Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 4))

Abstract

With the rapid increase of demand in industries and daily life, water has become an increasingly valuable but scarcer resource for human being. Take Singapore as an example. Almost half of its water supply is being imported from Malaysia. The daily water consumption has risen eight times while the population has only grown three times since 1950 (1). This increase has led to a greater pressure on the use of limited raw water resources and the capacity of treatment plants. The potential shortfall between supply and consumption needs to be addressed if domestic and industrial customers are to continue enjoying uninterrupted supply

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Ong, Challenges ahead for Singapore’s water supply. Seminar on Ensuring Singapore’s Water Supply: Options and Issues, Shangri-la Hotel, 10–11 Nov. (1997).

    Google Scholar 

  2. M. Joel, E. O. Peter, and R. W. Mark, Water Treatment Membrane Process, McGraw-Hill Company, New York, 1996, pp. 17.1–17.

    Google Scholar 

  3. S. Judd and B. Jefferson (eds.), Membrane for Industrial Wastewater Recovery and Re-use, Elsevier Advanced Technology, Oxford, 2003.

    Google Scholar 

  4. J. P. Chen, S. L. Kim, and Y. P. Ting, Optimization of feed pretreatment for membrane filtration of secondary effluent. Journal of Membrane Science 219, 27–45 (2003).

    Article  CAS  Google Scholar 

  5. S. L. Kim, J. P. Chen, and Y. P. Ting, Study on feed pretreatment for membrane filtration of secondary effluent. Separation & Purification Technology 29, 171–179, 2002.

    Article  Google Scholar 

  6. R. D. Letterman (ed.), Water Quality and Treatment, A Handbook of Community Water Supplies, 5th ed., McGraw-Hill, New York, 1999.

    Google Scholar 

  7. W. S. W. Ho and K. K. Sirkar (eds.), Membrane Handbook, Chapman & Hall, New York, 1992.

    Google Scholar 

  8. Singapore Public Utilities Board. Singapore Water Reclamation Study, Expert Panel Review and Findings. Singapore (2002).

    Google Scholar 

  9. T. Matsuura, Progress in membrane science and technology for seawater desalination-a review. Desalination 134, 47–54 (2001).

    Article  CAS  Google Scholar 

  10. T. Matsuura, Synthetic Membranes and Membrane Separation Processes, CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  11. T. Matsuura and S. Sourirajan, Studies on reverse osmosis for water pollution control. Water Research 6, 1073–1086 (1972).

    Article  CAS  Google Scholar 

  12. Metcalf and Eddy, Inc. (ed.), Wastewater Engineering: Treatment Disposal and Reuse, 4th ed., McGraw-Hill, New York, 2002.

    Google Scholar 

  13. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

    Google Scholar 

  14. Economic Commission for Europe, Membrane Technology in The Chemical Industry, United Nations Publication, New York, 1990.

    Google Scholar 

  15. R. Noyes (ed.), Unit Operations in Environmental Engineering, Noyes Publications, Park Ridge, New Jersey, 1994, pp. 239–264.

    Google Scholar 

  16. S. S. Madaeni, A. G. Fane, and G. S. Grohmann, Virus removal from water and wastewater using membranes. Journal of Membrane Science 102, 65–75 (1995).

    Article  CAS  Google Scholar 

  17. C. Blocher, J. Dorda, V. Mavrov, H. Chmiel, N. K. Lazaridis, and K. A. Matis, Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Research 37, 4018–4026 (2003).

    Article  CAS  Google Scholar 

  18. O. Futamura, M. Katoh, and K. Takeuchi, Organic waste water treatment by activated sludge process using integrated type membrane separation. Desalination 98, 17–25 (1994).

    Article  CAS  Google Scholar 

  19. A. Cassano, J. Adzet, R. Molinari, M. G. Buonomenna, J. Roig, and E. Drioli, Membrane treatment by nanofiltration of exhausted vegetable tanning liquors from the leather industry. Water Research 37, 2426–2434 (2003).

    Article  CAS  Google Scholar 

  20. B. Van der Bruggen, K. Everaert, D. Wilms, and C. Vandecasteele, Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. Journal of Membrane Science 193, 239–248 (2001).

    Article  Google Scholar 

  21. J. M. Laine, D. Vial, and P. Moulart, Status after 10 years of operation-overview of UF technology today. Desalination 131, 17–25 (2000).

    Article  CAS  Google Scholar 

  22. R. Molinari, S. Gallo, and P. Argurio, Metal ions removal from wastewater or washing water contanminated soil by ultrafiltration-complexation. Water Research 38, 593–600 (2004).

    Article  CAS  Google Scholar 

  23. M. Vieira, C. R. Tavares, R. Bergamasco, and J. C. C. Petrus, Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater. Journal of Membrane Science 194, 273–276 (2001).

    Article  CAS  Google Scholar 

  24. X. J. Chai, G. H. Chen, P. L. Yue, and Y. L. Mi, Pilot scale membrane separation of electroplating waste water by reverse osmosis. Journal of Membrane Science 123, 235–242 (1997).

    Article  CAS  Google Scholar 

  25. J. D. Seader and E. J. Henley, Separation Process Principles,,John Wiley & Sons, New York, 1998.

    Google Scholar 

  26. C. J. Geankoplis, Transport Processes and Separation Process Principles, 4th ed., Prentice Hall, New Jersey, 2003.

    Google Scholar 

  27. B. Van der Bruggen, A. Koninchx, and C. Vandecasteele, Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research (in press) (2004).

    Google Scholar 

  28. Z. Reddad, C. Gerente, Y. Andres, and J. F. Thibault, Cadmium and lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modelling. Water Research 37, 3983–3991 (2003).

    Article  CAS  Google Scholar 

  29. L. Van Dijk and G. C. G. Roncken, Membrane bioreactor for wastewater treatment: the state of art and new developments. Water Science and Technology 10, 35–41 (1997).

    Google Scholar 

  30. N. Cicek, J. P. Franco, M. T. Suidan, and V. Urbain, Recycling municipal wastewater using a membrane bioreactor. Journal American Water Works Association 11, 105–113 (1998).

    Google Scholar 

  31. L. P. Raman, M. Cheryan, and N. Rajagopalan, Consider nanofiltration for membrane separations. Chemical Engineering Progress March, 68–74 (1974).

    Google Scholar 

  32. R. J. Yesselman and L. K. Wang, Reverse Osmosis, Lenox Institute of Water Technology, Lenox, Massachusetts, USA, Technical Report No. LIR/02-87/2.47, 115 pages, February (1987).

    Google Scholar 

  33. J. Sa-nguanruksa, R. Rujiravanit, P. Supaphol, and S. Tokura, Porous polyethylene membranes by template-leaching technique: preparation and characterization. Polymer Testing 23, 91–99 (2004).

    Article  CAS  Google Scholar 

  34. T. H. Young, Y. H. Huang, and L. Y. Chen, Effect of solvent evaporation on the formation of asymmetric and symmetric membranes with crystallizable EVAL polymer. Journal of Membrane Science 164, 111–120 (2000).

    Article  CAS  Google Scholar 

  35. J. G. Wijmans, J. P. B. Baaij, and C. A. Smolders, The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. Journal of Membrane Science 14, 263–274 (1983).

    Article  CAS  Google Scholar 

  36. A. J. Reuvers, J. W. A. Van den Berg, and C. A. Smolders, Formation of membranes by means of immersion precipitation: part 1. a model to describe mass transfer during immersion precipitation. Journal of Membrane Science 34, 45–65 (1987).

    Article  CAS  Google Scholar 

  37. T. S. Chung, J. J. Shieh, J. Qin, W. H. Lin, and R. Wang, Polymeric membranes for reverse osmosis, ultrafiltration, microfiltration, gas separation, pervaporation, and reactor applications. In: Advanced Functional Molecules and Polymers, H. S. Nalwa (ed.), Chapter 7, Gordon & Breach, pp. 219–264 (2001).

    Google Scholar 

  38. K. Y. Wang and T. S. Chung, The characterization of flat composite nanofiltration membranes and their applications in the separation of cephalexin, Journal of Membrane Science 247, 37–50 (2005).

    Article  CAS  Google Scholar 

  39. G. Zhu, T.S. Chung, and K. C. Loh, Activated carbon-filled cellulose acetate hollow fibre membrane for cell immobilisation and phenol degradation. J. Applied Polymer Science 76, 695–707 (2000).

    Article  CAS  Google Scholar 

  40. M. C. Porter, Membrane filtration. In: Handbook of Separation Technologies for Chemical Engineers, 3rd ed., Section 21, P. A. Schweitzer (ed.), McGraw-Hill, New York (1997).

    Google Scholar 

  41. I. Pinnau and B. D. Freeman, Formation and modification of polymeric membranes: overview. In: Membrane Formation and Modification, I. Pinnau and B. D. Freeman (eds.), American Chemical Society, Washington, DC, pp. 1–22 (2000).

    Google Scholar 

  42. R. Zsigmondy and W. Bachmann, Filter and Method of Producing Same. U.S. Patent No. 1,421,341. U.S. Patent and Trademarks Office, Washington, DC, Jun. 27 (1922). 257

    Google Scholar 

  43. M. E. Rezac, J. D. Le Roux, H. Chen, D. R. Paul, and W. J. Koros, Effect of mild solvent post-treatments on the gas transport properties of glassy polymer membranes. Journal of Membrane Science 90, 213–229 (1994).

    Article  CAS  Google Scholar 

  44. R. H. Li and T. A. Barbari, Performance of poly (vinyl alcohol) thin-gel composite ultra-filtration membranes. Journal of Membrane Science 105, 71–78 (1995).

    Article  CAS  Google Scholar 

  45. D. B. Mosqueda-Jimenez, R. M. Narbaitz, T. Matsuura, G. Chowdhury, G. Pleizier, and J. P. Santerre, Influence of processing conditions on the properties of ultrafiltration membranes. Journal of Membrane Science (in press) (2004).

    Google Scholar 

  46. C. W. Jones and W. J. Koros, Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon 32, 1419–1425 (1994).

    Article  CAS  Google Scholar 

  47. H. K. Lonsdale, Properties of cellulose acetate membranes. In: Desalination by Reverse Osmosis, Chap. 4, U. Merten (ed.), MIT Press, Cambridge (1996).

    Google Scholar 

  48. R. D. Schulz and S. K. Asunmaa. Ordered water and the ultrastructure of the cellular plasma membrane. In: Recent Progress in Surface Science, Vol. 3, J. F. Danielli, A. C. Riddiford, and M. Rosenberg, M (eds.), Academic Press, New York, pp. 291–332 (1970).

    Google Scholar 

  49. J. Geankoplis, Transport Processes and Separation Processes Principles, 4th ed., Pearson Education, Inc., NJ, USA 2003.

    Google Scholar 

  50. S. J. Duranceau (ed.), Membrane Practices for Water Treatment, American Water Works Association, Denver, CO, pp. 3–42 (2001).

    Google Scholar 

  51. I. Moch Jr., M. Chapman, and D. Steward, Development of a CD_ROM cost program for water treatment projects. Membrane Technology 6, 5–8 (2003).

    Google Scholar 

  52. G. E. Wetterau, M. M. Clark, and C. Anselme, A dynamic model for predicting fouling effects during the ultrafiltration of a groundwater. Journal of Membrane Science 109, 185–204 (1996).

    Article  CAS  Google Scholar 

  53. C. Cabassud, C. Anselme, J. L. Bersillon, and P. Aptel, Ultrafiltration as a nonpolluting alternative to traditional clarification in water treatment. Filtration and Separation 28(3), 194–198 (1991).

    Article  Google Scholar 

  54. L. Y. Dudley, Membrane autopsies for reversing fouling in reverse osmosis. Membrane Technology 95, 9–12 (1998).

    Google Scholar 

  55. O. D. Basu and P. M. Huck, Integrated biofilter-immersed membrane system for the treatment of humic waters. Water Research 38, 655–662 (2004).

    Article  CAS  Google Scholar 

  56. B. A. Winfield, A study of the factors affecting the rate of fouling of reverse osmosis membranes treating secondary sewage effluent. Water Research 13, 565–569 (1979).

    Article  CAS  Google Scholar 

  57. I. Koyuncu, D. Topacik, and M. R. Wiesner, Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Research 38, 432–440 (2004).

    Article  CAS  Google Scholar 

  58. M. R. Weisner and P. Aptel, Mass transport and permeate flux and fouling in pressure-driven processes. In: Water Treatment Membrane Processes, P. E. Odendaal, M. R. Wiesner, and J. Mallevialle (eds.), McGraw-Hill, New York, pp. 4.1–4.30 (1996).

    Google Scholar 

  59. T. Carroll, N. A. Booker, and J. Meier-Haack, Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. Journal of Membrane Science 203, 3–13 (2002).

    Article  CAS  Google Scholar 

  60. M. G. Khedr, A case study of RO plant failure due to membrane fouling, analysis and diagnosis. Desalination. 120, 107–113 (1998).

    Article  CAS  Google Scholar 

  61. S. B. Sadr Ghayeni, S. S. Madaeni, A. G. Fane, and R. P. Schneider, Aspects of micro-filtration and reverse osmosis in municipal wastewater reuse. Desalination 106, 25–29 (1996).

    Google Scholar 

  62. S. B. Sadr Ghayeni, P. J. Beatson, R. P. Schneider, and A. G. Fane, Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (MF-RO): preliminary performance data and microbiological aspects of system operation. Desalination 116, 65–80 (1998).

    Article  Google Scholar 

  63. S. B. Sadr Ghayeni, P. J. Beatson, R. P. Schneider, and A. J. Fane, Bacterial passage through microfiltration membranes in wastewater applications. Journal of Membrane Science 153, pp. 71–82 (1999).

    Article  CAS  Google Scholar 

  64. R H. Butt, F. Rahman, and U. Baduruthamal, Characterisation of foulants by autopsy of RO desalination membranes. Desalination 114, 51–64 (1997).

    Article  CAS  Google Scholar 

  65. J. S. Baker and L. Y. Dudley, Biofouling in membrane systems-a review. Desalination 118, 81–90 (1998).

    Article  CAS  Google Scholar 

  66. G. R. Groves, Application of membrane separation processes to the treatment of industrial effluents for water reuse. Desalination 47, 277–284 (1983).

    Article  CAS  Google Scholar 

  67. W. Yuan and A. L. Zydney, Humic acid fouling during microfiltration. Journal of Membrane Science 157, 1–12 (1999).

    Article  CAS  Google Scholar 

  68. S. L. M. Kim, M. Eng thesis, National University of Singapore.

    Google Scholar 

  69. W. R. Mills, Jr., S. M. Bradford, M. Rigby, and M. P. Wehner, Groundwater recharge at the orange county water district. In: Wastewater Reclamation and Reuse, A. Takashi (ed.), Technomic Publishing, Lancaster, PA, pp. 1105–1142 (1998).

    Google Scholar 

  70. S. Ebrahim, Cleaning and regeneration of membranes in desalination and wastewater applications: state-of-the-art. Desalination 96, 225–238 (1994).

    Article  CAS  Google Scholar 

  71. M. Wilf, Reverse osmosis membranes for wastewater reclamation. In: Wastewater Reclamation and Reuse, A. Takashi (ed.), Technomic Publishing, Lancaster, PA, pp. 236–344 (1998).

    Google Scholar 

  72. D. Jolis, R. Campana, R. A. Hirano, P. Pitt, and B. Mariñas, Desalination of municipal wastewater for horticultural reuse: process description and evaluation. Desalination 103, 1–10 (1995).

    Article  CAS  Google Scholar 

  73. D. Jolis, R. A. Hirano, P. A. Pitt, A. Müller, and D. Mamais, Assessment of tertiary treatment technology for water reclamation in San Francisco, California. Water Science & Technology. 33(10-11), 181–192 (1996).

    Article  CAS  Google Scholar 

  74. H. Cikurel, M. Rebhun, A. Amirtharajah, and A. Adin, Wastewater effluent reuse by in-line flocculation filtration process. Water Science & Technology 33, 203–211 (1996).

    Article  CAS  Google Scholar 

  75. C. Reith and B. Birkenhead, Membranes enabling the affordable and cost effective reuse of wastewater as an alternative water source. Desalination 117, 203–210 (1998).

    Article  CAS  Google Scholar 

  76. M. P. Del Pino and B. Durham, Wastewater reuse through dual-membrane processes: opportunities for sustainable water resources. Desalination 124, 271–277 (1999).

    Article  Google Scholar 

  77. E. Van Houtte, J. Verbauwhede, F. Vanlerberghe, S. Demunter, and J. Cabooter, Treating different types of raw water with micro-and ultrafiltration for further desalination using reverse osmosis. Desalination 117, 49–60 (1998).

    Article  Google Scholar 

  78. C. C. Teodosiu, M. D. Kennedy, H. A. Van Straten, and J. C. Schippers, Evaluation of secondary refinery effluent treatment using ultrafiltration membranes. Water Research 33, 2172–2180 (1999).

    Article  CAS  Google Scholar 

  79. J. J. Qin, M. N. Wai, M. H. Oo, and F. S. Wong, A fesibility study on the treatment and recycling of a wastewater from metal plating. Journal of Membrane Science 208, 213–221 (2002).

    Article  CAS  Google Scholar 

  80. R. A. Sierka, S. P. Cooper, and P. S. Pagoria, Ultrafiltration and reverse osmosis treatment of an acid stage wastewater. Water Science & Technology 35, 155–161 (1997).

    Article  CAS  Google Scholar 

  81. A. G. Fane, Membranes for water production and wastewater reuse. Desalination 106, 1–9 (1996).

    CAS  Google Scholar 

  82. J. C. Kruithof, J. C. Schippers, P. C. Kamp, H. C. Folmer, and J. A. M. H. Hofman, Integrated multi-objective membrane systems for surface water treatment: pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Desalination 117, 37–48 (1998).

    Article  CAS  Google Scholar 

  83. P. Hills, M. B. Padley, N. I. Powell, and P. M. Gallegher, Effects of backwash conditions on out-to-in membrane microfiltration. Desalination 118, 197–204 (1998).

    Article  Google Scholar 

  84. S. D. N. Freeman and O. J. Morin, Recent developments in membrane water reuse projects. Desalination 103, 19–30 (1995).

    Article  CAS  Google Scholar 

  85. G. Belfort, Pretreatment and cleaning of hyperfiltration (reverse osmosis) membranes in municipal wastewater renovation. Desalination 21, 285–300 (1977).

    Article  CAS  Google Scholar 

  86. R. Liikanen, J. Yli-Kuivila, and R. Laukkanen, Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. Journal of Membrane Science 195, 265–276 (2002).

    Article  CAS  Google Scholar 

  87. G. Trägöardh, Membrane cleaning. Desalination 71, 325–335 (1989).

    Article  Google Scholar 

  88. S. Hong and M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science 132, 159–181 (1997).

    Article  CAS  Google Scholar 

  89. J. Lindau and A. S. Jonsson, Cleaning of ultrafiltration membranes after treatment of oily waste water. Journal of Membrane Science 87, 71–78 (1994).

    Article  CAS  Google Scholar 

  90. S. I. Graham, R. L. Reitz, and C. E. Hickman, Improving reverse osmosis performance by periodic cleaning. Desalination 74, 113–124 (1989).

    Article  CAS  Google Scholar 

  91. S. Ebrahim and H. El-Dessouky, Evaluation of commercial cleaning agents for seawater reverse osmosis membranes. Desalination 99, 169–188 (1994).

    Article  CAS  Google Scholar 

  92. H. F. Ridgway, C. A. Justice, C. Whittaker, D. G. Argo, and B. H. Olson, Biofilm fouling of RO membranes-its nature and effect on treatment of water reuse. Journal American Water Works Association 76, 94–102 (1984).

    CAS  Google Scholar 

  93. E. G. Darton and A. G. Turner, Operating experiences in a sea water reverse osmosis plant in Gibraltar (1987-1990). Desalination 82, 51–69 (1991).

    Article  CAS  Google Scholar 

  94. H. C. Flemming, G. Schaule, R. McDonogh, and H. F. Ridgway, Effects and extent of biofilm accumulation in membrane systems. In: Biofouling and Biocorrosion in Industrial Water Systems, G. G. Geesey, Z. Lewandowski, and H. C. Flemming (eds.), Lewis Publishers, Chelsea, MI. pp. 63–89 (1994).

    Google Scholar 

  95. M. Wilf and P. Glueckstern, Restoration of commercial reverse osmosis membranes under field conditions. Desalination 54, 343–350 (1985).

    Article  CAS  Google Scholar 

  96. A. G. Pervov, Scale formation prognosis and cleaning procedure schedules in reverse osmosis systems operation. Desalination 83, 77–118, 1991.

    Article  CAS  Google Scholar 

  97. M. Farinas, J. M. Granda, L. Gurtubi, and M. J. Villagra, Pilot experiences on recovery of polluted reverse osmosis membranes. Desalination 66, 385–402 (1987).

    Article  CAS  Google Scholar 

  98. R. Sheikholeslami, Fouling mitigation in membrane processes. Desalination 123, 45–53 (1999).

    Article  CAS  Google Scholar 

  99. C. C. Teodosiu, M. D. Kennedy, H. A. Van Straten, and J. C. Schippers, Evaluation of secondary refinery effluent treatment using ultrafiltration membranes. Water Research 33, 2172–2180 (1999).

    Article  CAS  Google Scholar 

  100. M. Bartlett, M. R. Bird, and J. A. Howell, An experimental study for the development of a qualitative membrane cleaning model. Journal of Membrane Science 105, 147–157 (1995).

    Article  CAS  Google Scholar 

  101. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Physicochemical Treatment Processes. The Humana Press, Totowa, NJ, USA (2005).

    Google Scholar 

  102. L. K. Wang and S. Kopkp, City of Cape Coral Reverse Osmosis Water Treatment Facility, Technical Report PB97-139547, U.S. Department of Commerce, National Technical Information Service, Springfield, VA, (1997).

    Google Scholar 

  103. L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Advanced Biological Treatment Processes, The Humana Press, Totowa, NJ, USA to be published.

    Google Scholar 

  104. L. K. Wang, N. C. Pereira, and Y. T. Hung (eds.), Advanced Air and Noise Pollution Control, The Humana Press, Totowa, NJ, USA, (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chen, J.P., Mou, H., Wang, L.K., Matsuura, T. (2006). Membrane Filtration. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 4. Humana Press. https://doi.org/10.1007/978-1-59745-029-4_7

Download citation

Publish with us

Policies and ethics