Skip to main content

Chemokine Receptors in Neuroinflammation

  • Chapter
The Chemokine Receptors

Part of the book series: The Receptors ((REC))

Abstract

Actions of chemokines and the interaction with specific receptors within the central nervous system (CNS) surpass their original defined role of leukocyte recruitment to inflamed tissues. Chemokine receptor expression by resident CNS cells is crucial for normal brain development and architectural organization, neuronal protection during inflammatory and neurotoxic challenges, and, among many others, protective mechanisms during inflammatory conditions such as multiple sclerosis. The chemokine/chemokine receptor systems involved in such significant functions include CXCR4/CXCL12, CXCR2/CXCL1, and CX3CR1/CX3CL1. In this chapter, we discuss how these receptors might contribute to modulate communication within the CNS and with peripheral elements, and we also suggest potential mechanisms of action of fractalkine and the translation of these into the understanding of microglial function during neuro-inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol 2001;2:95–101.

    Article  PubMed  CAS  Google Scholar 

  2. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610–621.

    Article  PubMed  CAS  Google Scholar 

  3. Adler MW, Rogers TJ. Are chemokines the third major system in the brain? J Leukoc Biol 2005;78:1204–1209.

    Article  PubMed  CAS  Google Scholar 

  4. Adler MW, Geller EB, Chen X, et al. Viewing chemokines as a third major system of communication in the brain. AAPS J 2005;7:E865–E870.

    Article  CAS  Google Scholar 

  5. Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003;3:569–581.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000;52:145–176.

    PubMed  CAS  Google Scholar 

  7. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. 2000;12:121–127.

    CAS  Google Scholar 

  8. Locati M, Torre YM, Galliera E, et al. Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev 2005;16:679–686.

    Article  PubMed  CAS  Google Scholar 

  9. Middleton J, Patterson AM, Gardner L, et al. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 2002;100:3853–3860.

    Article  PubMed  CAS  Google Scholar 

  10. Rot A. Contribution of Duffy antigen to chemokine function. Cytokine Growth Factor Rev 2005;16:687–694.

    Article  PubMed  CAS  Google Scholar 

  11. Martinez dlT, Locati M, Buracchi C, et al. Increased inflammation in mice deficient for the chemokine decoy receptor D6. Eur J Immunol 2005;35:1342–1346.

    Article  Google Scholar 

  12. Jamieson T, Cook DN, Nibbs RJ, et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 2005;6:403–411.

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Graham G, Hu T, et al. The silent chemokine receptor D6 is reuqired for generating T cell responses that mediate experimental autoimmune encephalomyelitis. J Immunol 2006;177(1):17–21.

    PubMed  CAS  Google Scholar 

  14. Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Ann Rev Immunol 2004;22:891–928.

    Article  CAS  Google Scholar 

  15. Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 2006;27:48–55.

    Article  PubMed  CAS  Google Scholar 

  16. van der Meer P, Goldberg SH, Fung KM, et al. Expression pattern of CXCR3, CXCR4, and CCR3 chemokine receptors in the developing human brain. J Neuropathol Exp Neurol 2001;60:25–32.

    Google Scholar 

  17. van der Meer P, Ulrich AM, Alez-Scarano F, et al. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia. Exp Mol Pathol 2000;69:192–201.

    Article  PubMed  Google Scholar 

  18. Westmoreland SV, Rottman JB, Williams KC, et al. Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am J Pathol 1998;152:659–665.

    PubMed  CAS  Google Scholar 

  19. Goldberg SH, van der Meer P, Hesselgesser J, et al. CXCR3 expression in human central nervous system diseases. Neuropathol Appl Neurobiol 2001;27:127–138.

    Article  PubMed  CAS  Google Scholar 

  20. Biber K, Dijkstra I, Trebst C, et al. Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience 2002;112:487–497.

    Article  PubMed  CAS  Google Scholar 

  21. Biber, K. Microglial chemokines and chemokine receptors. In: Universes in delicate balance: chemokines and the nervous system. In: Ransohoff RM, Suzuki K, Proudfoot AEI, et al., eds. Amsterdam: Elsevier; 2002:289–300.

    Google Scholar 

  22. Boutet A, Salim H, Leclerc P, et al. Cellular expression of functional chemokine receptor CCR5 and CXCR4 in human embryonic neurons. Neurosci Lett 2001;311:105–108.

    Article  PubMed  CAS  Google Scholar 

  23. Westmoreland SV, Alvarez X, deBakker C, et al. Developmental expression patterns of CCR5 and CXCR4 in the rhesus macaque brain. J Neuroimmunol 2002;122:146–158.

    Article  PubMed  CAS  Google Scholar 

  24. Andjelkovic AV, Song L, Dzenko KA, et al. Functional expression of CCR2 by human fetal astrocytes. J Neurosci Res 2002;70:219–231.

    Article  PubMed  CAS  Google Scholar 

  25. Simpson J, Rezaie P, Newcombe J, et al. Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol 2000;108:192–200.

    Article  PubMed  CAS  Google Scholar 

  26. Hughes PM, Botham MS, Frentzel S, et al. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 2002;37:314–327.

    Article  PubMed  Google Scholar 

  27. Jung S, Aliberti J, Graemmel P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000;20:4106–4114.

    Article  PubMed  CAS  Google Scholar 

  28. Cowell RM, Silverstein FS. Developmental changes in the expression of chemokine receptor CCR1 in the rat cerebellum. J Comp Neurol 2003;457:7–23.

    Article  PubMed  CAS  Google Scholar 

  29. Danik M, Puma C, Quirion R, et al. Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, gamma-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: a single-cell reverse transcription-multiplex polymerase chain reaction study. J Neurosci Res 2003;74:286–295.

    Article  PubMed  CAS  Google Scholar 

  30. Halks-Miller M, Schroeder ML, Haroutunian V, et al. CCR1 is an early and specific marker of Alzheimer’s disease. Ann Neurol 2003;54:638–646.

    Article  PubMed  CAS  Google Scholar 

  31. Omari KM, John G, Lango R, et al. Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 2006;53(1):24–31.

    Article  PubMed  Google Scholar 

  32. Sanders VJ, Pittman CA, White MG, et al. Chemokines and receptors in HIV encephalitis. AIDS 1998;12:1021–1026.

    Article  PubMed  CAS  Google Scholar 

  33. Dzenko KA, Andjelkovic AV, Kuziel WA, et al. The chemokine receptor CCR2 mediates the binding and internalization of monocyte chemoattractant protein-1 along brain microvessels. J Neurosci 2001;21:9214–9223.

    PubMed  CAS  Google Scholar 

  34. Dzenko KA, Song L, Ge S, et al. CCR2 expression by brain microvascular endothelial cells is critical for macrophage transendothelial migration in response to CCL2. Microvasc Res 2005;90(1–2):53–64.

    Article  Google Scholar 

  35. Berger O, Gan X, Gujuluva C, et al. CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med 1999;5:795–805.

    PubMed  CAS  Google Scholar 

  36. Biber K, Zuurman MW, Dijkstra IM, et al. Chemokines in the brain: neuroimmunology and beyond. Curr Opin Pharmacol 2002;2:63–68.

    Article  PubMed  CAS  Google Scholar 

  37. Dziembowska M, Tham TN, Lau P, et al. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 2005;50:258–269.

    Article  PubMed  CAS  Google Scholar 

  38. Banisadr G, Skrzydelski D, Kitabgi P, et al. Highly regionalized distribution of stromal cell-derived factor-1/CXCL12 in adult rat brain: constitutive expression in cholinergic, dopaminergic and vasopressinergic neurons. Eur J Neurosci 2003;18:1593–1606.

    Article  PubMed  Google Scholar 

  39. Vilz TO, Moepps B, Engele J, et al. The SDF-1/CXCR4 pathway and the development of the cerebellar system. Eur J Neurosci 2005;22:1831–1839.

    Article  PubMed  Google Scholar 

  40. Xiang Y, Li Y, Zhang Z, et al. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat Neurosci 2002;5:843–848.

    Article  PubMed  CAS  Google Scholar 

  41. Chalasani SH, Sabelko KA, Sunshine MJ, et al. A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 2003;23:1360–1371.

    PubMed  CAS  Google Scholar 

  42. Belmadani A, Tran PB, Ren D, et al. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 2005;25:3995–4003.

    Article  PubMed  CAS  Google Scholar 

  43. Allen NJ, Attwell D. A chemokine-glutamate connection. Nat Neurosci 2001;4:676–678.

    Article  PubMed  CAS  Google Scholar 

  44. Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001;4:702–710.

    Article  PubMed  CAS  Google Scholar 

  45. Ehtesham M, Winston JA, Kabos P, et al. CXCR4 expression mediates glioma cell invasiveness. Oncogene 2006;25(19):2801–2806.

    Article  PubMed  CAS  Google Scholar 

  46. Bajetto A, Barbieri F, Dorcaratto A, et al. Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 2006;49:423–432.

    Article  PubMed  CAS  Google Scholar 

  47. Woerner BM, Warrington NM, Kung AL, et al. Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res 2005;65:11392–11399.

    Article  PubMed  CAS  Google Scholar 

  48. Airoldi I, Raffaghello L, Piovan E, et al. CXCL12 does not attract CXCR4+ human metastatic neuroblastoma cells: clinical implications. Clin Cancer Res 2006;12:77–82.

    Article  PubMed  CAS  Google Scholar 

  49. Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005;23:879–894.

    Article  PubMed  CAS  Google Scholar 

  50. Diaz GA. CXCR4 mutations in WHIM syndrome: a misguided immune system? Immunol Rev 2005;203:235–243.

    Article  PubMed  CAS  Google Scholar 

  51. Diaz GA, Gulino AV. WHIM syndrome: a defect in CXCR4 signaling. Curr Allergy Asthma Rep 2005;5:350–355.

    Article  PubMed  CAS  Google Scholar 

  52. Kawai T, Choi U, Whiting-Theobald NL, et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 2005;33:460–468.

    Article  PubMed  CAS  Google Scholar 

  53. Ruiz DA, Luttun A, Carmeliet P. An SDF-1 trap for myeloid cells stimulates angiogenesis. Cell 2006;124:18–21.

    Article  Google Scholar 

  54. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 2005;106:1901–1910.

    Article  PubMed  CAS  Google Scholar 

  55. Tsai HH, Frost E, To V, et al. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 2002;110:373–383.

    Article  PubMed  CAS  Google Scholar 

  56. Omari KM, John GR, Sealfon SC, et al. CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 2005;128:1003–1015.

    Article  PubMed  Google Scholar 

  57. Lucas AD, Chadwick N, Warren BF, et al. The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. Am J Pathol 2001;158:855–866.

    PubMed  CAS  Google Scholar 

  58. Garton KJ, Gough PJ, Blobel CP, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 2001;276:37993–38001.

    PubMed  CAS  Google Scholar 

  59. Tsou CL, Haskell CA, Charo IF. Tumor necrosis factor-alpha-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 2001;276:44622–44626.

    Article  PubMed  CAS  Google Scholar 

  60. Ludwig A, Schiemann F, Mentlein R, et al. Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J Leukoc Biol 2002;72:183–191.

    PubMed  CAS  Google Scholar 

  61. Hundhausen C, Misztela D, Berkhout TA, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003;102:1186–1195.

    Article  PubMed  CAS  Google Scholar 

  62. Smalley DM, Ley K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med 2005;9:255–266.

    Article  PubMed  CAS  Google Scholar 

  63. Ludwig A, Hundhausen C, Lambert MH, et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 2005;8:161–171.

    Article  PubMed  CAS  Google Scholar 

  64. Meucci O, Fatatis A, Simen AA, et al. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 2000;97:8075–8080.

    Article  PubMed  CAS  Google Scholar 

  65. Maciejewski-Lenoir D, Chen S, Feng L, et al. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 1999;163:1628–1635.

    PubMed  CAS  Google Scholar 

  66. Cardona A, Pioro EP, Sasse ME, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006;9:917–924.

    Article  PubMed  CAS  Google Scholar 

  67. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19:71–82.

    Article  PubMed  CAS  Google Scholar 

  68. Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307:254–258.

    Article  PubMed  CAS  Google Scholar 

  69. Haskell CA, Hancock WW, Salant DJ, et al. Targeted deletion of CX(3)CR1 reveals a role for fractalkine in cardiac allograft rejection. J Clin Invest 2001;108:679–688.

    Article  PubMed  CAS  Google Scholar 

  70. Robinson LA, Nataraj C, Thomas DW, et al. A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection. J Immunol 2000;165:6067–6072.

    PubMed  CAS  Google Scholar 

  71. Huang D, Shi FD, Jung S, et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 2006;20:896–905.

    Article  PubMed  CAS  Google Scholar 

  72. Moatti D, Faure S, Fumeron F, et al. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 2001;97:1925–1928.

    Article  PubMed  CAS  Google Scholar 

  73. McDermott DH, Halcox JP, Schenke WH, et al. Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 2001;89:401–407.

    Article  PubMed  CAS  Google Scholar 

  74. Daoudi M, Lavergne E, Garin A, et al. Enhanced adhesive capacities of the naturally occurring Ile249-Met280 variant of the chemokine receptor CX3CR1. J Biol Chem 2004;279:19649–19657.

    Article  PubMed  CAS  Google Scholar 

  75. Apostolakis S, Baritaki S, Kochiadakis GE, et al. Effects of polymorphisms in chemokine ligands and receptors on susceptibility to coronary artery disease. Thromb Res 2007;119:63–71.

    Article  PubMed  CAS  Google Scholar 

  76. Cybulsky MI, Hegele RA. The fractalkine receptor CX3CR1 is a key mediator of atherogenesis. J Clin Invest 2003;111:1118–1120.

    Article  PubMed  CAS  Google Scholar 

  77. Damas JK, Boullier A, Waehre T, et al. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arterioscler Thromb Vasc Biol 2005;25:2567–2572.

    Article  PubMed  CAS  Google Scholar 

  78. Lavergne E, Labreuche J, Daoudi M, et al. Adverse associations between CX3CR1 polymorphisms and risk of cardiovascular or cerebrovascular disease. Arterioscler Thromb Vasc Biol 2005;25:847–853.

    Article  PubMed  CAS  Google Scholar 

  79. Zujovic V, Benavides J, Vige X, et al. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 2000;29:305–315.

    Article  PubMed  CAS  Google Scholar 

  80. Zujovic V, Taupin V. Use of cocultured cell systems to elucidate chemokine-dependent neuronal/microglial interactions: control of microglial activation. Methods 2003;29:345–350.

    Article  PubMed  CAS  Google Scholar 

  81. Boehme SA, Lio FM, Maciejewski-Lenoir D, et al. The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 2000;165:397–403.

    PubMed  CAS  Google Scholar 

  82. Mizuno T, Kawanokuchi J, Numata K, et al. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 2003;979:65–70.

    Article  PubMed  CAS  Google Scholar 

  83. Xu W, Fazekas G, Hara H, et al. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol 2005;163:24–30.

    Article  PubMed  CAS  Google Scholar 

  84. Jahng AW, Maricic I, Pedersen B, et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 2001;194:1789–1799.

    Article  PubMed  CAS  Google Scholar 

  85. Infante-Duarte C, Weber A, Kratzschmar J, et al. Frequency of blood CX3CR1-positive natural killer cells correlates with disease activity in multiple sclerosis patients. FASEB J 2005;19:1902–1904.

    PubMed  CAS  Google Scholar 

  86. Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752–758.

    Article  PubMed  CAS  Google Scholar 

  87. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.

    Article  PubMed  CAS  Google Scholar 

  88. Hickey WF. Basic principles of immunological surveillance of the normal central nervous system. Glia 2001;36:118–124.

    Article  PubMed  CAS  Google Scholar 

  89. Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 1997;75:165–173.

    Article  PubMed  CAS  Google Scholar 

  90. Kreutzberg GW. Microglia:a sensor for pathological evets in the CNS. Trends Neurosci 1996;19:312–318.

    Article  PubMed  CAS  Google Scholar 

  91. Peterson JW, Bo L, Mork S, et al. VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 2002;61:539–546.

    PubMed  Google Scholar 

  92. Heppner FL, Greter M, Marino D, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005;11:146–152.

    Article  PubMed  CAS  Google Scholar 

  93. Ponomarev ED, Shriver LP, Maresz K, et al. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 2005;81:374–389.

    Article  PubMed  CAS  Google Scholar 

  94. Chapman GA, Moores K, Harrison D, et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 2000;20:RC87.

    PubMed  CAS  Google Scholar 

  95. Soriano SG, Amaravadi LS, Wang YF, et al. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 2002;125:59–65.

    Article  PubMed  CAS  Google Scholar 

  96. Milligan ED, Zapata V, Chacur M, et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 2004;20:2294–2302.

    Article  PubMed  CAS  Google Scholar 

  97. De Jong EK, Dijkstra IM, Hensens M, et al. Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 2005;25:7548–7557.

    Article  PubMed  Google Scholar 

  98. Biber K, Sauter A, Brouwer N, et al. Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine (SLC). Glia 2001;34:121–133.

    Article  PubMed  CAS  Google Scholar 

  99. Rappert A, Biber K, Nolte C, et al. Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl-current and chemotaxis in murine microglia. J Immunol 2002;168:3221–3226.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cardona, A.E., Ransohoff, R.M. (2007). Chemokine Receptors in Neuroinflammation. In: Harrison, J.K., Lukacs, N.W. (eds) The Chemokine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-020-1_17

Download citation

Publish with us

Policies and ethics