Google Scholar 

  81. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 2002; 99:12,339–12,344.

    Article  PubMed  CAS  Google Scholar 

  82. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983–3988.

    Article  PubMed  CAS  Google Scholar 

  83. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003; 100:15,178–15,183.

    Article  PubMed  CAS  Google Scholar 

  84. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63:5821–5828.

    PubMed  CAS  Google Scholar 

  85. Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct &quote;side population&quote; of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004; 101:14,228–14,233.

    Article  PubMed  CAS  Google Scholar 

  86. Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 2002; 20:11–20.

    Article  PubMed  CAS  Google Scholar 

  87. Bertoncello I, Hodgson GS, Bradley TR. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. ExpHematol 1985; 13:999–1006.

    CAS  Google Scholar 

  88. Smeets M, Raymakers R, Vierwinden G, et al. A low but functionally significant MDR1 expression protects primitive haemopoietic progenitor cells from anthracycline toxicity. Br J Haematol 1997; 96:346–355.

    Article  PubMed  CAS  Google Scholar 

  89. Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 2002; 293:670–674.

    Article  PubMed  CAS  Google Scholar 

  90. Terunuma A, Jackson KL, Kapoor V, Telford WG, Vogel JC. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J Invest Dermatol 2003; 121:1095–1103.

    Article  PubMed  CAS  Google Scholar 

  91. Mechetner E, Kyshtoobayeva A, Zonis S, et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998; 4:389–398.

    PubMed  CAS  Google Scholar 

  92. Chevillard S, Pouillart P, Beldjord C, et al. Sequential assessment of multidrug resistance phenotype and measurement of S-phase fraction as predictive markers of breast cancer response to neoadjuvant chemotherapy. Cancer 1996; 77:292–300.

    Article  PubMed  CAS  Google Scholar 

  93. Linn SC, Pinedo HM, van Ark-Otte J, et al. Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 1997; 71:787–795.

    Article  PubMed  CAS  Google Scholar 

  94. Chung HC, Rha SY, Kim JH, et al. P-glycoprotein: the intermediate end point of drug response to induction chemotherapy in locally advanced breast cancer. Breast Cancer Res Treat 1997; 42:65–72.

    Article  PubMed  CAS  Google Scholar 

  95. Lizard-Nacol S, Genne P, Coudert B, et al. MDR1 and thymidylate synthase (TS) gene expressions in advanced breast cancer: relationships to drug exposure, p53 mutations, and clinical outcome of the patients. Anticancer Res 1999; 19:3575–3581.

    PubMed  CAS  Google Scholar 

  96. Faneyte IF, Kristel PM, van de Vijver MJ. Determining MDR1/P-glycoprotein expression in breast cancer. Int J Cancer 2001; 93:114–122.

    Article  PubMed  CAS  Google Scholar 

  97. Rudas M, Filipits M, Taucher S, et al. Expression of MRP1, LRP and P-gp in breast carcinoma patients treated with preoperative chemotherapy. Breast Cancer Res Treat 2003; 81:149–157.

    Article  PubMed  CAS  Google Scholar 

  98. Han K, Kahng J, Kim M, et al. Expression of functional markers in acute nonlymphoblastic leukemia. Acta Haematol 2000; 104:174–180.

    Article  PubMed  CAS  Google Scholar 

  99. Grogan TM, Spier CM, Salmon SE, et al. P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood 1993; 81:490–495.

    PubMed  CAS  Google Scholar 

  100. Zhou DC, Zittoun R, Marie JP. Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia. Leukemia 1995; 9:1661–1666.

    PubMed  CAS  Google Scholar 

  101. Tada Y, Wada M, Migita T, et al. Increased expression of multidrug resistance-associated proteins in bladder cancer during clinical course and drug resistance to doxorubicin. Int J Cancer 2002; 98:630–635.

    Article  PubMed  CAS  Google Scholar 

  102. van der Zee AG, Hollema H, et al. Value of P-glycoprotein, glutathione S-transferase pi, c-erbB-2, and p53 as prognostic factors in ovarian carcinomas. J Clin Oncol 1995; 13:70–78.

    PubMed  Google Scholar 

  103. Moretti JL, Azaloux H, Boisseron D, Kouyoumdjian JC, Vilcoq J. Primary breast cancer imaging with technetium-99m sestamibi and its relation with P-glycoprotein overexpression. Eur J Nucl Med 1996; 23:980–986.

    Article  PubMed  CAS  Google Scholar 

  104. Del Vecchio, S, Ciarmiello, A, Pace, L, et al. Fractional retention of technetium-99m-sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients. J Nucl Med 1997; 38:1348–1351.

    PubMed  Google Scholar 

  105. Kostakoglu L, Ruacan S, Ergun EL, Sayek I, Elahi N, Bekdik CF. Influence of the heterogeneity of P-glycoprotein expression on technetium-99m-MIBI uptake in breast cancer. J Nucl Med 1998; 39:1021–1026.

    PubMed  CAS  Google Scholar 

  106. Ciarmiello A, Del Vecchio S, Silvestro P, et al. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 1998; 16:1677–1683.

    PubMed  CAS  Google Scholar 

  107. Kao CH, Tsai SC, Liu TJ, et al. P-Glycoprotein and multidrug resistance-related protein expressions in relation to technetium-99m methoxyisobutylisonitrile scintimammography findings. Cancer Res 2001; 61:1412–1414.

    PubMed  CAS  Google Scholar 

  108. Takamura Y, Miyoshi Y, Taguchi T, Noguchi S. Prediction of chemotherapeutic response by Technetium 99m-MIBI scintigraphy in breast carcinoma patients. Cancer 2001; 92:232–239.

    Article  PubMed  CAS  Google Scholar 

  109. Del Vecchio S, Zannetti A, Ciarmiello A, et al. Dynamic coupling of 99mTc-MIBI efflux and apoptotic pathway activation in untreated breast cancer patients. Eur J Nucl Med Mol Imaging 2002; 29:809–814.

    Article  PubMed  CAS  Google Scholar 

  110. Alonso O, Delgado L, Nunez M, et al. Predictive value of (99m)Tc sestamibi scintigraphy in the evaluation of doxorubicin based chemotherapy response in patients with advanced breast cancer. Nucl Med Commun 2002; 23:765–771.

    Article  PubMed  CAS  Google Scholar 

  111. Kim R, Osaki A, Hirai T, Toge T. Utility of technetium-99m methoxyisobutyl isonitrile uptake analysis for prediction of the response to chemotherapy in advanced and relapsed breast cancer. Breast Cancer 2002; 9:240–247.

    Article  PubMed  Google Scholar 

  112. Cayre A, Cachin F, Maublant J, et al. Single static view 99mTc-sestamibi scintimammography predicts response to neoadjuvant chemotherapy and is related to MDR expression. Int J Oncol 2002; 20:1049–1055.

    PubMed  CAS  Google Scholar 

  113. Cayre A, Cachin F, Maublant J, Mestas D, Penault-Llorca F. Does 99mTc-sestamibi uptake discriminate breast tumors? Cancer Invest 2004; 22:498–504.

    Article  PubMed  CAS  Google Scholar 

  114. Kao CH, Tsai SC, Wang JJ, et al. Technetium-99m-sestamethoxyisobutylisonitrile scan as a predictor of chemotherapy response in malignant lymphomas compared with P-glycoprotein expression, multidrug resistance-related protein expression and other prognosis factors. Br J Haematol 2001; 113:369–374.

    Article  PubMed  CAS  Google Scholar 

  115. Ohta M, Isobe K, Kuyama J, et al. Clinical role of Tc-99m-MIBI scintigraphy in non-Hodgkin’s lymphoma. Oncol Rep 2001; 8:841–845.

    PubMed  CAS  Google Scholar 

  116. Song HC, Lee JJ, Bom HS, et al. Double-phase Tc-99m MIBI scintigraphy as a therapeutic predictor in patients with non-Hodgkin’s lymphoma. Clin Nucl Med 2003; 28:457–462.

    Article  PubMed  Google Scholar 

  117. Yamamoto Y, Nishiyama Y, Fukunaga K, Satoh K, Fujita J, Ohkawa M. 99mTc-MIBI SPECT in small cell lung cancer patients before chemotherapy and after unresponsive chemotherapy. Ann Nucl Med 2001; 15:329–335.

    PubMed  CAS  Google Scholar 

  118. Lim SC, Park KO, Kim YC, Na KJ, Song H, Bom HS. Comparison of Tc-99m sestamibi, serum neuron-specific enolase and lactate dehydrogenase as predictors of response to chemotherapy in small cell lung cancer. Cancer BiotherRadiopharm 2000; 15:381–386.

    CAS  Google Scholar 

  119. Nishiyama, Y, Yamamoto, Y, Satoh, K, et al. Comparative study of Tc-99m MIBI and TI-201 SPECT in predicting chemotherapeutic response in non-small-cell lung cancer. Clin Nucl Med 2000; 25, 364–369.

    Article  PubMed  CAS  Google Scholar 

  120. Zhou J, Higashi K, Ueda Y, et al. Expression of multidrug resistance protein and messenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer. J Nucl Med 2001; 42:1476–1483.

    PubMed  CAS  Google Scholar 

  121. Hsu WH, Yen RF, Kao CH, et al. Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer (stage IIIb or IV) with a higher T stage (>T2). Technetium-99m methoxyisobutylisonitrile chest single photon emission computed tomography and P-glycoprotein express ion. Oncology 2002; 63:173–179.

    Article  PubMed  CAS  Google Scholar 

  122. Christen RD, Isonishi S, Jones JA, et al. Signaling and drug sensitivity. Cancer Metastasis Rev 1994; 13:175–189.

    Article  PubMed  CAS  Google Scholar 

  123. Fonti R, Del Vecchio S, Zannetti A, et al. Functional imaging of multidrug resistant phenotype by 99mTc-MIBI scan in patients with multiple myeloma. Cancer BiotherRadiopharm 2004; 19:165–170.

    Article  CAS  Google Scholar 

  124. Burak Z, Ersoy O, Moretti JL, et al. The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 2001; 28:1341–1350.

    Article  PubMed  CAS  Google Scholar 

  125. Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11:217–221.

    Article  PubMed  CAS  Google Scholar 

  126. Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2004; 75:169–171.

    Google Scholar 

  127. Bernal ML, Sinues B, Fanlo A, Mayayo E. Frequency distribution of C3435T mutation in exon 26 of the MDR1 gene in a Spanish population. Ther Drug Monit 2003; 25:107–111.

    Article  PubMed  CAS  Google Scholar 

  128. Cavaco I, Gil J-P, Gil-Berglund E, Ribeiro V. CYP3 A4 and MDR1 alleles in a Portuguese population. Clin Chem Lab Med 2003; 41:1345–1350.

    Article  PubMed  CAS  Google Scholar 

  129. Nakagawa M, Emoto A, Nasu N, et al. Clinical significance of multi-drug resistance associated protein and P-glycoprotein in patients with bladder cancer. J Urol 1997; 157(4): 1260–1264; discussion 1264-1265.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bates, S.E., Deeken, J., Fan, C., Robey, R.W. (2006). New and Revised Concepts in Multidrug Resistance. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics