Skip to main content

Chemokines and Their Receptors in Fibrosis

  • Chapter
The Chemokine Receptors

Part of the book series: The Receptors ((REC))

Abstract

Tissue fibrosis, which results in the destruction of normal organ function, is a leading cause of morbidity and mortality. Current strategies for treating fibrosis have been unsuccessful, largely because of the difficulty in distinguishing whether inflammatory or fibrogenic events sustain the progression of the disease. The causes of fibrosis are diverse regardless of the tissue involved, and the common features include the sequential recruitment of inflammatory cells, overproliferation of matrix-producing cells, and the overproduction of extracellular matrix. An excessive wound-healing response presumably represents disruption in this sequence thereby leading to a disturbance in the balance between tissue remodeling, matrix degradation, and permanent scarring. The mechanisms involved in pulmonary fibrosis also represent three sequential events characterized by an initial insult, inflammation, and tissue repair. Central to the progression of these events is the balance between a T helper 1 (Th1) and a T helper 2 (Th2) environment, in which Th2-specific signals have been shown to be immunomodulatory and profibrotic. However, the release of these Th2-specific cytokines and chemokines by both inflammatory and resident cells maintains the fibrotic response, consequently leading to fibrotic disease. Evidence from animal models and human studies have identified a number of Th1/Th2-associated chemokines and chemokine receptors as profibrotic or antifibrotic. Therefore, investigating the chemokines, chemokine receptors, and the cells that they impact is an attractive approach to identifying therapeutic targets in fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Razzaque MS, Taguchi T. Pulmonary fibrosis: Cellular and molecular events. Pathol Int 2003;53(3):133–145.

    Article  PubMed  CAS  Google Scholar 

  2. Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ. Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol 1997;29(1):5–17.

    Article  PubMed  CAS  Google Scholar 

  3. Metz CN. Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 2003;60(7):1342–1350.

    Article  PubMed  CAS  Google Scholar 

  4. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004;4(8):583–594.

    Article  PubMed  CAS  Google Scholar 

  5. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004;36(4):598–606.

    Article  PubMed  CAS  Google Scholar 

  6. Cotran RS, Kumar V, Collins T. Robbins Pathologic Basis of Disease. 6th ed. Philadelphia: W.B. Saunders; 1999.

    Google Scholar 

  7. Chua F, Gauldie J, Laurent GJ. Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005;33(1):9–13.

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int 2006;69(2):213–217.

    Article  PubMed  CAS  Google Scholar 

  9. Macdonald TT. Decoy receptor springs to life and eases fibrosis. Nat Med 2006;12(1):13–14.

    Article  PubMed  CAS  Google Scholar 

  10. Kaviratne M, Hesse M, Leusink M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol 2004;173(6):4020–4029.

    PubMed  CAS  Google Scholar 

  11. Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol 2001;22(4):199–204.

    Article  PubMed  CAS  Google Scholar 

  12. Sakai N, Wada T, Furuichi K, et al. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol 2006;79(3):555–563.

    Article  PubMed  CAS  Google Scholar 

  13. White FA, Bhangoo SK, Miller RJ. Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov 2005;4(10):834–844.

    Article  PubMed  CAS  Google Scholar 

  14. Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev 2005;16(6):553–560.

    Article  PubMed  CAS  Google Scholar 

  15. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005;125(4):615–628.

    Article  PubMed  CAS  Google Scholar 

  16. Strutz F, Neilson EG. New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol 2003;24(4):459–476.

    Article  PubMed  CAS  Google Scholar 

  17. Mutsaers SE, Prele CM, Brody AR, Idell S. Pathogenesis of pleural fibrosis. Respirology 2004;9(4):428–440.

    Article  PubMed  Google Scholar 

  18. Gauldie J. Inflammatory mechanisms are a minor component of the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2002;165(9):1205–1206.

    Article  PubMed  Google Scholar 

  19. Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003;100(14):8407–8411.

    Article  PubMed  CAS  Google Scholar 

  20. Corbel M, Belleguic C, Boichot E, Lagente V. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 2002;18(1):51–61.

    Article  PubMed  CAS  Google Scholar 

  21. Kraushaar BS, Nirschl RP. Tendinosis of the elbow (tennis elbow). Clinical features and findings of histological, immunohistochemical, and electron microscopy studies. J Bone Joint Surg Am 1999;81(2):259–278.

    Article  PubMed  CAS  Google Scholar 

  22. Hogaboam CM, Bone-Larson CL, Lipinski S, et al. Differential monocyte chemoattractant protein-1 and chemokine receptor 2 expression by murine lung fibroblasts derived from Th1-and Th2-type pulmonary granuloma models. J Immunol 1999;163(4):2193–2201.

    PubMed  CAS  Google Scholar 

  23. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997;100(4):768–776.

    PubMed  CAS  Google Scholar 

  24. Hogaboam C, Kunkel SL, Strieter RM, et al. Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. J Immunol 1998;160(12):6166–6171.

    PubMed  CAS  Google Scholar 

  25. Yamamoto T, Hartmann K, Eckes B, Krieg T. Role of stem cell factor and monocyte chemoattractant protein-1 in the interaction between fibroblasts and mast cells in fibrosis. J Dermatol Sci 2001;26(2):106–111.

    Article  PubMed  CAS  Google Scholar 

  26. Wang HW, Tedla N, Hunt JE, Wakefield D, McNeil HP. Mast cell accumulation and cytokine expression in the tight skin mouse model of scleroderma. Exp Dermatol 2005;14(4):295–302.

    Article  PubMed  CAS  Google Scholar 

  27. Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 2005;175(8):5390–5395.

    PubMed  CAS  Google Scholar 

  28. Hagood JS, Prabhakaran P, Kumbla P, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 2005;167(2):365–379.

    PubMed  CAS  Google Scholar 

  29. Harari S, Caminati A. Idiopathic pulmonary fibrosis. Allergy 2005;60(4):421–435.

    Article  PubMed  CAS  Google Scholar 

  30. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 2001;166(12):7556–7562.

    PubMed  CAS  Google Scholar 

  31. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994;1(1):71–81.

    PubMed  CAS  Google Scholar 

  32. Phillips RJ, Burdick MD, Hong K, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 2004;114(3):438–446.

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003;171(1):380–389.

    PubMed  CAS  Google Scholar 

  34. Dupont A, Majithia V, Ahmad S, McMurray R. Nephrogenic fibrosing dermopathy, a new mimicker of systemic sclerosis. Am J Med Sci 2005;330(4):192–194.

    Article  PubMed  Google Scholar 

  35. Daram SR, Cortese CM, Bastani B. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: report of a new case with literature review. Am J Kidney Dis 2005;46(4):754–759.

    Article  PubMed  Google Scholar 

  36. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004;113(2):243–252.

    Article  PubMed  CAS  Google Scholar 

  37. Choi ES, Pierce EM, Jakubzick C, et al. Focal interstitial CC chemokine receptor 7 (CCR7) expression in idiopathic interstitial pneumonia. J Clin Pathol 2006;59(1):28–39.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang K, Rekhter MD, Gordon D, Phan SH. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 1994;145(1):114–125.

    PubMed  CAS  Google Scholar 

  39. Gallucci RM, Lee EG, Tomasek JJ. IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Invest Dermatol 2006;126(3):561–568.

    Article  PubMed  CAS  Google Scholar 

  40. Moore BB, Kolodsick JE, Thannickal VJ, et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 2005;166(3):675–684.

    PubMed  CAS  Google Scholar 

  41. Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 2005;17(3):326–332.

    Article  PubMed  CAS  Google Scholar 

  42. Humrich JY, Humrich JH, Averbeck M, et al. Mature monocyte-derived dendritic cells respond more strongly to CCL19 than to CXCL12: consequences for directional migration. Immunology 2006;117(2):238–247.

    Article  PubMed  CAS  Google Scholar 

  43. Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 2005;6(9):895–901.

    Article  PubMed  CAS  Google Scholar 

  44. Jang MH, Sougawa N, Tanaka T, et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006;176(2):803–810.

    PubMed  CAS  Google Scholar 

  45. Stein JV, Nombela-Arrieta C. Chemokine control of lymphocyte trafficking: a general overview. Immunology 2005;116(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  46. Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis 2004;63(Suppl 2):ii84–ii9.

    Article  PubMed  CAS  Google Scholar 

  47. Bendall L. Chemokines and their receptors in disease. Histol Histopathol 2005;20(3):907–926.

    PubMed  CAS  Google Scholar 

  48. D’Ambrosio D, Mariani M, Panina-Bordignon P, Sinigaglia F. Chemokines and their receptors guiding T lymphocyte recruitment in lung inflammation. Am J Respir Crit Care Med 2001;164(7):1266–1275.

    CAS  Google Scholar 

  49. Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 2001;99(3):308–319.

    Article  PubMed  CAS  Google Scholar 

  50. Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol 2006;24:607–656.

    Article  PubMed  CAS  Google Scholar 

  51. Wada T, Furuichi K, Sakai N, et al. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol 2004;15(4):940–948.

    Article  PubMed  CAS  Google Scholar 

  52. Gharaee-Kermani M, Denholm EM, Phan SH. Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem 1996;271(30):17779–17784.

    Article  PubMed  CAS  Google Scholar 

  53. Booth M, Mwatha JK, Joseph S, et al. Periportal fibrosis in human Schistosoma mansoni infection is associated with low IL-10, low IFN-gamma, high TNF-alpha, or low RANTES, depending on age and gender. J Immunol 2004;172(2):1295–1303.

    PubMed  CAS  Google Scholar 

  54. Alves Oliveira LF, Moreno EC, Gazzinelli G, et al. Cytokine production associated with periportal fibrosis during chronic schistosomiasis mansoni in humans. Infect Immun 2006;74(2):1215–1221.

    Article  PubMed  CAS  Google Scholar 

  55. Keane MP. Chemokine profiling in pulmonary fibrosis: ready for prime time? Am J Respir Crit Care Med 2004;170(5):475–476.

    Article  PubMed  Google Scholar 

  56. Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci 2002;7:d1899–d1914.

    Article  PubMed  CAS  Google Scholar 

  57. Buttner C, Skupin A, Reimann T, et al. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4. Am J Respir Cell Mol Biol 1997;17(3):315–325.

    PubMed  CAS  Google Scholar 

  58. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999;103(6):779–788.

    Article  PubMed  CAS  Google Scholar 

  59. Belperio JA, Dy M, Burdick MD, et al. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2002;27(4):419–427.

    PubMed  CAS  Google Scholar 

  60. Blease K, Jakubzick C, Westwick J, Lukacs N, Kunkel SL, Hogaboam CM. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J Immunol 2001;166(8):5219–5224.

    PubMed  CAS  Google Scholar 

  61. Hogaboam CM, Blease K, Schuh JM. Cytokines and chemokines in allergic bronchopulmonary aspergillosis (ABPA) and experimental Aspergillus-induced allergic airway or asthmatic disease. Front Biosci 2003;8:e147–e156.

    Article  PubMed  CAS  Google Scholar 

  62. Huaux F, Gharaee-Kermani M, Liu T, et al. Role of eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis. Am J Pathol 2005;167(6):1485–1496.

    PubMed  CAS  Google Scholar 

  63. Huaux F, Liu T, McGarry B, Ullenbruch M, Xing Z, Phan SH. Eosinophils and T lymphocytes possess distinct roles in bleomycin-induced lung injury and fibrosis. J Immunol 2003;171(10):5470–5481.

    PubMed  CAS  Google Scholar 

  64. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol 2006;24:147–174.

    Article  PubMed  CAS  Google Scholar 

  65. Green FH. Overview of pulmonary fibrosis. Chest 2002;122(6 Suppl):334S–339S.

    Article  PubMed  Google Scholar 

  66. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005;11(11):1173–1179.

    Article  PubMed  CAS  Google Scholar 

  67. Coker RK, Laurent GJ. Pulmonary fibrosis: cytokines in the balance. Eur Respir J 1998;11(6):1218–1221.

    Article  PubMed  CAS  Google Scholar 

  68. Abdelaziz MM, Samman YS, Wali SO, Hamad MM. Treatment of idiopathic pulmonary fibrosis: is there anything new? Respirology 2005;10(3):284–289.

    Article  PubMed  Google Scholar 

  69. Gharaee-Kermani M, Phan SH. Molecular mechanisms of and possible treatment strategies for idiopathic pulmonary fibrosis. Curr Pharm Des 2005;11(30):3943–3971.

    Article  PubMed  CAS  Google Scholar 

  70. Hogaboam CM, Carpenter KJ, Schuh JM, Proudfoot AA, Bridger G, Buckland KF. The therapeutic potential in targeting CCR5 and CXCR4 receptors in infectious and allergic pulmonary disease. Pharmacol Ther 2005;107(3):314–328.

    Article  PubMed  CAS  Google Scholar 

  71. Choi ES, Jakubzick C, Carpenter KJ, et al. Enhanced monocyte chemoattractant protein-3/CC chemokine ligand-7 in usual interstitial pneumonia. Am J Respir Crit Care Med 2004;170(5):508–515.

    Article  PubMed  Google Scholar 

  72. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2001;2(1):33–46.

    Article  PubMed  CAS  Google Scholar 

  73. Williams MC. Alveolar type I cells: molecular phenotype and development. Annu Rev Physiol 2003;65:669–695.

    Article  PubMed  CAS  Google Scholar 

  74. Burdick MD, Murray LA, Keane MP, et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 2005;171(3):261–268.

    Article  PubMed  Google Scholar 

  75. Johnston CJ, Williams JP, Okunieff P, Finkelstein JN. Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res 2002;157(3):256–265.

    Article  PubMed  CAS  Google Scholar 

  76. Yara S, Kawakami K, Kudeken N, et al. FTS reduces bleomycin-induced cytokine and chemokine production and inhibits pulmonary fibrosis in mice. Clin Exp Immunol 2001;124(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  77. Lloyd CM, Minto AW, Dorf ME, et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997;185(7):1371–1380.

    Article  PubMed  CAS  Google Scholar 

  78. Inoshima I, Kuwano K, Hamada N, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2004;286(5):L1038–L1044.

    Article  PubMed  CAS  Google Scholar 

  79. Motomura Y, Khan WI, El-Sharkawy RT, et al. Induction of a fibrogenic response in mouse colon by overexpression of monocyte chemoattractant protein 1. Gut 2006;55(5):662–670.

    Article  PubMed  CAS  Google Scholar 

  80. Iyonaga K, Takeya M, Saita N, et al. Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases. Hum Pathol 1994;25(5):455–463.

    Article  PubMed  CAS  Google Scholar 

  81. Kanno K, Tazuma S, Nishioka T, Hyogo H, Chayama K. Angiotensin II participates in hepatic inflammation and fibrosis through MCP-1 expression. Dig Dis Sci 2005;50(5):942–948.

    Article  PubMed  CAS  Google Scholar 

  82. Inoue M, Ino Y, Gibo J, et al. The role of monocyte chemoattractant protein-1 in experimental chronic pancreatitis model induced by dibutyltin dichloride in rats. Pancreas 2002;25(4):e64–e70.

    Article  PubMed  Google Scholar 

  83. Frade JM, Mellado M, del Real G, Gutierrez-Ramos JC, Lind P, Martinez AC. Characterization of the CCR2 chemokine receptor: functional CCR2 receptor expression in B cells. J Immunol 1997;159(11):5576–5584.

    PubMed  CAS  Google Scholar 

  84. Moore BB, Paine R, 3rd, Christensen PJ, et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 2001;167(8):4368–4377.

    PubMed  CAS  Google Scholar 

  85. Okuma T, Terasaki Y, Kaikita K, et al. C-C chemokine receptor 2 (CCR2) deficiency improves bleomycin-induced pulmonary fibrosis by attenuation of both macrophage infiltration and production of macrophage-derived matrix metallo-proteinases. J Pathol 2004;204(5):594–604.

    Article  PubMed  CAS  Google Scholar 

  86. Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N. Localization of matrix metalloproteinases-1,-2, and-9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Invest 1998;78(6):687–698.

    PubMed  CAS  Google Scholar 

  87. Corbel M, Caulet-Maugendre S, Germain N, Molet S, Lagente V, Boichot E. Inhibition of bleomycin-induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J Pathol 2001;193(4):538–545.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang Y, Ernst CA, Rollins BJ. MCP-1: structure/activity analysis. Methods 1996;10(1):93–103.

    Article  PubMed  CAS  Google Scholar 

  89. Izbicki G, Or R, Christensen TG, et al. Bleomycin-induced lung fibrosis in IL-4-overexpressing and knockout mice. Am J Physiol Lung Cell Mol Physiol 2002;283(5):L1110–L1116.

    PubMed  CAS  Google Scholar 

  90. Keane MP, Belperio JA, Burdick MD, Strieter RM. IL-12 attenuates bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2001;281(1):L92–L97.

    PubMed  CAS  Google Scholar 

  91. Kitasato Y, Hoshino T, Okamoto M, et al. Enhanced expression of interleukin-18 and its receptor in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2004;31(6):619–625.

    Article  PubMed  CAS  Google Scholar 

  92. Segel MJ, Izbicki G, Cohen PY, et al. Role of interferon-gamma in the evolution of murine bleomycin lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2003;285(6):L1255–L1262.

    PubMed  CAS  Google Scholar 

  93. Kim JH, Kim HY, Kim S, Chung JH, Park WS, Chung DH. Natural killer T (NKT) cells attenuate bleomycin-induced pulmonary fibrosis by producing interferon-gamma. Am J Pathol 2005;167(5):1231–1241.

    PubMed  CAS  Google Scholar 

  94. Belperio JA, Dy M, Murray L, et al. The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. J Immunol 2004;173(7):4692–4698.

    PubMed  CAS  Google Scholar 

  95. Garcia G, Godot V, Humbert M. New chemokine targets for asthma therapy. Curr Allergy Asthma Rep 2005;5(2):155–160.

    Article  PubMed  CAS  Google Scholar 

  96. Joubert P, Lajoie-Kadoch S, Labonte I, et al. CCR3 expression and function in asthmatic airway smooth muscle cells. J Immunol 2005;175(4):2702–2708.

    PubMed  CAS  Google Scholar 

  97. Pope SM, Zimmermann N, Stringer KF, Karow ML, Rothenberg ME. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J Immunol 2005;175(8):5341–5350.

    PubMed  CAS  Google Scholar 

  98. Antoniades HN, Neville-Golden J, Galanopoulos T, Kradin RL, Valente AJ, Graves DT. Expression of monocyte chemoattractant protein 1 mRNA in human idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A 1992;89(12):5371–5375.

    Article  PubMed  CAS  Google Scholar 

  99. Capelli A, Di Stefano A, Gnemmi I, Donner CF. CCR5 expression and CC chemokine levels in idiopathic pulmonary fibrosis. Eur Respir J 2005;25(4):701–707.

    Article  PubMed  CAS  Google Scholar 

  100. Blanpain C, Migeotte I, Lee B, et al. CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood 1999;94(6):1899–1905.

    PubMed  CAS  Google Scholar 

  101. Loetscher P, Uguccioni M, Bordoli L, et al. CCR5 is characteristic of Th1 lymphocytes. Nature 1998;391(6665):344–345.

    Article  PubMed  CAS  Google Scholar 

  102. Tager AM, Kradin RL, LaCamera P, et al. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. Am J Respir Cell Mol Biol 2004;31(4):395–404.

    Article  PubMed  CAS  Google Scholar 

  103. Pignatti P, Brunetti G, Moretto D, et al. Role of the chemokine receptors CXCR3 and CCR4 in human pulmonary fibrosis. Am J Respir Crit Care Med 2006;173(3):310–317.

    Article  PubMed  CAS  Google Scholar 

  104. Strieter RM, Starko KM, Enelow RI, Noth I, Valentine VG. Effects of interferon-gamma 1b on biomarker expression in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004;170(2):133–140.

    Article  PubMed  Google Scholar 

  105. Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP, 3rd. Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs 2004;64(4):405–430.

    Article  PubMed  CAS  Google Scholar 

  106. Antoniou KM, Ferdoutsis E, Bouros D. Interferons and their application in the diseases of the lung. Chest 2003;123(1):209–216.

    Article  PubMed  CAS  Google Scholar 

  107. Petkovic V, Moghini C, Paoletti S, Uguccioni M, Gerber B. I-TAC/CXCL11 is a natural antagonist for CCR5. J Leukoc Biol 2004;76(3):701–708.

    Article  PubMed  CAS  Google Scholar 

  108. Inayama M, Nishioka Y, Azuma M, et al. A novel IkappaB kinase-beta inhibitor ameliorates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2006;173(9):1016–1022.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Trujillo, G., Hogaboam, C.M. (2007). Chemokines and Their Receptors in Fibrosis. In: Harrison, J.K., Lukacs, N.W. (eds) The Chemokine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-020-1_14

Download citation

Publish with us

Policies and ethics