Skip to main content

Chemokine Receptors and Lymphocyte Trafficking

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

The ordered movement of lymphocytes through and positioning within lymphoid organs and peripheral sites is controlled by adhesion molecules together with chemokines and their receptors. Chemokine-mediated lymphocyte migration is critical for establishing the architecture of lymphoid organs and many aspects of lymphocyte function, including lymphocyte development, activation, and effector activity. Of the 19 chemokine receptors described in humans, all have been reported to be expressed on lymphocytes, and the expression pattern of chemokine receptors can itself be used to define and characterize lymphocyte subsets. For example, by using chemokine receptors, memory T cells can be split into distinct populations, such as central and effector memory T cells; and T helper 1 (Th1) and T helper 2 (Th2) cells exhibit distinguishable patterns of chemokine receptor expression, which can be used to study Th1/Th2 differentiation. Beyond their physiologic roles, chemokine receptors on lymphocytes are exploited by pathogens, such as in the use of CCR5 and CXCR4 by HIV-1 as coreceptors for viral entry. In this chapter, we will focus on the roles of chemokine receptors in lymphocyte trafficking in lymphoid organs and peripheral tissues and how understanding the chemokine system has shed light on larger issues in lymphocyte biology. We will discuss the roles of chemokines and chemokine receptors during the life cycles of lymphocytes—from early development through the acquisition of memory and effector functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hernandez-Lopez C, Varas A, Sacedon R, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood 2002;99:546–554.

    Article  PubMed  CAS  Google Scholar 

  2. Berkowitz RD, Beckerman KP, Schall TJ, McCune JM. CXCR4 and CCR5 expression delineates targets for HIV-1 disruption of T cell differentiation. J Immunol 1998;161:3702–3710.

    PubMed  CAS  Google Scholar 

  3. Zaitseva MB, Lee S, Rabin RL, et al. CXCR4 and CCR5 on human thymocytes: biological function and role in HIV-1 infection. J Immunol 1998;161:3103–3113.

    PubMed  CAS  Google Scholar 

  4. Berkowitz RD, Alexander S, McCune JM. Causal relationships between HIV-1 coreceptor utilization, tropism, and pathogenesis in human thymus. AIDS Res Hum Retroviruses 2000;16:1039–1045.

    Article  PubMed  CAS  Google Scholar 

  5. Kim CH, Broxmeyer HE. Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol 1999;65:6–15.

    PubMed  CAS  Google Scholar 

  6. Suzuki G, Nakata Y, Dan Y, et al. Loss of SDF-1 receptor expression during positive selection in the thymus. Int Immunol 1998;10:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  7. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow micro-environment. Immunity 1999;10:463–471.

    Article  PubMed  CAS  Google Scholar 

  8. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998;95:9448–9453.

    Article  PubMed  CAS  Google Scholar 

  9. Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998;393:591–594.

    Article  PubMed  CAS  Google Scholar 

  10. Uehara S, Grinberg A, Farber JM, Love PE. A role for CCR9 in T lymphocyte development and migration. J Immunol 2002;168:2811–2819.

    PubMed  CAS  Google Scholar 

  11. Uehara S, Song K, Farber JM, Love PE. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3(high)CD69+ thymocytes and gammadeltaTCR+ thymocytes preferentially respond to CCL25. J Immunol 2002;168:134–142.

    PubMed  CAS  Google Scholar 

  12. Youn BS, Kim CH, Smith FO, Broxmeyer HE. TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9-6/CCR9 as a specific receptor. Blood 1999;94:2533–2536.

    PubMed  CAS  Google Scholar 

  13. Norment AM, Bogatzki LY, Gantner BN, Bevan MJ. Murine CCR9, a chemokine receptor for thymus-expressed chemokine that is up-regulated following pre-TCR signaling. J Immunol 2000;164:639–648.

    PubMed  CAS  Google Scholar 

  14. Wurbel MA, Philippe JM, Nguyen C, et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double-and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol 2000;30:262–271.

    Article  PubMed  CAS  Google Scholar 

  15. Wurbel MA, Malissen B, Campbell JJ. Complex regulation of CCR9 at multiple discrete stages of T cell development. Eur J Immunol 2006;36:73–81.

    Article  PubMed  CAS  Google Scholar 

  16. Uehara S, Hayes SM, Li L, et al. Premature expression of chemokine receptor CCR9 impairs T cell development. J Immunol 2006;176:75–84.

    PubMed  CAS  Google Scholar 

  17. Ueno T, Hara K, Willis MS, et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 2002;16:205–218.

    Article  PubMed  CAS  Google Scholar 

  18. Ueno T, Saito F, Gray DH, et al. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 2004;200:493–505.

    Article  PubMed  CAS  Google Scholar 

  19. Misslitz A, Pabst O, Hintzen G, et al. Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 2004;200:481–491.

    Article  PubMed  CAS  Google Scholar 

  20. Allende ML, Dreier JL, Mandala S, Proia RL. Expression of the sphingosine 1-phosphate receptor, S1p1, on T-cells controls thymic emigration. J Biol Chem 2004;279:15396–401.

    Article  PubMed  CAS  Google Scholar 

  21. Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004;427:355–360.

    Article  PubMed  CAS  Google Scholar 

  22. Bassi R, Anelli V, Giussani P, Tettamanti G, Viani P, Riboni L. Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through G(i)-protein-coupled receptors. Glia 2006;53:621–630.

    Article  PubMed  Google Scholar 

  23. Cinamon G, Matloubian M, Lesneski MJ, et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 2004;5:713–720.

    Article  PubMed  CAS  Google Scholar 

  24. Nagasawa T, Nakajima T, Tachibana K, et al. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci U S A 1996;93:14726–14729.

    Article  PubMed  CAS  Google Scholar 

  25. D’Apuzzo M, Rolink A, Loetscher M, et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 1997;27:1788–1793.

    Article  CAS  Google Scholar 

  26. Moser B, Loetscher M, Piali L, Loetscher P. Lymphocyte responses to chemokines. Int Rev Immunol 1998;16:323–344.

    PubMed  CAS  Google Scholar 

  27. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635–638.

    Article  PubMed  CAS  Google Scholar 

  28. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 1994;91:2305–2309.

    Article  PubMed  CAS  Google Scholar 

  29. Egawa T, Kawabata K, Kawamoto H, et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 2001;15:323–334.

    Article  PubMed  CAS  Google Scholar 

  30. Swain SL. Regulation of the development of helper T cell subsets. Immunol Res 1991;10:177–182.

    PubMed  CAS  Google Scholar 

  31. Calabresi PA, Allie R, Mullen KM, Yun SH, Georgantas RW 3rd, Whartenby KA. Kinetics of CCR7 expression differ between primary activation and effector memory states of T(H)1 and T(H)2 cells. J Neuroimmunol 2003;139:58–65.

    Article  PubMed  CAS  Google Scholar 

  32. Campbell JJ, Murphy KE, Kunkel EJ, et al. CCR7 expression and memory T cell diversity in humans. J Immunol 2001;166:877–884.

    PubMed  CAS  Google Scholar 

  33. Sallusto F, Kremmer E, Palermo B, et al. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 1999;29:2037–2045.

    Article  PubMed  CAS  Google Scholar 

  34. Langenkamp A, Nagata K, Murphy K, Wu L, Lanzavecchia A, Sallusto F. Kinetics and expression patterns of chemokine receptors in human CD4+ T lymphocytes primed by myeloid or plasmacytoid dendritic cells. Eur J Immunol 2003;33:474–482.

    Article  PubMed  CAS  Google Scholar 

  35. Campbell JJ, Bowman EP, Murphy K, et al. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J Cell Biol 1998;141:1053–1059.

    Article  PubMed  CAS  Google Scholar 

  36. Forster R, Schubel A, Breitfeld D, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999;99:23–33.

    Article  PubMed  CAS  Google Scholar 

  37. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000;192:1545–1552.

    Article  PubMed  CAS  Google Scholar 

  38. Voigt I, Camacho SA, de Boer BA, Lipp M, Forster R, Berek C. CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. Eur J Immunol 2000;30:560–567.

    Article  PubMed  CAS  Google Scholar 

  39. Allen CD, Ansel KM, Low C, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004;5:943–952.

    Article  PubMed  CAS  Google Scholar 

  40. Bowman EP, Campbell JJ, Soler D, et al. Developmental switches in chemokine response profiles during B cell differentiation and maturation. J Exp Med 2000;191:1303–1318.

    Article  PubMed  CAS  Google Scholar 

  41. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996;87:1037–1047.

    Article  PubMed  CAS  Google Scholar 

  42. Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000;406:309–314.

    Article  PubMed  CAS  Google Scholar 

  43. Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 2001;193:1373–1381.

    Article  PubMed  CAS  Google Scholar 

  44. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000;192:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  45. Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 2005;106:1924–1931.

    Article  PubMed  CAS  Google Scholar 

  46. Sallusto F, Langenkamp A, Geginat J, Lanzavecchia A. Functional subsets of memory T cells identified by CCR7 expression. Curr Top Microbiol Immunol 2000;251:167–171.

    PubMed  CAS  Google Scholar 

  47. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401:708–712.

    Article  PubMed  CAS  Google Scholar 

  48. Rivino L, Messi M, Jarrossay D, Lanzavecchia A, Sallusto F, Geginat J. Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J Exp Med 2004;200:725–735.

    Article  PubMed  CAS  Google Scholar 

  49. Unsoeld H, Krautwald S, Voehringer D, Kunzendorf U, Pircher H. Cutting edge: CCR7+ and CCR7 memory T cells do not differ in immediate effector cell function. J Immunol 2002;169:638–641.

    PubMed  CAS  Google Scholar 

  50. Unsoeld H, Pircher H. Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J Virol 2005;79:4510–4513.

    Article  PubMed  CAS  Google Scholar 

  51. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001;410:101–105.

    Article  PubMed  CAS  Google Scholar 

  52. Song K, Rabin RL, Hill BJ, et al. Characterization of subsets of CD4+ memory T cells reveals early branched pathways of T cell differentiation in humans. Proc Natl Acad Sci U S A 2005;102:7916–791621.

    Article  PubMed  CAS  Google Scholar 

  53. Wu CY, Kirman JR, Rotte MJ, et al. Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo. Nat Immunol 2002;3:852–858.

    Article  PubMed  CAS  Google Scholar 

  54. Mackay CR, Marston W, Dudler L. Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur J Immunol 1992;22:2205–2210.

    Article  PubMed  CAS  Google Scholar 

  55. Debes GF, Hopken UE, Hamann A. In vivo differentiated cytokine-producing CD4(+) T cells express functional CCR7. J Immunol 2002;168:5441–5447.

    PubMed  CAS  Google Scholar 

  56. Debes GF, Bonhagen K, Wolff T, et al. CC chemokine receptor 7 expression by effector/memory CD4+ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J Virol 2004;78:7528–7535.

    Article  PubMed  CAS  Google Scholar 

  57. Roman E, Miller E, Harmsen A, et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 2002;196:957–968.

    Article  PubMed  CAS  Google Scholar 

  58. D’Ambrosio D, Iellem A, Bonecchi R, et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 1998;161:5111–5115.

    CAS  Google Scholar 

  59. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol 2003;4:78–86.

    Article  PubMed  CAS  Google Scholar 

  60. Andrew DP, Ruffing N, Kim CH, et al. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J Immunol 2001;166:103–111.

    PubMed  CAS  Google Scholar 

  61. Colantonio L, Rossi B, Constantin G, D’Ambrosio D. Integration and independent acquisition of specialized skin-versus gut-homing and Th1 versus Th2 cytokine synthesis phenotypes in human CD4+ T cells. Eur J Immunol 2004;34:2419–2429.

    Article  PubMed  CAS  Google Scholar 

  62. Kim CH, Kunkel EJ, Boisvert J, et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J Clin Invest 2001;107:595–601.

    PubMed  CAS  Google Scholar 

  63. Sallusto F, Mackay CR, Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997;277:2005–2007.

    Article  PubMed  CAS  Google Scholar 

  64. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 1998;187:875–883.

    Article  PubMed  CAS  Google Scholar 

  65. Randolph DA, Huang G, Carruthers CJ, Bromley LE, Chaplin DD. The role of CCR7 in TH1 and TH2 cell localization and delivery of B cell help in vivo. Science 1999;286:2159–2162.

    Article  PubMed  CAS  Google Scholar 

  66. Rabin RL, Alston MA, Sircus JC, et al. CXCR3 is induced early on the pathway of CD4+ T cell differentiation and bridges central and peripheral functions. J Immunol 2003;171:2812–2824.

    PubMed  CAS  Google Scholar 

  67. Agace WW, Roberts AI, Wu L, Greineder C, Ebert EC, Parker CM. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Eur J Immunol 2000;30:819–826.

    Article  PubMed  CAS  Google Scholar 

  68. Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 1999;96:6873–6878.

    Article  PubMed  CAS  Google Scholar 

  69. Yamamoto J, Adachi Y, Onoue Y, et al. Differential expression of the chemokine receptors by the Th1-and Th2-type effector populations within circulating CD4+ T cells. J Leukoc Biol 2000;68:568–574.

    PubMed  CAS  Google Scholar 

  70. Romagnani P, Maggi L, Mazzinghi B, et al. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production. J Allergy Clin Immunol 2005;116:1372–1379.

    Article  PubMed  CAS  Google Scholar 

  71. Kim CH, Rott L, Kunkel EJ, et al. Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest 2001;108:1331–1339.

    Article  PubMed  CAS  Google Scholar 

  72. Syrbe U, Siveke J, Hamann A. Th1/Th2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin Immunopathol 1999;21:263–1285.

    Article  PubMed  CAS  Google Scholar 

  73. Nakajima C, Mukai T, Yamaguchi N, et al. Induction of the chemokine receptor CXCR3 on TCR-stimulated T cells: dependence on the release from persistent TCR-triggering and requirement for IFN-gamma stimulation. Eur J Immunol 2002;32:1792–1801.

    Article  PubMed  CAS  Google Scholar 

  74. Yang YF, Tomura M, Iwasaki M, et al. IL-12 as well as IL-2 upregulates CCR5 expression on T cell receptor-triggered human CD4+ and CD8+ T cells. J Clin Immunol 2001;21:116–125.

    Article  PubMed  CAS  Google Scholar 

  75. Iwasaki M, Mukai T, Gao P, et al. A critical role for IL-12 in CCR5 induction on T cell receptor-triggered mouse CD4(+) and CD8(+) T cells. Eur J Immunol 2001;31:2411–2420.

    Article  PubMed  CAS  Google Scholar 

  76. Matsuda JL, Zhang Q, Ndonye R, Richardson SK, Howell AR, Gapin L. T-bet concomitantly controls migration, survival and effector functions during the development of Vα 14i NKT cells. Blood 2006;107:2795–2805.

    Article  CAS  Google Scholar 

  77. Odum N, Bregenholt S, Eriksen KW, et al. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells. Tissue Antigens 1999;54:572–577.

    Article  PubMed  CAS  Google Scholar 

  78. Qin S, Rottman JB, Myers P, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998;101:746–754.

    Article  PubMed  CAS  Google Scholar 

  79. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998;187:129–134.

    Article  PubMed  CAS  Google Scholar 

  80. Vestergaard C, Deleuran M, Gesser B, Gronhoj Larsen C. Expression of the T-helper 2-specific chemokine receptor CCR4 on CCR10-positive lymphocytes in atopic dermatitis skin but not in psoriasis skin. Br J Dermatol 2003;149:457–463.

    Article  PubMed  CAS  Google Scholar 

  81. Chung CD, Kuo F, Kumer J, et al. CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol 2003;170:581–587.

    PubMed  CAS  Google Scholar 

  82. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6:345–352.

    Article  PubMed  CAS  Google Scholar 

  83. Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001;194:847–853.

    Article  PubMed  CAS  Google Scholar 

  84. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2001;2:1126–1132.

    Article  PubMed  CAS  Google Scholar 

  85. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versushost disease. Blood 2005;106:3300–3307.

    Article  PubMed  CAS  Google Scholar 

  86. Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood 2005;105:2877–2886.

    Article  PubMed  CAS  Google Scholar 

  87. Hargreaves DC, Hyman PL, LU TT, et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 2001;194:45–56.

    Article  PubMed  CAS  Google Scholar 

  88. Muehlinghaus G, Cigliano L, Huehn S, et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 2005;105:3965–3971.

    Article  PubMed  CAS  Google Scholar 

  89. Kunkel EJ, Kim CH, Lazarus NH, et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 2003;111:1001–1010.

    Article  PubMed  CAS  Google Scholar 

  90. Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 2004;200:805–809.

    Article  PubMed  CAS  Google Scholar 

  91. Jaimes MC, Rojas OL, Kunkel EJ, et al. Maturation and trafficking markers on rotavirus-specific B cells during acute infection and convalescence in children. J Virol 2004;78:10967–10976.

    Article  PubMed  CAS  Google Scholar 

  92. Hieshima K, Kawasaki Y, Hanamoto H, et al. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol 2004;173:3668–3675.

    PubMed  CAS  Google Scholar 

  93. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301–314.

    Article  PubMed  CAS  Google Scholar 

  94. Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001;194:1541–1547.

    Article  PubMed  CAS  Google Scholar 

  95. Homey B, Alenius H, Muller A, et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002;8:157–165.

    Article  PubMed  CAS  Google Scholar 

  96. Soler D, Humphreys TL, Spinola SM, Campbell JJ. CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood 2003;101:1677–1682.

    Article  PubMed  CAS  Google Scholar 

  97. Vestergaard C, Johansen C, Christensen U, Just H, Hohwy T, Deleuran M. TARC augments TNF-alpha-induced CTACK production in keratinocytes. Exp Dermatol 2004;13:551–557.

    Article  PubMed  CAS  Google Scholar 

  98. Vestergaard C, Deleuran M, Gesser B, Larsen CG. Thymus-and activation-regulated chemokine (TARC/CCL17) induces a Th2-dominated inflammatory reaction on intradermal injection in mice. Exp Dermatol 2004;13:265–271.

    Article  PubMed  CAS  Google Scholar 

  99. Humphreys TL, Baldridge LA, Billings SD, Campbell JJ, Spinola SM. Trafficking pathways and characterization of CD4 and CD8 cells recruited to the skin of humans experimentally infected with Haemophilus ducreyi. Infect Immun 2005;73:3896–902.

    Article  PubMed  CAS  Google Scholar 

  100. Baekkevold ES, Wurbel MA, Kivisakk P, et al. A role for CCR4 in development of mature circulating cutaneous T helper memory cell populations. J Exp Med 2005;201:1045–1051.

    Article  PubMed  CAS  Google Scholar 

  101. Kunkel EJ, Campbell JJ, Haraldsen G, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 2000;192:761–768.

    Article  PubMed  CAS  Google Scholar 

  102. Wurbel MA, Malissen M, Guy-Grand D, et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T-and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood 2001;98:2626–2632.

    Article  PubMed  CAS  Google Scholar 

  103. Onai N, Kitabatake M, Zhang YY, Ishikawa H, Ishikawa S, Matsushima K. Pivotal role of CCL25 (TECK)-CCR9 in the formation of gut cryptopatches and consequent appearance of intestinal intraepithelial T lymphocytes. Int Immunol 2002;14:687–694.

    Article  PubMed  CAS  Google Scholar 

  104. Marsal J, Svensson M, Ericsson A, et al. Involvement of CCL25 (TECK) in the generation of the murine small-intestinal CD8alpha alpha+CD3+ intraepithelial lymphocyte compartment. Eur J Immunol 2002;32:3488–3497.

    Article  PubMed  CAS  Google Scholar 

  105. Svensson M, Marsal J, Ericsson A, et al. CCL25 mediates the localization of recently activated CD8alphabeta(+) lymphocytes to the small-intestinal mucosa. J Clin Invest 2002;110:1113–1121.

    Article  PubMed  CAS  Google Scholar 

  106. Mora JR, Bono MR, Manjunath N, et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 2003;424:88–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hedrick, M.N., Farber, J.M. (2007). Chemokine Receptors and Lymphocyte Trafficking. In: Harrison, J.K., Lukacs, N.W. (eds) The Chemokine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-020-1_7

Download citation

Publish with us

Policies and ethics