Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 875 Accesses

Abstract

Noninvasive carotid artery evaluation is an essential tool to assess patients who are at risk of atherosclerotic carotid artery disease because digital subtraction angiography is invasive and carries a 0.3-1% risk of periprocedural transient ischemic attack or stroke. Currently, duplex ultrasound, computed tomography angiography, magnetic resonance angiography, and transcranial Doppler are available to noninvasively evaluate the severity of carotid artery disease. The relative merits and limitations of each technique are reviewed in this chapter. Key Words: Computed tomography angiography, duplex ultrasound, magnetic resonance angiography, transcranial doppler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991;325: 445–453.

    Google Scholar 

  2. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet 1991;337:1235–1243.

    Article  Google Scholar 

  3. Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 1995;273:1421–1428.

    Article  Google Scholar 

  4. Kuntz KM, Skillman JJ, Whittemore AD, Kent KC. Carotid endarterectomy in asymptomatic patients-is contrast angiography necessary? A morbidity analysis. J Vasc Surg 1995;22:706–714; discussion 714-716.

    Article  PubMed  CAS  Google Scholar 

  5. Chang YJ, Golby AJ, Albers GW. Detection of carotid stenosis. From NASCET results to clinical practice. Stroke 1995;26:1325–1328.

    PubMed  CAS  Google Scholar 

  6. Erdoes LS, Marek JM, Mills JL, et al. The relative contributions of carotid duplex scanning, magnetic resonance angiography, and cerebral arteriography to clinical decisionmaking: a prospective study in patients with carotid occlusive disease. J Vasc Surg 1996;23:950–956.

    Article  PubMed  CAS  Google Scholar 

  7. Grant EG, Benson CB, Moneta GL, et al. Carotid artery stenosis: grayscale and Doppler ultrasound diagnosis-Society of Radiologists in Ultrasound consensus conference. Ultrasound Q 2003;19:190–198.

    Article  PubMed  Google Scholar 

  8. Sidhu PS. Ultrasound of the carotid and vertebral arteries. Br Med Bull 2000;56:346–366.

    Article  PubMed  CAS  Google Scholar 

  9. Sachar R, Yadav JS, Roffi M, et al. Severe bilateral carotid stenosis: the impact of ipsilateral stenting on Doppler-defined contralateral stenosis. J Am Coll Cardiol 2004;43:1358–1362.

    Article  PubMed  Google Scholar 

  10. Eliasziw M, Rankin RN, Fox AJ, Haynes RB, Barnett HJ. Accuracy and prognostic consequences of ultrasonography in identifying severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke 1995;26:1747–1752.

    CAS  Google Scholar 

  11. Henderson RD, Steinman DA, Eliasziw M, Barnett HJ. Effect of contralateral carotid artery stenosis on carotid ultrasound velocity measurements. Stroke 2000;31:2636–2640.

    PubMed  CAS  Google Scholar 

  12. van Everdingen KJ, van der Grond J, Kappelle LJ. Overestimation of a stenosis in the internal carotid artery by duplex sonography caused by an increase in volume flow. J Vasc Surg 1998;27:479–485.

    Article  PubMed  Google Scholar 

  13. Williamson WK, Abou-Zamzam AM, Jr., Moneta GL, et al. Prophylactic repair of renal artery stenosis is not justified in patients who require infrarenal aortic reconstruction. J Vasc Surg 1998;28:14–20; discussion 20-22.

    Article  PubMed  CAS  Google Scholar 

  14. Stanziale SF, Wholey MH, Boules TN, Selzer F, Makaroun MS. Determining in-stent stenosis of carotid arteries by duplex ultrasound criteria. J Endovasc Ther 2005;12:346–353.

    Article  PubMed  Google Scholar 

  15. Blankenhorn DH, Hodis HN. George Lyman Duff Memorial Lecture. Arterial imaging and atherosclerosis reversal. Arterioscler Thromb 1994;14:177–192.

    PubMed  CAS  Google Scholar 

  16. Mack WJ, Selzer RH, Hodis HN, et al. One-year reduction and longitudinal analysis of carotid intimamedia thickness associated with colestipol/niacin therapy. Stroke 1993;24:1779–1783.

    PubMed  CAS  Google Scholar 

  17. Selzer RH, Hodis HN, Kwong-Fu H, et al. Evaluation of computerized edge tracking for quantifying intima-media thickness of the common carotid artery from B-mode ultrasound images. Atherosclerosis 1994;111:1–11.

    Article  PubMed  CAS  Google Scholar 

  18. Bonithon-Kopp C, Scarabin PY, Taquet A, Touboul PJ, Malmejac A, Guize L. Risk factors for early carotid atherosclerosis in middle-aged French women. Arterioscler Thromb 1991; 11:966–972.

    PubMed  CAS  Google Scholar 

  19. O’Leary DH, Polak JF, Kronmal RA, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke 1992;23:1752–1760.

    CAS  Google Scholar 

  20. Touboul PJ, Elbaz A, Koller C, et al. Common carotid artery intima-media thickness and brain infarction: the Etude du Profil Genetique de l’Infarctus Cerebral (GENIC) case-control study. The GENIC Investigators. Circulation 2000;102:313–318.

    PubMed  CAS  Google Scholar 

  21. Nederkoorn PJ, van der Graaf Y, Hunink MG. Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 2003;34:1324–1332.

    Article  PubMed  Google Scholar 

  22. Jahromi AS, Cina CS, Liu Y, Clase CM. Sensitivity and specificity of color duplex ultrasound meas-urement in the estimation of internal carotid artery stenosis: a systematic review and meta-analysis. J Vasc Surg 2005;41:962–972.

    Article  PubMed  Google Scholar 

  23. Castillo M. Diagnosis of disease of the common carotid artery bifurcation: CT angiography vs catheter angiography. AJR Am J Roentgenol 1993;161:395–398.

    PubMed  CAS  Google Scholar 

  24. Cumming MJ, Morrow IM. Carotid artery stenosis: a prospective comparison of CT angiography and conventional angiography. AJR Am J Roentgenol 1994;163:517–523.

    PubMed  CAS  Google Scholar 

  25. Verhoek G, Costello P, Khoo EW, Wu R, Kat E, Fitridge RA. Carotid bifurcation CT angiography: assessment of interactive volume rendering. J Comput Assist Tomogr 1999;23:590–596.

    Article  PubMed  CAS  Google Scholar 

  26. Leclerc X, Godefroy O, Pruvo JP, Leys D. Computed tomographic angiography for the evaluation of carotid artery stenosis.Stroke 1995;26:1577–1581.

    PubMed  CAS  Google Scholar 

  27. Berg M, Zhang Z, Ikonen A, et al. Multi-detector row CT angiography in the assessment of carotid artery disease in symptomatic patients: comparison with rotational angiography and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:1022–1034.

    PubMed  Google Scholar 

  28. Josephson SA, Bryant SO, Mak HK, Johnston SC, Dillon WP, Smith WS. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology 2004;63:457–460.

    PubMed  CAS  Google Scholar 

  29. Bash S, Villablanca JP, Jahan R, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:1012–1021.

    PubMed  Google Scholar 

  30. Skutta B, Furst G, Eilers J, Ferbert A, Kuhn FP. Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography.AJNR Am J Neuroradiol 1999;20: 791–799.

    PubMed  CAS  Google Scholar 

  31. Hirai T, Korogi Y, Ono K, et al. Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR Am J Neuroradiol 2002;23:93–101.

    PubMed  Google Scholar 

  32. Walker LJ, Ismail A, McMeekin W, Lambert D, Mendelow AD, Birchall D. Computed tomography angiography for the evaluation of carotid atherosclerotic plaque: correlation with histopathology of endarterectomy specimens. Stroke 2002;33:977–981.

    Article  PubMed  Google Scholar 

  33. Leclerc X, Gauvrit JY, Pruvo JP. Usefulness of CT angiography with volume rendering after carotid angioplasty and stenting. AJR Am J Roentgenol 2000; 174:820–822.

    PubMed  CAS  Google Scholar 

  34. Huston J, 3rd, Lewis BD, Wiebers DO, Meyer FB, Riederer SJ, Weaver AL. Carotid artery: prospective blinded comparison of two-dimensional time-of-flight MR angiography with conventional angiography and duplex US. Radiology 1993;186:339–344.

    PubMed  Google Scholar 

  35. Mittl RL, Jr., Broderick M, Carpenter JP, et al. Blinded-reader comparison of magnetic resonance angiography and duplex ultrasonography for carotid artery bifurcation stenosis. Stroke 1994;25:4–10.

    PubMed  Google Scholar 

  36. Scarabino T, Carriero A, Magarelli N, et al. MR angiography in carotid stenosis: a comparison of three techniques. Eur J Radiol 1998;28:117–125.

    Article  PubMed  CAS  Google Scholar 

  37. Polak JF, Bajakian RL, O’Leary DH, Anderson MR, Donaldson MC, Jolesz FA. Detection of internal carotid artery stenosis: comparison of MR angiography, color Doppler sonography, and arteriography. Radiology 1992; 182:35–40.

    PubMed  CAS  Google Scholar 

  38. Heiserman JE, Drayer BP, Keller PJ, Fram EK. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology 1992;185:667–673.

    PubMed  CAS  Google Scholar 

  39. Herold T, Paetzel C, Volk M, et al. Contrast-enhanced magnetic resonance angiography of the carotid arteries: influence of injection rates and volumes on arterial-venous transit time. Invest Radiol 2004;39:65–72.

    Article  PubMed  Google Scholar 

  40. Clifton AG. MR angiography. Br Med Bull 2000;56:367–377.

    Article  PubMed  CAS  Google Scholar 

  41. JM UK-I, Trivedi RA, Graves MJ, et al. Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology 2004;62:1282–1290.

    Google Scholar 

  42. Westwood ME, Kelly S, Berry E, et al. Use of magnetic resonance angiography to select candidates with recently symptomatic carotid stenosis for surgery: systematic review. BMJ 2002;324:198.

    Article  PubMed  Google Scholar 

  43. Isoda H, Takehara Y, Isogai S, et al. Technique for arterial-phase contrast-enhanced three-dimensional MR angiography of the carotid and vertebral arteries. AJNR Am J Neuroradiol 1998; 19:1241–1244.

    PubMed  CAS  Google Scholar 

  44. Foo TK, Saranathan M, Prince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 1997;203:275–280.

    PubMed  CAS  Google Scholar 

  45. Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci 2000;902:173–186.

    PubMed  CAS  Google Scholar 

  46. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982;57:769–774.

    Article  PubMed  CAS  Google Scholar 

  47. Suwanwela NC, Phanthumchinda K, Suwanwela N. Transcranial doppler sonography and CT angio-graphy in patients with atherothrombotic middle cerebral artery stroke. AJNR Am J Neuroradiol 2002;23:1352–1355.

    PubMed  Google Scholar 

  48. Baracchini C, Manara R, Ermani M, Meneghetti G. The quest for early predictors of stroke evolution: can TCD be a guiding light? Stroke 2000;31:2942–2947.

    PubMed  CAS  Google Scholar 

  49. Kushner MJ, Zanette EM, Bastianello S, et al. Transcranial Doppler in acute hemispheric brain infarction. Neurology 1991;41:109–113.

    PubMed  CAS  Google Scholar 

  50. Zanette EM, Fieschi C, Bozzao L, et al. Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke. Stroke 1989;20:899–903.

    PubMed  CAS  Google Scholar 

  51. Sloan MA, Alexandrov AV, Tegeler CH, et al. Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology.Neurology 2004;62:1468–1481.

    PubMed  CAS  Google Scholar 

  52. Molina CA, Montaner J, Abilleira S, et al. Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute cardioembolic stroke. Stroke 2001;32:1079–1084.

    Article  PubMed  CAS  Google Scholar 

  53. Razumovsky AY, Gillard JH, Bryan RN, Hanley DF, Oppenheimer SM. TCD, MRA and MRI in acute cerebral ischemia. Acta Neurol Scand 1999;99:65–76.

    Article  PubMed  CAS  Google Scholar 

  54. Wilterdink JL, Feldmann E, Furie KL, Bragoni M, Benavides JG. Transcranial Doppler ultrasound battery reliably identifies severe internal carotid artery stenosis.Stroke 1997;28:133–136.

    PubMed  CAS  Google Scholar 

  55. Can U, Furie KL, Suwanwela N, et al. Transcranial Doppler ultrasound criteria for hemodynamically significant internal carotid artery stenosis based on residual lumen diameter calculated from en bloc endarterectomy specimens. Stroke 1997;28:1966–1971.

    PubMed  CAS  Google Scholar 

  56. Padayachee TS, Gosling RG, Bishop CC, Burnand K, Browse NL. Monitoring middle cerebral artery blood velocity during carotid endarterectomy. Br J Surg 1986;73:98–100.

    Article  PubMed  CAS  Google Scholar 

  57. Ringelstein EB, Droste DW, Babikian VL, et al. Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke 1998;29:725–729.

    PubMed  CAS  Google Scholar 

  58. Brucher R, Russell D. Automatic online embolus detection and artifact rejection with the first multi-frequency transcranial Doppler. Stroke 2002;33:1969–1974.

    Article  PubMed  Google Scholar 

  59. Russell D, Brucher R. Online automatic discrimination between solid and gaseous cerebral micro-emboli with the first multifrequency transcranial Doppler. Stroke 2002;33:1975–1980.

    Article  PubMed  CAS  Google Scholar 

  60. Molloy J, Markus HS. Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 1999;30:1440–1443.

    PubMed  CAS  Google Scholar 

  61. Stork JL, Kimura K, Levi CR, Chambers BR, Abbott AL, Donnan GA. Source of microembolic signals in patients with high-grade carotid stenosis. Stroke 2002;33:2014–2018.

    Article  PubMed  Google Scholar 

  62. Bogdahn U, Becker G, Winkler J, Greiner K, Perez J, Meurers B. Transcranial color-coded real-time sonography in adults. Stroke 1990;21:1680–1688.

    PubMed  CAS  Google Scholar 

  63. Martin PJ, Evans DH, Naylor AR. Transcranial color-coded sonography of the basal cerebral circulation. Reference data from 115 volunteers. Stroke 1994;25:390–396.

    PubMed  CAS  Google Scholar 

  64. Postert T, Federlein J, Przuntek H, Buttner T. Insufficient and absent acoustic temporal bone window: potential and limitations of transcranial contrast-enhanced color-coded sonography and contrast-enhanced power-based sonography. Ultrasound Med Biol 1997;23:857–862.

    Article  PubMed  CAS  Google Scholar 

  65. Baumgartner RW, Arnold M, Gonner F, et al. Contrast-enhanced transcranial color-coded duplex sonography in ischemic cerebrovascular disease. Stroke 1997;28:2473–2478.

    PubMed  CAS  Google Scholar 

  66. Gerriets T, Postert T, Goertler M, et al. DIAS I: duplex-sonographic assessment of the cerebrovascular status in acute stroke. A useful tool for future stroke trials. Stroke 2000;31:2342–2345.

    PubMed  CAS  Google Scholar 

  67. Zunker P, Wilms H, Brossmann J, Georgiadis D, Weber S, Deuschl G. Echo contrast-enhanced transcranial ultrasound: frequency of use, diagnostic benefit, and validity of results compared with MRA. Stroke 2002;33:2600–2603.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Exaire, J., Mazighi, M., Saw, J., Abou-Chebl, A. (2007). Noninvasive Imaging of the Carotid Artery. In: Saw, J., Exaire, J.E., Lee, D.S., Yadav, J.S. (eds) Handbook Of Complex Percutaneous Carotid Intervention. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-002-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-002-7_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-605-4

  • Online ISBN: 978-1-59745-002-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics