Skip to main content
  • 741 Accesses

Abstract

Surgery can generally be regarded as a risk-filled method for treating diseases, and it has a potential for causing injury to the nervous system. Because such injuries might not be detected by visual inspection of the operative field by the surgeon, they could occur and progress without the surgeon’s knowledge. Intraoperative neurophysiological monitoring involves the use of neurophysiological recordings for detecting changes in the function of the nervous system that are caused by surgically induced insults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilger J. Facial nerve stimulator. Trans. Am. Acad. Ophth. Otolaryngol. 1964;68:74–76.

    CAS  Google Scholar 

  2. Kurze T. Microtechniques in neurological surgery. Clin. Neurosurg. 1964;11:128–137.

    PubMed  CAS  Google Scholar 

  3. Malis LI. Intra-operative monitoring is not essential. Clin. Neurosurg. 1995;42:203–213.

    PubMed  CAS  Google Scholar 

  4. Sekhar LN, Bejjani G, Nora P, Vera PL. Neurophysiological monitoring during cranial base surgery: is it necessary? Clin. Neurosurg. 1995;42:180–202.

    PubMed  CAS  Google Scholar 

  5. Nash CL, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin. Orthop. 1977;126:100–105.

    PubMed  Google Scholar 

  6. Brown RH, Nash CL. Current status of spinal cord monitoring. Spine 1979;4:466–478.

    Article  PubMed  CAS  Google Scholar 

  7. Grundy B. Intraoperative monitoring of sensory evoked potentials. Anesthesiology 1983;58:72–87.

    Article  PubMed  CAS  Google Scholar 

  8. Raudzens RA. Intraoperative monitoring of evoked potentials. Ann. NY Acad. Sci. 1982;388:308–326.

    Article  PubMed  CAS  Google Scholar 

  9. Friedman WA, Kaplan BJ, Gravenstein D, Rhoton AL. Intraoperative brain-stem auditory evoked potentials during posterior fossa microvascular decompression. J. Neurosurg. 1985;62:552–557.

    Article  PubMed  CAS  Google Scholar 

  10. Linden R, Tator C, Benedict C, Mraz C, Bell I. Electro-physiological monitoring during acoutic neuroma and other posterior fossa surgery. J. Sci. Neurol. 1988;15:73–81.

    CAS  Google Scholar 

  11. Møller AR, Jannetta PJ. Monitoring auditory functions during cranial nerve microvascular decompression operations by direct recording from the eighth nerve. J. Neurosurg. 1983;59:493–499.

    PubMed  Google Scholar 

  12. Silverstein H, Norrell H, Hyman S. Simultaneous use of CO2 laser with continuous monitoring of eighth cranial nerve action potential during acoustic neuroma surgery. Otolaryngol. Head Neck Surg. 1984;92:80–84.

    PubMed  CAS  Google Scholar 

  13. Møller AR, Jannetta PJ. Compound action potentials recorded intracranially from the auditory nerve in man. Exp. Neurol. 1981;74:862–874.

    Article  PubMed  Google Scholar 

  14. Møller AR. Electrophysiological monitoring of cranial nerves in operations in the skull base. In: Sekhar LN, Schramm VL, Jr. eds. Tumors of the Cranial Base: Diagnosis and Treatment. Mt. Kisco, NY: Futura; 1987:123–132.

    Google Scholar 

  15. Sekhar LN, Møller AR. Operative management of tumors involving the cavernous sinus. J. Neurosurg. 1986;64:879–889.

    PubMed  CAS  Google Scholar 

  16. Yingling C, Gardi J. Intraoperative monitoring of facial and cochlear nerves during acoustic neuroma surgery. Otolaryngol. Clin. North Am. 1992;25:413–448.

    PubMed  CAS  Google Scholar 

  17. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of the human motor cortex. Lancet 1985;1:1106–1107.

    Article  PubMed  CAS  Google Scholar 

  18. Marsden CD, Merton PA, Morton HB. Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv. Neurol. 1983;39:387–391.

    PubMed  CAS  Google Scholar 

  19. Deletis V. Intraoperative monitoring of the functional integrety of the motor pathways. In: Devinsky O, Beric A, Dogali M, eds. Advances in Neurology: Electrical and Magnetic Stimualtion of the Brain. New York: Raven; 1993:201–214.

    Google Scholar 

  20. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophsysiologic monitoring of the spinal cord. J. Clin. Neurophysiol. 2002;19:430–443.

    Article  PubMed  Google Scholar 

  21. Sloan T. Anesthesia and motor evoked potential monitoring. In: Deletis V, Shils JL, eds. Neurophysiology in Neurosurgery. Amsterdam: Elsevier Science; 2002.

    Google Scholar 

  22. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937;60:389–443.

    Article  Google Scholar 

  23. Penfield W, Rasmussen T. The Cerebral Cortex of Man: A Clinical Study of Localization of Function. New York: Macmillan; 1950.

    Google Scholar 

  24. Celesia GG, Broughton RJ, Rasmussen T, Branch C. Auditory evoked responses from the exposed human cortex. Electroenceph. Clin. Neurophysiol. 1968;24:458–466.

    Article  PubMed  CAS  Google Scholar 

  25. Celesia GG, Puletti F. Auditory cortical areas of man. Neurology 1969;19:211–220.

    PubMed  CAS  Google Scholar 

  26. Celesia GG. Somatosensory evoked potentials recorded directly from human thalamus and Sm I cortical area. Arch. Neurol. 1979;36:399–405.

    PubMed  CAS  Google Scholar 

  27. Møller AR, Jannetta PJ, Jho HD. Recordings from human dorsal column nuclei using stimulation of the lower limb. Neurosurgery 1990;26:291–299.

    Article  PubMed  Google Scholar 

  28. Møller AR, Jannetta PJ. Auditory evoked potentials recorded from the cochlear nucleus and its vicinity in man. J. Neurosurg. 1983;59:1013–1018.

    PubMed  Google Scholar 

  29. Hashimoto I. Auditory evoked potentials from the humans midbrain: slow brain stem responses. Electroenceph. Clin. Neurophysiol. 1982;53:652–657.

    Article  PubMed  CAS  Google Scholar 

  30. Møller AR, Jannetta PJ. Evoked potentials from the inferior colliculus in man. Electroenceph. Clin. Neurophysiol. 1982;53:612–620.

    Article  PubMed  Google Scholar 

  31. Kuroki A, Møller AR. Microsurgical anatomy around the foramen of Luschka with reference to intraoperative recording of auditory evoked potentials from the cochlear nuclei. J. Neurosurg. 1995;82:933–939.

    PubMed  CAS  Google Scholar 

  32. Møller AR, Jho HD, Jannetta PJ. Preservation of hearing in operations on acoustic tumors: An alternative to recording BAEP. Neurosurgery 1994;34:688–693.

    PubMed  Google Scholar 

  33. Hashimoto I, Ishiyama Y, Yoshimoto T, Nemoto S. Brainstem auditory evoked potentials recorded directly from human brain stem and thalamus. Brain 1981;104:841–859.

    Article  PubMed  CAS  Google Scholar 

  34. Møller AR, Burgess JE. Neural generators of the brain stem auditory evoked potentials (BAEPs) in the rhesus monkey. Electroenceph. Clin. Neurophysiol. 1986;65:361–372.

    Article  PubMed  Google Scholar 

  35. Spire JP, Dohrmann GJ, Prieto PS. Correlation of Brainstem Evoked Response with Direct Acoustic Nerve Potential. New York: Raven; 1982.

    Google Scholar 

  36. Martin WH, Pratt H, Schwegler JW. The origin of the human auditory brainstem response wave II. Electroenceph. Clin. Neurophysiol. 1995;96:357–370.

    Article  PubMed  CAS  Google Scholar 

  37. Greenspan JD, Lee RR, Lenz FA. Pain sensitivity alterations as a function of lesion localization in the parasylvian cortex. Pain 1999;81:273–282.

    Article  PubMed  CAS  Google Scholar 

  38. Lenz FA, Dougherty PM. Pain processing in the ventrocaudal nucleus of the human thalamus. In: Bromm B, Desmedt JE, eds. Pain and the Brain. New York: Raven; 1995:175–185.

    Google Scholar 

  39. Lenz FA, Lee JI, Garonzik IM, Rowland LH, Dougherty PM, Hua SE. Plasticity of painrelated neuronal activity in the human thalamus. Prog. Brain Res. 2000;129:253–273.

    Google Scholar 

  40. Møller AR, Jannetta PJ. On the origin of synkinesis in hemifacial spasm: results of intracranial recordings. J. Neurosurg. 1984;61:569–576.

    PubMed  Google Scholar 

  41. Goddard GV. Amygdaloid stimulation and learning in the rat. J. Comp. Physiol. Psychol. 1964;58:23–30.

    Article  PubMed  CAS  Google Scholar 

  42. Wada JA. Kindling 2. New York: Raven; 1981.

    Google Scholar 

  43. Møller AR, Jannetta PJ. Microvascular decompression in hemifacial spasm: intraoperative electrophysiological observations. Neurosurgery 1985;16:612–618.

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ.

About this chapter

Cite this chapter

(2006). Introduction. In: Intraoperative Neurophysiological Monitoring. Humana Press. https://doi.org/10.1007/978-1-59745-018-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-018-8_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-703-7

  • Online ISBN: 978-1-59745-018-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics