Skip to main content

Adsorptive Bubble Separation and Dispersed Air Flotation

  • Chapter
Advanced Physicochemical Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 1002))

Abstract

Adsorptive bubble separation process is a very effective technology for solid-liquid separation that has been in use outside the environmental engineering field for more than 60 years. Originally applied in the field of mining engineering, the process now provides the means for separation and/or concentration of 95% of the world’s base metals and other mineral compounds(1,2). Recently,the adsorptive bubble separation process has become increasingly important in such diverse applications as (a)the separation of algae,seeds,or bacteria from biological reactors,(b)removal of ink from re-pulped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. K. Wang, Theory and Applications of Flotation Process. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/l1-85/l58, 1985. U.S. Department of Commerce, National Information Service, Springfield, VA. NTIS-PB86-194198/AS. 1985.

    Google Scholar 

  2. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.). Physicochemical Treatment Processes. The Humana Press, Totowa, NJ, 2005.

    Google Scholar 

  3. L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.). Biosolids Treatment Processes. The Humana Press, Totowa, NJ, 2006.

    Google Scholar 

  4. L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.). Advanced Biological Treatment Processes. The Humana Press, Totowa, NJ, 2006.

    Google Scholar 

  5. M. Krofta and L. K. Wang, Potable Water treatment by dissolved air flotation and filtration, J. Am. Water Works Assc. 74, 304–310 (1982).

    Google Scholar 

  6. M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts Water Supply: water purification by flotation, J. N. Engl. Water Works Assc. 249–264 (1985).

    Google Scholar 

  7. M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts Water Supply: sludge thickening by flotation or lagoon, J. N. Engl. Water Works Assc. 265–284 (1985).

    Google Scholar 

  8. M. Krofta, L. K. Wang, L. L. Spencer, and J. Weber, Separation of algae from lake water by dissolved air flotation and sand filtration, Proceedings of the Water Quality and Public Health Conference, Worcester Polytechnic Institute, Worcester, MA, USA, pp. 103–110, 1983 (NTIS-PB83-219550).

    Google Scholar 

  9. L.K. Wang and P. J. Koldziej, Removal of trihalomethane precursors and coliform bacteria by Lenox Flotation-Filtration Plant, Proceedings of the Water Quality and Public Health Conference, Worcester Polytechnic Institute, Worcester, MA, USA, pp. 17–29, 1983 (NTIS-PB83-244053).

    Google Scholar 

  10. L. K. Wang, Investigation and design of a denitrification filter, Civil Engineering for Practicing and Design Engineers, Vol.3, pp. 347–362, 1984 (NTIS-PB82-199803).

    Google Scholar 

  11. M. Krofta and L. K. Wang, Development of innovative Sandfloat systems for water purification and pollution control, ASPE J. Eng. Plumbing, 1–16, (1984) (Recipient of 1982 Pollution Engineering Five Star Award) (NTIS-PB83-107961).

    Google Scholar 

  12. M. Krofta and L. K. Wang, Tertiary treatment of secondary effluent by dissolved air flotation and filtration, Civil Engineering for Practicing and Design Engineers, Vol. 3, pp. 253–272, 1984 (NTIS-PB83-17l165).

    Google Scholar 

  13. M. Krofta and L. K. Wang, Wastewater treatment by biological-physicochemical two-stage process system, Proceedings of the 41st Industrial Waste Conference, Lewis Publishers Inc., Chelsea, MI, 1986, pp. 67–72.

    Google Scholar 

  14. M. Krofta and L. K. Wang, Flotation technology and secondary clarification, Technical Association of the Pulp and Paper Industry Journal (TAPPI J.), 70, 92–96 (1987).

    CAS  Google Scholar 

  15. M. Krofta, D. Guss, and L. K. Wang, Development of Low Cost Flotation Technology and Systems for Wastewater Treatment. Proceedings of the 42nd Industrial Waste Conference, Purdue University, W. Lafayette, IN, USA, May, 1987.

    Google Scholar 

  16. M. Krofta and L. K. Wang, Development of a total closed water system for a deinking plant, Proceedings of the American Water Works Association Water Reuse Symposium III, San Diego, CA, Vol. 2, pp. 881–898, August, 1984.

    Google Scholar 

  17. M. Krofta and L. K. Wang, Total Closing of Paper Mills with Reclamation and Deinking Installations. Proceedings of the 43rd Annual Purdue Industrial Waste Conference, Purdue University, IN.

    Google Scholar 

  18. M. Krofta and L. K. Wang, Potable Water Pretreatment for Turbidity and Color Removal by Dissolved Air Flotation and Filtration for the Town of Lenox, Massachusetts, U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA., Report No. PB82-182064, 48 p., Oct. 1981.

    Google Scholar 

  19. K. Ng, L Gutierroz, and C. Walden, Detoxification of kraft pulp mill effluents by foam separation, Pulp & Paper Canada, 80, 87–92 (1979).

    Google Scholar 

  20. J. H. Voith, The injector cell-a low energy flotation machine, TAPPI J. 73–76 (1982).

    Google Scholar 

  21. L.R. Van Vuuren, Dispersed air flocculation flotation for stripping of organic pollutants from effluents, Water Res. 2, 177–183 (1968).

    Article  Google Scholar 

  22. L. K. Wang, M. H. S. Wang, S. Yaksich, and M. L. Granstrom, Water treatment with multiphase flow reactor and cationic surfactants, J. Am. Water Works Assc. 70, 522–528 (1978).

    CAS  Google Scholar 

  23. V. Kondratazicius, Removal of synthetic surface-active agents from waste waters of tanneries, Kozk. Obur. Prom. (USSR) 11, 18–18 (1969).

    Google Scholar 

  24. M. Krofta and L. K. Wang, Wastewater treatment by biological-physicochemical two-stage process system: recent developments, Proceedings of the 41st Annual Purdue Industrial Waste Conference, Purdue University, W. Lafayette, Indiana USA, May 13–16, 1986.

    Google Scholar 

  25. M. Krofta and L. K. Wang, Development of innovative flotation-filtration systems for water treatment, part C: an electroflotation plant for single families and institutions, Proceedings of the American Water Works Association Water Reuse Symposium III, San Diego, CA, Vol. 3, pp. 1251–1264, August, 1984.

    Google Scholar 

  26. F. Barrett, The electroflotation of organic wastes, Chemistry and Industry, 880–882 (1976).

    Google Scholar 

  27. D. Rogers, Deep tank aeration/flotation clarification adds a new treatment dimension, Industrial Wastes 10–17 (1983).

    Google Scholar 

  28. P.E. Wace, Foam Separation Process Design, Chemical Engineering Progress Symposium Series, 65(91), 18–19 (1969).

    Google Scholar 

  29. R.B. Greives, Foam separations for industrial wastes: process selection, Proceedings of the 25th Industrial Waste Conference, Purdue University, IN, pp. 398–405 (1970).

    Google Scholar 

  30. N. London, et al, Fractionation of an enzyme by foaming, Notes, Vol. 75, p. 1746 (April 5, 1953).

    CAS  Google Scholar 

  31. S.E. Charm, The separation and purification of enzymes through foaming, Anal. Biochem. 15, 498–508 (1966).

    Article  CAS  Google Scholar 

  32. R.W. Schnepf and E.L. Gaden Jr., Foam fractionation of proteins: concentration of aqueous solutions of bovine serum albumin, J. Biochem. Microbiol. Tech. Enginr. 1(1), 1–8 (1959).

    Article  CAS  Google Scholar 

  33. C.T. Wallace and D.F. Wilson, Foam Separation as a Tool in Chemical Oceanography, Naval Research Laboratory Report 6958, 20 pages (Nov. 1969).

    Google Scholar 

  34. V. Kevorkian and E.L. Gaden Jr., Froth-frothate concentration relations in foam fractionation, J. Am. Inst.for Chem. Engineers 3, 180 (1957).

    Google Scholar 

  35. L. C. Hargis and L. B. Rogers, Enrichment and fractionation by foaming, Separation Science, 4(2), 119–127 (1969).

    Article  CAS  Google Scholar 

  36. R. K. Wood and T. Tran, Surface adsorption and the effect of column diameter in the continuous foam separation process, The Canad. J. Chem. Engineer. 322–326 (1966).

    Google Scholar 

  37. I. Sheiham and T. A. Pinfold, Some parameters affecting the flotation of cationic surfactants, Separation Science 7(1), 25–41 (1972).

    Article  Google Scholar 

  38. C. I. Harding, Foam Fractionation in Kraft Black Liquor Oxidation, Ph.D. Thesis, University of Florida, Gainesville, FL (1963).

    Google Scholar 

  39. Georgia Kraft Company, Foam Separation of Kraft Pulping Wastes, Water Pollution Control Research Series, DAST-3, U.S. Department of the Interior, Federal Water Pollution Control Administration (1969).

    Google Scholar 

  40. D. T. Michelsen, Treatment of Dyeing Bath Waste Streams by Foaming and Flotation Techniques, Project Report of Water Resources Research Center, Virginia Polytechnic Institute and State University, Virginia, December, 1970.

    Google Scholar 

  41. B. Karger, II, R. B. Grieves, R. Lemlich, A. J. Rubin, and F. Sebba, Nomenclature recommendations for adsorptive bubble separation methods, Separation Science 2, 401 (1967).

    Article  CAS  Google Scholar 

  42. M. H. S. Wang, Separation of Lignin from Aqueous Solution by Adsorptive Bubble Separation Processes, Ph.D. Thesis, Rutgers University, New Brunswick, NJ, 1972.

    Google Scholar 

  43. M. H. S. Wang, M. L. Granstrom, T. E. Wilson, and L. K. Wang, Removal of lignin from water by precipitate flotation, Proceedings of American Society of Civil Engineers, Journal of Environmental Engineering Division, 100(EE3), 629–640, June 1974.

    Google Scholar 

  44. L. J. King, Pilot Plant Studies of the Decontamination of Low Level Process Waste by a Scavenging Precipitation Foam Separation Process, U.S. Atomic Energy Commission, ORNL-3808, 57 pages, 1968.

    Google Scholar 

  45. B. H. Davis, and F. Sebba, The removal of radioactive caesium contaminants from simple aqueous solutions, J. Appl. Chem. 17, 40–43 (1967).

    CAS  Google Scholar 

  46. E. J. Hahne and T. A. Pinfold, Precipitate flotation: flotation of silver, uranium and gold, J. Appl.Chem. 19, 57–59 (1969).

    Google Scholar 

  47. J. A. Lusher and F. Sebba, Separation of aluminum from beryllium in aqueous solutions by precipitate flotation, J. Appl. Chem. 16, 129–132 (1966).

    CAS  Google Scholar 

  48. A. J. Rubin and J. D. Johnson, Effect of pH on ion and precipitate flotation systems, Anal. Chem. 39, 298–302 (1967).

    Article  CAS  Google Scholar 

  49. E. J. Mahne and P. A. Pinfold, Precipitate flotation: separation of palladium from platinum, gold, silver, iron, cobalt and nickel, J. Appl. Chem. 18, 140–142 (1968).

    Article  CAS  Google Scholar 

  50. R. B. Grieves and D. Bhattacharyya, Foam separation of cyanide complexed by iron, Separation Science, 3(2), 185–202 (1968).

    Article  CAS  Google Scholar 

  51. D. Bhattacharyya, Foam Separation Processes, Ph.D.Thesis, Illinois Institute of Technology, IL, 1966.

    Google Scholar 

  52. R. E. Wilson and M. H. S. Wang, Removal of lignin by foam separation processes, Proceedings of the 25th Industrial Waste Conference, Purdue University, IN, pp.731–738 1970.

    Google Scholar 

  53. M. H. S. Wang, M. L. Granstrom, T. E. Wilson, and L. K. Wang, Lignin separation by continuous ion flotation: investigation of physical operational parameters, Water Resources Bulletin, 10(2), 283–294 (1974).

    CAS  Google Scholar 

  54. B. Karger and B. Rogers, Foam fractionation of organic compounds Separation Science 33(9), 1165–1169(1961).

    CAS  Google Scholar 

  55. B. L. Karger, Foam fractionation under total reflux. Separation Science 38(6), 764–767 (1966).

    CAS  Google Scholar 

  56. R. B. Grieves, Optimization of the ion flotation of dichromate, Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineers, p. 515, June 1969.

    Google Scholar 

  57. R. B. Grieves, Continuous dissolved air ion flotation of hexavalent chromium, J. Am. Insti. Chem. Engineers 13(6), 1167–1170 (1967).

    CAS  Google Scholar 

  58. B. L. Karger and D. G. DeVivo, General survey of adsorptive bubble separation processes, Separation Science, 3(5), 393–424 (1968).

    Article  CAS  Google Scholar 

  59. A. J. Rubin, Microflotation of bacteria, Proceedings Southern Water Resources and Pollution Control Conference, 14, 222 (1965).

    Google Scholar 

  60. A. A. Rubin, Microflotation: new low gas flow-rate foam separation technique for bacteria and algae, Biotechnol.Bioeng. 8, 135 (1966).

    Article  CAS  Google Scholar 

  61. A. J. Rubin, Microflotation: coagulation and foam of separation of aerobatic aerogenes, Biotechnol. Bioeng. 10, 89 (1968).

    Article  CAS  Google Scholar 

  62. O. Henderson, The Effect of pH on Algae Flotation, Ph.D. Thesis, Univeristy of North Carolina, Chapel Hill, NC, 1967.

    Google Scholar 

  63. B. Dobias and V. Vinter, Flotation of microorganisms, Folia. Microbiology 11, 314 (1966).

    Article  CAS  Google Scholar 

  64. E. Cassell and A. J. A. Rubin, Removal of organic colloids by microflotation, Proceedings of the 23rd Industrial Waste Conference, Purdue University, IN, pp. 966–977, 1968.

    Google Scholar 

  65. A. N. Dolzhenkova, (USSR), Improved apparatus for microflotation, Obogashch. Rud. 13(3), 52–53 (Russ) (1968).

    CAS  Google Scholar 

  66. A. P. Pikkat-Ordynskaya, Flotation separation of monomineral fractions of galena, pyrite, chalcopyrite, Sphalerite, quartz and feldspar, Aktsessornye Miner. Izrerzhennykh Porod. 75–77 (Russ) (1968).

    Google Scholar 

  67. A. N. Kozhukhovskaya, (USSR), Selective flotation of microlite and rutile, Nauch. No 19, 105–111 (Russ) (1968).

    Google Scholar 

  68. L. V. Katashin, Flotation ofPyrochlorefrom Slimes Left After Gravitational Concentration of Rare Metal Carbonatite Ores, Nauch. Tr., Irktsk, Gos. Nauch Is sled. Inst. Redk. Isvet. Metal., No. 19 (1968).

    Google Scholar 

  69. N. Onoprienko, Flotation of iron oxides, Izr. Vyssh. Ucheb. laved, Corn. Zh. 12(1), 157 (1969).

    CAS  Google Scholar 

  70. L. K. Wang, P. Leonard, M. H. S. Wang, and D. W. Goupil. Adsorption of disssolved organics from industrial effluents on to activated carbon, J. Appl.Chem. Biotechnol. 25, 491–502 (1975).

    Article  CAS  Google Scholar 

  71. L. K. Wang, Treatment of tannery effluents by surface adsorption, J. Appl. Chem. Biotechnol. 25, 475–490 (1975).

    CAS  Google Scholar 

  72. L. K. Wang, Evaluation and Development of Physical-Chemical Techniques for the Separation of Emulsified Oil from Water, Report No. 189, Calspan Corporation, Buffalo, NY, 31 pages, May 1973; Selected Water Resources Abstract 6(21), W73-l3642, p. 90, November 1973.

    Google Scholar 

  73. Y. S. Kim and H. Zeitlin, The separation of zinc and copper from seawater by adsorption colloid flotation, Separation Science 7(1), 1–12 (1972).

    Google Scholar 

  74. L. K. Wang, Environmental Engineering Glossary, Calspan Corporation, Buffalo, New York, 439 pages, 1974.

    Google Scholar 

  75. D.O. Harper, Bubble and Foam Fractionation, PhD Thesis, University of Cincinnati, Cincinnati, OH 1967.

    Google Scholar 

  76. L. K. Wang, Continuous Bubble Fractionation Process, PhD Thesis, Rutgers University, New Brunswick, NJ, 1972.

    Google Scholar 

  77. B. T. Kwon and L. K. Wang, Solute separation by continuous bubble fractionation, Separation Science 6(4), 537-552, 1971. Selected Water Resources Abstracts, 6(21), W73-l3638, p. 89, November 1973.

    Google Scholar 

  78. L. K. Wang, Continuous bubble fractionation, Environmental Lett. 3(4), 251–265 (1972), 4(3), 233-252 (1973); 5(2), 71-89 (1973).

    Article  CAS  Google Scholar 

  79. B. L. Karger, A. B. Caragay, and S. B. Lee, Studies in solvent sublation: extraction of methyl orange and rhodamine B, Separation Science 2(1), 39–64 (1967).

    Article  CAS  Google Scholar 

  80. I. Sheiham and T. A. Pinfold, The solvent sublation of hexadecyl-trimethyl-ammonium chloride, Separation Science 7(1), 43–50 (1972).

    Article  Google Scholar 

  81. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, 2005.

    Google Scholar 

  82. M. Krofta, L. K. Wang, and H. Boutroy, Development of a New Treatment System Consisting of Adsorption Flotation and Filtration, U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA, Report No.PB85-209401/AS, 28 pages, October, 1984.

    Google Scholar 

  83. R. Lemlich, The Adsorptive Bubble Separation Technology, Conference on Traces of Heavy Metals in Water, Princeton University, NJ, Nov. 15–16, 1973.

    Google Scholar 

  84. S. Ata and G. J. Jameson, The formation of bubble clusters in flotation cells, Internat. J. Mineral Processing 76(1–2) (2005).

    Article  CAS  Google Scholar 

  85. G. L. Chen, D. Tao, H. Ren, F. F. Ji, and J. K. Qiao, An investigation of niobite flotation with octyl diphosphonic acid as collector, Internat. J. Mineral Processing 76(1–2) (2005).

    Article  CAS  Google Scholar 

  86. D. Fornasiero and J. Ralston, Cu(II) and Ni(II) activation in the flotation of quartz, lizardite and chlorite, Internat. J. Mineral Processing 76(1–2) (2005).

    Article  CAS  Google Scholar 

  87. T. N. Khmeleva, W. Skinner, and D. A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Internat. J. Mineral Processing 76(1–2) (2005).

    Article  CAS  Google Scholar 

  88. J. Y. Zhu, F. Tan, K. L. Scallon, Y. L. Zhao, and Y. Deng, Deinking selectivity (Z-factor): a new parameter to evaluate the performance of flotation de-inking process, Separation and Purification Technology, 43(1) (2005).

    Article  CAS  Google Scholar 

  89. O. D. Chuk, V. Ciribeni, and L. V. Gutierrez, Froth collapse in column flotation: a prevention method using froth density estimation and fuzzy expert systems, Minerals Engineering 18(5) (2005).

    Article  CAS  Google Scholar 

  90. J. B. Yianatos, L. G. Bergh, F. Diaz, and J. Rodriguez, Mixing characteristics of industrial flotation equipment,Chem. Engir. Sci. 60(8–9) (2005).

    Google Scholar 

  91. S. V. C. Bravo, M. L. Torem, M. B. M. Monte, A. J. B. Dutra, and L. A. Tondo, The influence of particle size and collector on the flotation of a very low grade auriferous ore, Minerals Engineering, 18(4) (2005).

    Article  CAS  Google Scholar 

  92. U. Ulusoy and M. Yekeler,Correlation of the surface roughness of some industrial minerals with their wettability parameters, Chemical Engineering &Processing 44(5) (2005).

    Google Scholar 

  93. G. Onal, G. Bulut, A Gul, O. Kangal, K. T. Perek, and F. Arslan, Flotation of Aladag oxide lead-zinc ores, Minerals Engineering, 18(2) (2005).

    Article  CAS  Google Scholar 

  94. C. A. Pereira and A. E. C. Peres, Reagents in calamine zinc ores flotation, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  95. D. Lascelles and J. A. Finch, A technique for quantification of adsorbed collectors: xanthate, Minerals Engineering, 18(2) (2005)

    Article  CAS  Google Scholar 

  96. S. Gelinas and J. A. Finch, Colorimetric determination of common industrial frothers, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  97. R. D. Pascoe, The use of selective depressants for the separation of ABS and HIPS by froth flotation, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  98. D. J. Bradshaw, B. Oostendorp, and P. J. Harris, Development of methodologies to improve the assessment of reagent behaviour in flotation with particular reference to collectors and depressants, Minerals Engineering 18(2) (2005)

    Article  CAS  Google Scholar 

  99. B. Y. Medina, M. L. Torem, and L. M. S. de Mesquita, On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  100. A. C. Araujo, P. R. M. Viana, and A. E. C. Peres, Reagents in iron ores flotation, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  101. R. M. F. Lima, P. R. G. Brandao, and A. E. C. Peres, The infrared spectra of amine collectors used in the flotation of iron ores, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  102. F. Rashchi, A. Dashti, M. Arabpour-Yazdi, and H. Abdizadeh, Anglesite flotation: a study for lead recovery from zinc leach residue, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  103. R. C. Guimaraes, A. C. Araujo, and A. E. C. Peres, Reagents in igneous phosphate ores flotation, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  104. J. Wiese, P. Harris, and D. Bradshaw, The influence of the reagent suite on the flotation of ores from the Merensky reef, Minerals Engineering 18(2) (2005).

    Google Scholar 

  105. K. Hadler, Z. Aktas, and J. J. Cilliers, The effects of frother and collector distribution on flotation performance, Minerals Engineering 18(2) (2005).

    Article  CAS  Google Scholar 

  106. S. N. Tan, R. J. Pugh, D. Fornasiero, R. Sedev, and J. Ralston, Foaming of polypropylene glycols and glycol/MIBC mixtures, Minerals Engineering 18(2) (2005).

    Google Scholar 

  107. P. K. Naik, Flotation of carbon values from blast furnace flue dust using statistical design, CIM Bulletin, 98 (1085) (2005).

    Google Scholar 

  108. K. E. Bremmell, D. Fornasiero, and J. Ralston, Pentlandite-lizardite interactions and implications for their separation by flotation, Colloids and Surfaces-Physicochemical and Engineering Aspects, 252(2–3) (2005).

    Google Scholar 

  109. C. Hicyilmaz, U. Ulusoy, S. Bilgen, and M. Yekeler, Flotation responses to the morphological properties of particles measured with three-dimensional approach, Internat. J. Mineral Processing 75(3–4) (2005).

    Google Scholar 

  110. T. Guler, C. Hicyilmaz, G. Gokagac, and Z. Ekmekci, Electrochemical behaviour of chalcopyrite in the absence and presence of dithiophosphate., Internat. J. Mineral Processing 75(3–4) (2005).

    Google Scholar 

  111. M. N. Chandraprabha, K. A. Natarajan, and P. Somasundaran, Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus fer-rooxidans, Internat. J. Mineral Processing 75(1–2) (2005).

    Google Scholar 

  112. W. Wang, Z. Zhou, K. Nandakumar, J. H. Masliyah, and Z. Xu, An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions, Internat. J. Mineral Processing 75(1–2) (2005).

    Article  CAS  Google Scholar 

  113. P. K. Naik, P. S. R. Reddy, and V. N. Misra, Interpretation of interaction effects and optimiza-tion of reagent dosages for fine coal flotation, Internat. J. Mineral Processing 75(1–2) (2005).

    Article  CAS  Google Scholar 

  114. O. Kangal, A. A. Sirkeci, and A. Guney, Flotation behaviour of huntite (Mg3Ca(CO3)4) with anionic collectors, Internat. J. Mineral Processing 75(1–2) (2005).

    Article  CAS  Google Scholar 

  115. H. Alter, The recovery of plastics from waste with reference to froth flotation, Resources, Conservation and Recycling, 43(2) (2005).

    Google Scholar 

  116. M. Krofta and L. K. Wang, Sludge thickening and dewatering by dissolved air flotation: FloatpressTM, Drying, Vol. 2, pp. 765–771, Hemisphere Publishing Corp., Harper & Row Publishers, NY, 1986.

    Google Scholar 

  117. M. Krofta and L. K. Wang, Sludge thickening and dewatering by dissolved air flotation: process design, Drying, Vol. 2, pp. 772–780, Hemisphere Publishing Corp., Harper & Row Publishers, NY, 1986.

    Google Scholar 

  118. M. Krofta and L. K. Wang, Winter Operation of the First United States Flotation Installation-Water Treatment Plants City of Pittsfield, Massachusetts, Lenox Institute of Water Technology, Lenox, MA. Technical Report No. LIR/06-87/257, 20 pages, June 15,1987.

    Google Scholar 

  119. B. J. Hernlem, L. S. Tsai, C. Huxsoll, and G. Robertson, Combined electroflotation and disinfection in food processing. Process Chemistry and Engineering. U. S. Department of Agricluture, ARS, WRRC, Albany, CA, 1988.

    Google Scholar 

  120. G. Chen and P. L. Yue, Electrocoagulation and electroflotation of restaurant wastewater. J. Environ. Enginr. 126(9) 858–863 (2000).

    Article  CAS  Google Scholar 

  121. M. Y. Ibrahim, R. R. Mostafa, M. F. M. Fahmy, and A. I. Hafez, Utilization of electroflotation in remediation of oily wastewater. Separation Science and Technology, 36(16) (2001).

    Article  Google Scholar 

  122. L. K. Wang, J. V. Krouzek, and U. Kounitson, Case Studies of Cleaner Production and Site Remediation. Manual No. DTT-5-4-95. United Nations Industrial Development Organization (UNIDO), Vienna, Austra. 134 pages. April 1995.

    Google Scholar 

  123. H. A. Dawson, Flotation process used for calcium carbonate recovery from water treatment sludges. Water Treatment Plant Design. Ann Arbor Science, MI, 1979, pp. 105–124.

    Google Scholar 

  124. L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment. US Patent No. 5354458. U.S. Patent and Trademark Office, Washington, DC, 1994.

    Google Scholar 

  125. L. K. Wang, P. Wang, and N. Clesceri, Groundwater decontamination using sequencing batch process. Water Treatment 10(2), 121–134 (1995).

    Google Scholar 

  126. L. K. Wang, Neutralization effect of anionic and cationic surfactants. J. New Engl. Water Works Assoc. 90(4), 354–359 (1976).

    Google Scholar 

  127. L. K. Wang, Cationic Surfactant Determination Using Alternate Organic Solvent, PB86-194164/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986.

    Google Scholar 

  128. L. K. Wang, The Effects of Cationic Surfactant Concentration on Bubble Dynamics in a Bubble Franctionation Column. PB86-197845/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986.

    Google Scholar 

  129. L. K. Wang, A proposed method for the analysis of anionic surfactants. J. New Engl. Water Works Assoc. 67(1), 6–8 (1975).

    CAS  Google Scholar 

  130. L. K. Wang, Modified methylene blue method for estimating the MBAS concentration. J. Am. Water Works Assoc. 67(1), 19–21 (1975).

    CAS  Google Scholar 

  131. L. K. Wang, Analysis of LAS, ABS and commercial detergents by two phase titration. Water Research Bulletin 11(2), 267–277 (1975).

    CAS  Google Scholar 

  132. L. K. Wang, Evaluation of two methylene blue methods for analyzing MBAS concentrations in aqueous solutions. J. Am. Water Works Assoc. 67(4), 182–184 (1975).

    CAS  Google Scholar 

  133. L. K. Wang, Determination of anionic surfactants with Azure A and quaternary ammonium salt. Anal. Chem. 47(8), 1472–1475 (1975).

    Article  CAS  Google Scholar 

  134. L. K. Wang, Determining cationic surfactant concentration. Indust. Engng. Chem. Prod. Res. Devel. 13(3), 210–212 (1975).

    Article  Google Scholar 

  135. L. K. Wang, A test method for analyzing either anionic or cationic surfactants in industrial water. J. Am. Oil Chemists Soc. 52(9), 340–346 (1975).

    Google Scholar 

  136. L. K. Wang, Rapid colorimetric analysis of cationic and anionic surfactants. J. New Engl. Water Works Assoc. 89(4), 301–314 (1975).

    CAS  Google Scholar 

  137. L. K. Wang, Direct two-phase titration method for analyzing anionic nonsoap surfactants in fresh and saline waters. J. Environ. Health 38, 159–163 (1975).

    CAS  Google Scholar 

  138. L. K. Wang, Analyzing cetyldimethylbenzylammonium chloride by using ultraviolet absorbance. Indus. Engng Chem. Prod. Res. Devel. 15(1), 68–70 (1976).

    Article  CAS  Google Scholar 

  139. L. K. Wang, Role of polyelectrolytes in the filtration of colloidal particles from water and wastewater. Separ. Purif. Meth. 6(1), 153–187 (1977).

    Article  Google Scholar 

  140. L. K. Wang, Application and determination of organic polymers. Water, Air Soil Poll. 9, 337–348 (1978).

    CAS  Google Scholar 

  141. L. K. Wang, Application and determination of anionic surfactants. Indus. Engng Chem. 17(3), 186–195 (1978).

    Article  CAS  Google Scholar 

  142. L. K. Wang, Selected Topics on Water Quality Analysis, PB87-174066. US Department of Commerce, National Technical Information Service, Springfield, VA, 1982; 189 p.

    Google Scholar 

  143. L. K. Wang, Rapid and Accurate Determination of Oil and Grease by Spectrophotometric Methods, PB83-180760. US Department of Commerce, National Technical Information Service, Springfield, VA, 1983; 31 p.

    Google Scholar 

  144. L. K. Wang, A New Spectrophotometric Method for Determination of Dissolved Proteins in Low Concentration Range, PB84-204692. US Department of Commerce, National Technical Information Service, Springfield, VA, 1983; 12 p.

    Google Scholar 

  145. L. K. Wang, E. DeMichele, and M. H. S. Wang, Simplified Laboratory Procedures for DO Determination, PB88-168067/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1985; 13 p.

    Google Scholar 

  146. L. K. Wang, E. DeMichele, and M. H. S. Wang, Simplified Laboratory Procedures for COD Determination Using Dichromate Reflux Method, PB86-193885/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986; 8 p.

    Google Scholar 

  147. L. K. Wang, Recent Advances in Water Quality Analysis, PB88-168406/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986; 100 p.

    Google Scholar 

  148. C. Yapijakis and L. K. Wang, Treatment of soap and detergent industry wastes. In: Handbook of Industrial and Hazardous Wastes Treatment (L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis, eds.) CRC Press/Marcel Dekker, New York, NY, pp. 323–378, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, L.K. (2006). Adsorptive Bubble Separation and Dispersed Air Flotation. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 1002. Humana Press. https://doi.org/10.1007/978-1-59745-029-4_3

Download citation

Publish with us

Policies and ethics