Skip to main content

Toxic Element Testing with Clinical Specimens

  • Chapter
Handbook of Drug Monitoring Methods

Summary

Elements are the basis of all things. However, human exposure to significant amounts of some elements can lead to adverse health effects including death. Laboratory testing can help identify unrecognized exposures as well as monitor-associated decontamination efforts. Regular testing is also important to identify exposures in populations that are at high risk for exposure to a specific toxic element. For example, aluminum is important to monitor in dialysis patients. Lead is important to monitor in children that live in areas in which environmental lead contamination is prevalent. Mercury is important to monitor in dental workers and individuals for whom predatory fish frequents the diet. Arsenic and cadmium are important to monitor in certain industrial settings. Iron is important to monitor for individuals at risk for iron overload. The quality of laboratory results depends on collection of the appropriate specimen and efforts to minimize external contamination of the specimen with the element of interest. Interpretation of results should also consider the time between specimen collection and exposure, whether the exposure is acute or chronic, the specific elemental form involved, and the clinical status of the patient. Pre-analytical, analytical, and post-analytical factors important to the investigation of known or unknown toxic elemental exposures are discussed in this chapter, particularly relating to aluminum, arsenic, cadmium, iron, lead, and mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACGIH. TLVS and BEIS: Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. Cincinnati, OH: ACGIH, 2006.

    Google Scholar 

  2. Ewers U, Krause C, Schulz C, Wilhelm M. Reference values and human biological monitoring values for environmental toxins. Report on the work and recommendations of the Commission on Human Biological Monitoring of the German Federal Environmental Agency. Int Arch Occup Environ Health 1999;72:255–260.

    Article  PubMed  CAS  Google Scholar 

  3. Herber RF. Review of trace element concentrations in biological specimens according to the TRACY protocol. Int Arch Occup Environ Health 1999;72:279–283.

    Article  PubMed  CAS  Google Scholar 

  4. Komaromy-Hiller G, Ash KO, Costa R, Howerton K. Comparison of representative ranges based on U.S. patient population and literature reference intervals for urinary trace elements. Clin Chim Acta 2000;296:71–90.

    Google Scholar 

  5. Lauwerys RR, Hoet P. Industrial Chemical Exposure Guidelines for Biological Monitoring. 3rd ed. Lewis Publishers, Boca Raton, FL, USA 2001.

    Google Scholar 

  6. Bornhorst JA, Hunt JW, Urry FM, McMillin GA. Comparison of sample preservation methods for clinical trace element analysis by inductively coupled plasma mass spectrometry. Am J Clin Pathol 2005;123:578–583.

    Article  PubMed  CAS  Google Scholar 

  7. Frank EL, Hughes MP, Bankson DD, Roberts WL. Effects of anticoagulants and contemporary blood collection containers on aluminum, copper, and zinc results. Clin Chem 2001;47:1109–1112.

    PubMed  CAS  Google Scholar 

  8. Subramanian KS. Storage and preservation of blood and urine for trace element analysis. A review. Biol Trace Elem Res 1995;49:187–210.

    Article  PubMed  CAS  Google Scholar 

  9. Moody JR, Lindstrom RM. Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 1977;49:2264–2267.

    Article  CAS  Google Scholar 

  10. Moyer TP, Mussmann GV, Nixon DE. Blood-collection device for trace and ultra-trace metal specimens evaluated. Clin Chem 1991;37:709–714.

    PubMed  CAS  Google Scholar 

  11. Nuttall KL, Gordon WH, Ash KO. Inductively coupled plasma mass spectrometry for trace element analysis in the clinical laboratory. Ann Clin Lab Sci 1995;25:264–271.

    PubMed  CAS  Google Scholar 

  12. Aitio A, Jarvisalo J. Biological monitoring of occupational exposure to toxic chemicals. Collection, processing, and storage of specimens. Ann Clin Lab Sci 1985;15:121–139.

    PubMed  CAS  Google Scholar 

  13. Rodushkin I, Odman F. Assessment of the contamination from devices used for sampling and storage of whole blood and serum for element analysis. J Trace Elem Med Biol 2001;15:40–45.

    Article  PubMed  CAS  Google Scholar 

  14. Shamberger RJ. Validity of hair mineral testing. Biol Trace Elem Res 2002;87:1–28.

    Article  PubMed  CAS  Google Scholar 

  15. Nuttall KL. Interpreting hair mercury levels in individual patients. Ann Clin Lab Sci 2006;36:248–261.

    PubMed  CAS  Google Scholar 

  16. Garcia F, Ortega A, Domingo JL, Corbella J. Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J Environ Sci Health A Tox Hazard Subst Environ Eng 2001;36:1767–1786.

    PubMed  CAS  Google Scholar 

  17. Lyon TD, Fell GS, Halls DJ, Clark J, McKenna F. Determination of nine inorganic elements in human autopsy tissue. J Trace Elem Electrolytes Health Dis 1989;3:109–118.

    PubMed  CAS  Google Scholar 

  18. Caroli S, Alimonti A, Coni E, Petrucci F, Senofonte O, Violante N. The assessment of reference values for elements in human biological tissues and fluids: a systematic review. Crit Rev Anal Chem 1994;24:363–398.

    Article  CAS  Google Scholar 

  19. Emond MJ, Bronner MP, Carlson TH, Lin M, Labbe RF, Kowdley KV. Quantitative study of the variability of hepatic iron concentrations. Clin Chem 1999;45:340–346.

    PubMed  CAS  Google Scholar 

  20. Bassett ML, Halliday JW, Powell LW. Value of hepatic iron measurements in early hemochromatosis and determination of the critical iron level associated with fibrosis. Hepatology 1986;6:24–29.

    Article  PubMed  CAS  Google Scholar 

  21. Olynyk JK, O’Neill R, Britton RS, Bacon BR. Determination of hepatic iron concentration in fresh and paraffin-embedded tissue: diagnostic implications. Gastroenterology 1994;106:674–677.

    PubMed  CAS  Google Scholar 

  22. Beilby JP, Prins AW, Swanson NR. Determination of hepatic iron concentration in fresh and paraffin-embedded tissue. Clin Chem 1999;45:573–574.

    PubMed  CAS  Google Scholar 

  23. Ash KO, Komaromy-Hiller G. Analysis of clinical specimens using inductively coupled plasma mass spectrometry. In: Steve HY, Wong IS, ed. Handbook of Analytical Therapeutic Drug Monitoring & Toxicology. CRC Press, Boca Raton, FL, USA 1997:107–125.

    Google Scholar 

  24. Komaromy-Hiller G. Flame, flameless, and plasma spectroscopy. Anal Chem 1999;71:338R–342R.

    Article  PubMed  CAS  Google Scholar 

  25. Burtis CA, Ashwood ER, Bruns DE, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 4th ed. USA: Elsevier Saunders, 2006.

    Google Scholar 

  26. Ertas OS, Tezel H. A validated cold vapour-AAS method for determining mercury in human red blood cells. J Pharm Biomed Anal 2004;36:893–897.

    Article  PubMed  CAS  Google Scholar 

  27. Kalamegham R, Ash KO. A simple ICP-MS procedure for the determination of total mercury in whole blood and urine. J Clin Lab Anal 1992;6:190–193.

    Google Scholar 

  28. Pineau A, Fauconneau B, Rafael M, Viallefont A, Guillard O. Determination of lead in whole blood: comparison of the LeadCare blood lead testing system with Zeeman longitudinal electrothermal atomic absorption spectrometry. J Trace Elem Med Biol 2002;16:113–117.

    Article  PubMed  CAS  Google Scholar 

  29. Zentner LE, Rondo PH, Latorre Mdo R. Blood lead concentrations in maternal and cord blood evaluated by two analytic methods. Arch Environ Occup Health 2005;60:47–50.

    PubMed  CAS  Google Scholar 

  30. Tietz NW, Rinker AD, Morrison SR. When is a serum iron really a serum iron? The status of serum iron measurements. Clin Chem 1994;40:546–551.

    PubMed  CAS  Google Scholar 

  31. Cannata-Andia JB, Fernandez-Martin JL. The clinical impact of aluminium overload in renal failure. Nephrol Dial Transplant 2002;17 Suppl 2:9–12.

    Google Scholar 

  32. Drueke TB. Intestinal absorption of aluminium in renal failure. Nephrol Dial Transplant 2002;17 Suppl 2:13–16.

    Google Scholar 

  33. Campbell A. The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant 2002;17 Suppl 2:17–20.

    Google Scholar 

  34. McCarthy JT, Milliner DS, Kurtz SB, Johnson WJ, Moyer TP. Interpretation of serum aluminum values in dialysis patients. Am J Clin Pathol 1986;86:629–636.

    PubMed  CAS  Google Scholar 

  35. Feldmann J, Lai VW, Cullen WR, Ma M, Lu X, Le XC. Sample preparation and storage can change arsenic speciation in human urine. Clin Chem 1999;45:1988–1997.

    PubMed  CAS  Google Scholar 

  36. Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 2004;198:243–252.

    Article  PubMed  CAS  Google Scholar 

  37. Rosenstock L, Cullen MP, Brodkin CA, Redlich CA. Textbook of Clinical Occupational and Environmental Medicine. Philadelphia, PA: Elsevier Saunders, 2005.

    Google Scholar 

  38. Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K. Estimation of cumulative cadmium intake causing Itai-Itai disease. Toxicol Lett 2005;159:192–201.

    Article  PubMed  CAS  Google Scholar 

  39. Jin T, Lu J, Nordberg M. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 1998;19:529–535.

    PubMed  CAS  Google Scholar 

  40. Berkovitch M, Livne A, Lushkov G, Barr J, Tauber T, Eshel G, et al. Acute iron intoxication: significant differences between sexes. Vet Hum Toxicol 1997;39:265–267.

    PubMed  CAS  Google Scholar 

  41. Singhi SC, Baranwal AK, M J. Acute iron poisoning: clinical picture, intensive care needs and outcome. Indian Pediatr 2003;40:1177–1182.

    Google Scholar 

  42. Lyon E, Frank EL. Hereditary hemochromatosis since discovery of the HFE gene. Clin Chem 2001;47:1147–1156.

    PubMed  CAS  Google Scholar 

  43. Weinberg ED. Iron loading and disease surveillance. Emerg Infect Dis 1999;5:346–352.

    Article  PubMed  CAS  Google Scholar 

  44. Parsons PJ, Reilly AA, Esernio-Jenssen D, Werk LN, Mofenson HC, Stanton NV, Matte TD. Evaluation of blood lead proficiency testing: comparison of open and blind paradigms. Clin Chem 2001;47:322–330.

    PubMed  CAS  Google Scholar 

  45. Schutz A, Olsson M, Jensen A, Gerhardsson L, Borjesson J, Mattsson S, Skerfving S. Lead in finger bone, whole blood, plasma and urine in lead-smelter workers: extended exposure range. Int Arch Occup Environ Health 2005;78:35–43.

    Article  PubMed  CAS  Google Scholar 

  46. Farias P, Echavarria M, Hernandez-Avila M, Villanueva C, Amarasiriwardena C, Hernandez L, et al. Bone, blood and semen lead in men with environmental and moderate occupational exposure. Int J Environ Health Res 2005;15:21–31.

    Article  PubMed  CAS  Google Scholar 

  47. Popovic M, McNeill FE, Chettle DR, Webber CE, Lee CV, Kaye WE. Impact of occupational exposure on lead levels in women. Environ Health Perspect 2005;113:478–484.

    Article  PubMed  CAS  Google Scholar 

  48. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury – current exposures and clinical manifestations. N Engl J Med 2003;349:1731–1737.

    Article  PubMed  CAS  Google Scholar 

  49. Nierenberg DW, Nordgren RE, Chang MB, Siegler RW, Blayney MB, Hochberg F, et al. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N Engl J Med 1998;338:1672–1676.

    Article  PubMed  CAS  Google Scholar 

  50. Counter SA, Buchanan LH. Mercury exposure in children: a review. Toxicol Appl Pharmacol 2004;198:209–230.

    Article  PubMed  CAS  Google Scholar 

  51. Nuttall KL. Interpreting mercury in blood and urine of individual patients. Ann Clin Lab Sci 2004;34:235–250.

    PubMed  CAS  Google Scholar 

  52. Gochfeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 2003;56:174–179.

    Article  PubMed  CAS  Google Scholar 

  53. Andersen O, Aaseth J. Molecular mechanisms of in vivo metal chelation: implications for clinical treatment of metal intoxications. Environ Health Perspect 2002;110 Suppl 5:887–890.

    PubMed  Google Scholar 

  54. Brown MJ, Willis T, Omalu B, Leiker R. Deaths resulting from hypocalcemia after administration of edetate disodium: 2003–2005. Pediatrics 2006;118:e534–e536.

    Article  PubMed  Google Scholar 

  55. Kalia K, Flora SJ. Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 2005;47:1–21.

    Article  PubMed  CAS  Google Scholar 

  56. Blanusa M, Varnai VM, Piasek M, Kostial K. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem 2005;12:2771–2794.

    Article  PubMed  CAS  Google Scholar 

  57. Rogan WJ, Ware JH. Exposure to lead in children – how low is low enough? N Engl J Med 2003;348:1515–1516.

    Article  PubMed  Google Scholar 

  58. Moline JM, Landrigan PJ. Lead. In: Rosenstock L, Cullen MR, Brodkin CA, Redlich CA, eds. Textbook of Clinical Occupational and Environmental Medicine, 2nd ed: Elsevier Saunders Philadelphia, PA, USA 2005:967–978.

    Google Scholar 

  59. Franchini M. Hereditary iron overload: update on pathophysiology, diagnosis, and treatment. Am J Hematol 2006;81:202–209.

    Article  PubMed  CAS  Google Scholar 

  60. Hershko CM, Link GM, Konijn AM, Cabantchik ZI. Iron chelation therapy. Curr Hematol Rep 2005;4:110–116.

    PubMed  CAS  Google Scholar 

  61. Franzblau A. Arsenic. In: Rosenstock L, Cullen MR, Brodkin CA, Redlich CA, eds. Textbook of Clinical Occupational and Environmental Medicine, 2nd ed: Elsevier Saunders, Philadelphia, PA, USA 2005:946–949.

    Google Scholar 

  62. Risher JF, Amler SN. Mercury exposure: evaluation and intervention the inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicology 2005;26:691–699.

    Article  PubMed  CAS  Google Scholar 

  63. Anonymous. Safety and efficacy of succimer in toddlers with blood lead levels of 20–44 microg/dL. Treatment of Lead-Exposed Children (TLC) Trial Group. Pediatr Res 2000;48:593–599.

    Google Scholar 

  64. Goyer RA, Cherian MG, Jones MM, Reigart JR. Role of chelating agents for prevention, intervention, and treatment of exposures to toxic metals. Environ Health Perspect 1995;103:1048–1052.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc

About this chapter

Cite this chapter

McMillin, G.A., Bornhorst, J.A. (2008). Toxic Element Testing with Clinical Specimens. In: Dasgupta, A. (eds) Handbook of Drug Monitoring Methods. Humana Press. https://doi.org/10.1007/978-1-59745-031-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-031-7_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-780-8

  • Online ISBN: 978-1-59745-031-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics