Skip to main content

Chemokine Receptors and Neutrophil Trafficking

  • Chapter
The Chemokine Receptors

Part of the book series: The Receptors ((REC))

Abstract

Neutrophils are the most abundant leukocytes in circulation. They rapidly infiltrate sites of tissue injury and play a critical role in innate immune responses. In addition, they also contribute to the development of adaptive immune responses. Isolation of the human chemokine IL-8 and the cloning of its receptors CXCR1 and CXCR2, followed by the cloning of their orthologues or homologues in animals, have enabled researchers to elucidate the mechanisms of neutrophil trafficking during immune responses at a molecular level. Since then, there has been tremendous progress in understanding how the trafficking of neutrophils is regulated by the chemokine/chemokine receptor system under not only pathologic but also physiologic conditions. In this chapter, the roles of the chemokine receptors in regulating the trafficking of neutrophils are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshimura T, Matsushima K, Tanaka S, et al. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A 1987;84:9233–9237.

    Article  PubMed  CAS  Google Scholar 

  2. Schroder JM, Mrowietz U, Morita E, Christophers E. Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol 1987;139:3474–3483.

    PubMed  CAS  Google Scholar 

  3. Walz A, Peveri P, Aschauer H, Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 1987;149:755–761.

    Article  PubMed  CAS  Google Scholar 

  4. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science 1991;253:1278–1280.

    Article  PubMed  CAS  Google Scholar 

  5. Murphy PM, Tiffany HL. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 1991;253:1280–1283.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000;52:145–176.

    PubMed  CAS  Google Scholar 

  7. Cohen-Hillel E, Yron I, Meshel T, Soria G, Attal H, Ben-Baruch A. CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: Cytoskeleton-and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine 2006;33:1–16.

    Article  PubMed  CAS  Google Scholar 

  8. Richardson RM, Pridgen BC, Haribabu B, Ali H, Snyderman R. Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2. Evidence for time-dependent signal generation. J Biol Chem 1998;273:23830–23836.

    Article  PubMed  CAS  Google Scholar 

  9. Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe I, Matsushima K. Prevention of lung perfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 1993;365:654–657.

    Article  PubMed  CAS  Google Scholar 

  10. Wada T, Tomosugi N, Naito T, et al. Prevention of proteinuria by the administration of anti-interleukin 8 antibody in experimental acute immune complex-induced glomerulonephritis. J Exp Med 1994;180:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  11. Matsukawa A, Yoshimura T, Fujiwara K, Maeda T, Ohkawara S, Yoshinaga M. Involvement of growth related protein (GRO) in lipopolysaccharide-induced rabbit arthritis: Cooperation between GRO and interleukin-8 (IL-8) and interrelated regulation among TNFα, IL-1, IL-8, and GRO. Lab Invest 1999;79:591–600.

    PubMed  CAS  Google Scholar 

  12. Cacalano G, Lee J, Kikly K, et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 1994;265:682–684.

    Article  PubMed  CAS  Google Scholar 

  13. Bertini R, Allegretti M, Bizzarri C, et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A 2004;101:11791–11796.

    Article  PubMed  CAS  Google Scholar 

  14. Kaneider NC, Agarwal A, Leger AJ, Kuliopulos A. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med 2005;11:661–665.

    Article  PubMed  CAS  Google Scholar 

  15. Dunstan C-AN, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK. Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem 1996;271:32770–32776.

    Article  PubMed  CAS  Google Scholar 

  16. Fu W, Zhang Y, Zhang J, Chen WF. Cloning and characterization of mouse homolog of the CXC chemokine receptor CXCR1. Cytokine 2005;31:9–17.

    Article  PubMed  CAS  Google Scholar 

  17. Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005;280:35760–35766.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshimura T, Johnson DG. cDNA cloning and expression of guinea pig neutrophil attractant protein-1 (NAP-1): NAP-1 is highly conserved in guinea pig. J Immunol 1993;151:6225–6236.

    PubMed  CAS  Google Scholar 

  19. Takahashi M, Jeevan A, Sawant K, McMurray DN, Yoshimura T. Cloning and characterization of guinea pig CXCR1. Mol Immunol 2007;44:878–888.

    Article  PubMed  CAS  Google Scholar 

  20. Bruhl H, Wagner K, Kellner H, Schattenkirchner M., Schlondorff D, Mack M. Surface expression of CC-and CXC-chemokine receptors on leucocyte subsets in inflammatory joint diseases. Clin Exp Immunol 2001;126:551–559.

    Article  PubMed  CAS  Google Scholar 

  21. Khandaker MH, Xu L, Rahimpour R, et al. CXCR1 and CXCR2 are rapidly down-modulated by bacterial endotoxin through a unique agonist-independent, tyrosine kinase-dependent mechanism. J Immunol 1998;161:1930–1938.

    PubMed  CAS  Google Scholar 

  22. Lloyd AR, Biragyn A, Johnston JA, et al. Granulocyte-colony stimulating factor and lipopolysaccharide regulate the expression of interleukin 8 receptors on polymorphonuclear leukocytes. J Biol Chem 1995;270:28188–28192.

    Article  PubMed  CAS  Google Scholar 

  23. Jawa RS, Quaid GA, Williams MA, et al. Tumor necrosis factor alpha regulates CXC chemokine receptor expression and function. Shock 1999;11:385–390.

    PubMed  CAS  Google Scholar 

  24. Tikhonov I, Doroshenko T, Chaly Y, Smolnikova V, Pauza CD, Voitenok N. Down-regulation of CXCR1 and CXCR2 expression on human neutrophils upon activation of whole blood by S. aureus is mediated by TNF-α. Clin Exp Immunol 2001;125:414–422.

    Article  PubMed  CAS  Google Scholar 

  25. Gao J-L, Wynn TA, Chang Y, et al. Imparied host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 1997;185:1959–1968.

    Article  PubMed  CAS  Google Scholar 

  26. Neote K, Mak JY, Kolakowski LF Jr, Schall TJ. Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood 1994;84:44–52.

    PubMed  CAS  Google Scholar 

  27. Gao JL, Kuhns DB, Tiffany HL, et al. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med 1993;177:1421–1427.

    Article  PubMed  CAS  Google Scholar 

  28. Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 1993;72:415–425.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang S, Youn BS, Gao JL, Murphy PM, Kwon BS. Differential effects of leukotactin-1 and macrophage inflammatory protein-1 alpha on neutrophils mediated by CCR1. J Immunol 1999;162:4938–4942.

    PubMed  CAS  Google Scholar 

  30. McColl SR, Hachicha M, Levasseur S, Neote K, Schall TJ. Uncoupling of early signal transduction events from effector function in human peripheral blood neutrophils in response to recombinant macrophage inflammatory proteins-1 alpha and-1 beta. J Immunol 1993;150:4550–4560.

    PubMed  CAS  Google Scholar 

  31. Lee SC, Brummet ME, Shahabuddin S, et al. Cutaneous injection of human subjects with macrophage inflammatory protein-1 alpha induces significant recruitment of neutrophils and monocytes. J Immunol 2000;164:3392–3401.

    PubMed  CAS  Google Scholar 

  32. Bonecchi R, Polentarutti N, Luini W, et al. Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-gamma in human neutrophils. J Immunol 1999;162:474–479.

    PubMed  CAS  Google Scholar 

  33. Cheng SS, Lai JJ, Lukacs NW, Kunkel SL. Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 2001;166:1178–1184.

    PubMed  CAS  Google Scholar 

  34. Gerard C, Frossard JL, Bhatia M, et al. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. J Clin Invest 1997;100:2022–2027.

    Article  PubMed  CAS  Google Scholar 

  35. Speyer CL, Gao H, Rancilio NJ, et al. Novel chemokine responsiveness and mobilization of neutrophils during sepsis. Am J Pathol 2004;165:2187–2196.

    PubMed  CAS  Google Scholar 

  36. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res 2004;95:858–866.

    Article  PubMed  CAS  Google Scholar 

  37. Maus U, von Grote K, Kuziel WA, et al. The role of CC chemokine receptor 2 in alveolar monocyte and neutrophil immigration in intact mice. Am J Respir Crit Care Med 2002;166:268–273.

    Article  PubMed  Google Scholar 

  38. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894–897.

    Article  PubMed  CAS  Google Scholar 

  39. Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med 1997;186:1757–1762.

    Article  PubMed  CAS  Google Scholar 

  40. Reichel CA, Khandoga A, Anders H-J, Schlondorff D, Luckow B, Krombach F. Chemokine receptors CCR1, CCR2, and CCR5 mediate neutrophil migration to postischemic tissue. J Leukoc Biol 2006;79:114–122.

    Article  PubMed  CAS  Google Scholar 

  41. Yamashiro S, Wang J-M, Gong W-H, Yan D, Kamohara H, Yoshimura T. Expression of CCR6 and CD83 by cytokine-activated human neutrophils. Blood 2000;96:3958–3963.

    PubMed  CAS  Google Scholar 

  42. Greaves DR, Wang W, Dairaghi DJ, et al. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells. J Exp Med 1997;186:837–844.

    Article  PubMed  CAS  Google Scholar 

  43. Yang D, Howard OMZ, Chen Q, Oppenheim JJ. Cutting edge: Immature dendritic cells generated from monocytes in the presence of TGF-betal express functional C-C chemokine receptor 6. J Immunol 1999;163:1737–1741.

    PubMed  CAS  Google Scholar 

  44. Sozzani S, Allavena P, D’Amico G, et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 1998;161:1083–1086.

    PubMed  CAS  Google Scholar 

  45. Gosselin EJ, Wardwell K, Rigby WF, Guyre PM. Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J Immunol 1993;151:1482–1490.

    PubMed  CAS  Google Scholar 

  46. Yamashiro S, Kamohara H, Yoshimura T. Alteration in the responsiveness to TNF-α is crucial for maximal expression of MCP-1 in human neutrophils. Immunology 2000;101:97–103.

    Article  PubMed  CAS  Google Scholar 

  47. Oehler L, Majdic O, Pickl WF, et al. Neutrophil granulocyte-commited cells can be driven to acquire dendritic cell characteristics. J Exp Med 1998;187:1019–1028.

    Article  PubMed  CAS  Google Scholar 

  48. Fan P, Kyaw H, Su K, et al. Cloning and characterization of a novel human chemokine receptor. Biochem Biophys Res Commun 1998;243:264–268.

    Article  PubMed  CAS  Google Scholar 

  49. Migeotte I, Franssen J-D, Goriely S, Willems F, Parmentier M. Distribution and regulation of expression of the putative human chemokine receptor HCR in leukocyte populations. Eur J Immunol 2002;32:494–501.

    Article  PubMed  CAS  Google Scholar 

  50. Galligan C, Matsuyama W, Matsukawa A, et al. Up-regulated expression and activation of the orphan chemokine receptor, CCRL2, in rheumatoid arthritis. Arthritis Rheum 2004;50:1806–1814.

    Article  PubMed  CAS  Google Scholar 

  51. Shimada T, Matsumoto M, Tatsumi Y, Kanamaru A, Akira S. A novel lipopolysaccharide inducible C-C chemokine receptor related gene in murine macrophages. FEBS Lett 1998;425:490–494.

    Article  PubMed  CAS  Google Scholar 

  52. Zuurman MW, Heeroma J, Brouwer N, Boddeke HW, Biber K. LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo. Glia 2003;41:327–336.

    Article  PubMed  Google Scholar 

  53. Ruth JH, Shahrara S, Park CC, et al. Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Lab Invest 2003;83:579–588.

    PubMed  CAS  Google Scholar 

  54. Ottonello L, Montecucco F, Bertolotto M, et al. CCL3 (MIP-1α) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal 2005;17:355–363.

    Article  PubMed  CAS  Google Scholar 

  55. Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997;91:521–530.

    Article  PubMed  CAS  Google Scholar 

  56. Feng L, Chen S, Garcia GE, et al. Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX3CR1 rapid communication. Kidney Int 1999;56:612–620.

    Article  PubMed  CAS  Google Scholar 

  57. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 2003;19:583–593.

    Article  PubMed  CAS  Google Scholar 

  58. Dale DC, Liles WC, Llewellyn C, Price TH. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Am J Hematol 1998;57:7–15.

    Article  PubMed  CAS  Google Scholar 

  59. Jagels MA, Hugli TE. Neutrophil chemotactic factors promote leukocytosis. J Immunol 1992;148:1119–1128.

    PubMed  CAS  Google Scholar 

  60. Sato N, Sawada K, Takahashi TA, et al. A time course study for optimal harvest of peripheral blood progenitor cells by granulocyte colony-stimulating factor in healthy volunteers. Exp Hematol 1994;22:973–978.

    PubMed  CAS  Google Scholar 

  61. Terashima T, English D, Hogg JC, van Eeden SF. Release of polymorphonuclear leukocytes from the bone marrow by interleukin-8. Blood 1998;92:1062–1069.

    PubMed  CAS  Google Scholar 

  62. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 1993;261:600–603.

    Article  PubMed  CAS  Google Scholar 

  63. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 1994;91:2305–2309.

    Article  PubMed  CAS  Google Scholar 

  64. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996;382:833–835.

    Article  PubMed  CAS  Google Scholar 

  65. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998;95:9448–9453.

    Article  PubMed  CAS  Google Scholar 

  66. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635–638.

    Article  PubMed  CAS  Google Scholar 

  67. Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998;393:591–594.

    Article  PubMed  CAS  Google Scholar 

  68. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998;393:595–599.

    Article  PubMed  CAS  Google Scholar 

  69. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999;10:463–471.

    Article  PubMed  CAS  Google Scholar 

  70. Ueda H, Siani MA, Gong W, Thompson DA, Brown GG, Wang JM. Chemically synthesized SDF-1alpha analogue, N33A, is a potent chemotactic agent for CXCR4/Fusin/LESTR-expressing human leukocytes. J Biol Chem 1997;272:24966–24970.

    Article  PubMed  CAS  Google Scholar 

  71. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996;184:1101–1109.

    Article  PubMed  CAS  Google Scholar 

  72. Nagase H, Miyamasu M, Yamaguchi M, et al. Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J Leukoc Biol 2002;71:711–717.

    PubMed  CAS  Google Scholar 

  73. Pelus LMBH, Fukuda S, Wong D, Merzouk A, Salari H. The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 2005;33:295–307.

    Article  PubMed  CAS  Google Scholar 

  74. Suratt BT, Petty JM, Young SK, et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 2004;104:565–571.

    Article  PubMed  CAS  Google Scholar 

  75. Addison CL, Daniel TO, Burdick MD, et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 2000;165:5269–5277.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yoshimura, T. (2007). Chemokine Receptors and Neutrophil Trafficking. In: Harrison, J.K., Lukacs, N.W. (eds) The Chemokine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-020-1_5

Download citation

Publish with us

Policies and ethics