Skip to main content

Arterial Remodeling

  • Chapter
Essentials of Restenosis

Abstract

Arterial remodeling is recognized as an important determinant in most vascular pathology in which narrowing of the lumen is the predominant feature. Not only expansive remodeling, for example, enlargement, but also constrictive remodeling, for example, shrinkage, is observed in arterial occlusive disease (15). Expansive remodeling prevents and constrictive remodeling accelerates narrowing of the lumen (15). Also in restenosis after balloon angioplasty, in both experimental research (6–8) as well as in humans (9), constrictive remodeling is the most important determinant of luminal renarrowing (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pasterkamp G, Wensing PJW, Post MJ, Hillen B, Mali WPTM, Borst C. Paradoxical arterial wall shrinkage contributes to luminal narrowing of human atherosclerotic femoral arteries. Circulation 1995;91:1444–1449.

    PubMed  CAS  Google Scholar 

  2. Pasterkamp G, Borst C, Post MJ, et al. Atherosclerotic arterial remodeling in the superficial femoral artery: individual variation in local compensatory enlargement response. Circulation 1996;93:1818–1825.

    PubMed  CAS  Google Scholar 

  3. Nishioka T, Luo H, Eigler NL, Berglund H, Kim CJ, Siegel RJ. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: an in vivo intravascular ultrasound study. J Am Coll Cardiol 1996;27:1571–1576.

    Article  PubMed  CAS  Google Scholar 

  4. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses: an intravascular ultrasound study. Circulation 1997;95:1791–1798.

    PubMed  CAS  Google Scholar 

  5. Pasterkamp G, Schoneveld AH, van Wolferen WA, et al. The impact of atherosclerotic arterial remodeling on percentage luminal stenosis varies widely within the arterial system: a post mortem study. Arterioscler Thromb Vasc Biol 1997;17:3057–3063.

    PubMed  CAS  Google Scholar 

  6. Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. Circulation 1994;89:2816–2821.

    PubMed  CAS  Google Scholar 

  7. Kakuta T, Currier JW, Haudenschild CC, Ryan TJ, Faxon DP. Differences in compensatory vessel enlargement, not intimal formation, account for restenosis after angioplasty in the hypercholesterolemic rabbit model. Circulation 1994;89:2809–2815.

    PubMed  CAS  Google Scholar 

  8. Lafont A, Guzman LA, Whitlow RL, Goormastic M, Fredrick J, Chisolm GM. Restenosis after experimental angioplasty: intimal, medial, and adventitial changes associated with constrictive remodeling. Circulation Res 1995;76:996–1002.

    PubMed  CAS  Google Scholar 

  9. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty. A serial intravascular ultrasound study. Circulation 1996;94:35–43.

    PubMed  CAS  Google Scholar 

  10. Pasterkamp G, Fitzgerald PF, de Kleijn DP. Atherosclerotic expansive remodeled plaques: a wolf in sheep’s clothing. J Vasc Res 2002;39:514–523.

    Article  PubMed  Google Scholar 

  11. Faxon DP, Coats W, Currier J. Remodeling of the coronary artery after vascular injury. Prog Cardiovasc Dis 1997;40:129–140.

    Article  PubMed  CAS  Google Scholar 

  12. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty. A serial intravascular ultrasound study. Circulation 1996;94:35–43.

    PubMed  CAS  Google Scholar 

  13. Kimura T, Kaburagi S, Tamura T, et al. Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy. Circulation 1997;96:475–483.

    PubMed  CAS  Google Scholar 

  14. Luo H, Nishioka T, Eigler NL, et al. Coronary artery restenosis after balloon angioplasty in humans is associated with circumferential coronary constriction. Atheroscler Thromb Vasc Biol 1996;16:1393–1398.

    CAS  Google Scholar 

  15. Post MJ, de Smet BJGL, ven der Helm Y, Borst C, Kuntz R. Arterial remodeling after balloon angioplasty or stenting in an atherosclerotic model. Circulation 1997;96:996–1003.

    PubMed  CAS  Google Scholar 

  16. Kay IP, Sabaté M, Costa MA, et al. Positive geometric remodeling is seen after catheter-based irradiation followed by conventional stent implantation, but not after radioactive stent implantation. Circulation 2000;102:1484–1489.

    PubMed  Google Scholar 

  17. Kozuma K, Costa MA, van der Giessen WJ, et al. Intitial observation regarding changes in vessel dimensions after balloon angioplasty and stenting followed by catheter-based beta-radiation. Is stenting necessary in the setting of catheter-based radiotherapy? Eur Heart J 2002;23:641–649.

    Article  PubMed  CAS  Google Scholar 

  18. Hagenaars T, A Po IF, van Sambeek MR, et al. Gamma radiation induces positive vascular remodeling after balloon angioplasty: a prospective, randomized intravascular ultrasound scan study. J Vasc Surg 2002;36:318–324.

    Article  PubMed  CAS  Google Scholar 

  19. Janicki JS, Brower GL, Henegar JR, Wang L. Ventricular remodeling in heart failure: the role of myocardial collagen. Adv Exp Med Biol 1995;382:239–245.

    PubMed  CAS  Google Scholar 

  20. Tanaka S, Koyama H, Ichii T, et al. Fibrillar collagen regulation of plasminogen activator inhibitor-1 is involved in altered smooth muscle cell migration. Arterioscler Thromb Vasc Biol 2002;22:1573–1578.

    Article  PubMed  CAS  Google Scholar 

  21. Sierevogel MJ, Velema E, van der Meer FJ, et al. Matrix metalloproteinase inhibition reduces adventitial thickening and collagen accumulation following balloon dilation. Cardiovasc Res 2002;55:864–869.

    Article  PubMed  CAS  Google Scholar 

  22. Strauss BH, Robinson R, Batchelor WB, et al. In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res 1996;79:541–550.

    PubMed  CAS  Google Scholar 

  23. Karim MA, Miller DD, Farrar MA, et al. Histomorphometric and biochemical correlates of arterial procollagen gene expression during vascular repair after experimental angioplasty. Circulation 1995;91:2049–2057.

    PubMed  CAS  Google Scholar 

  24. Strauss BH, Chisholm RJ, Keeley FW, Gotlieb AI, Logan RA, Armstrong PW. Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ Res 1994;75:650–658.

    PubMed  CAS  Google Scholar 

  25. Li C, Cantor W, Nili N, et al. Arterial repair after stenting and the effects of GM6001, a matrix metalloproteinase inhibitor. J Am Coll Cardiol 2002;39:1852–1858.

    Article  PubMed  CAS  Google Scholar 

  26. Strauss BH, Umans VA, van Suylen RJ, et al. Directional atherectomy for treatment of restenosis within coronary stents: clinical, angiographic and histologic results. J Am Coll Cardiol 1992;20:1465–1473.

    Article  PubMed  CAS  Google Scholar 

  27. Farb A, Sangiorgi G, Carter AJ, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 1999;99:44–52.

    PubMed  CAS  Google Scholar 

  28. Chung IM, Gold HK, Schwartz SM, Ikari Y, Reidy MA, Wight TN. Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment. J Am Coll Cardiol 2002;40:2072–2081.

    Article  PubMed  CAS  Google Scholar 

  29. Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 1996;93:1716–1724.

    PubMed  CAS  Google Scholar 

  30. Lafont A, Durand E, Samuel JL, et al. Endothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty. Circulation 1999;100:1109–1115.

    PubMed  CAS  Google Scholar 

  31. Eto H, Biro S, Miyata M, et al. Angiotensin II type I receptor participates in extracellular matrix production in the late stage of remodeling after vascular injury. Cardiovasc Res 2003;59:200–211.

    Article  PubMed  CAS  Google Scholar 

  32. Ryan ST, Koteliansky VE, Gotwals PJ, Lindner V. Transforming growth factor-beta-dependent events in vascular remodeling following arterial injury. J Vasc Res 2003;40:37–46.

    Article  PubMed  CAS  Google Scholar 

  33. Coats WD, Whittaker P, Cheung DT, Currier JW, Han B, Faxon DP. Collagen content is significantly lower in restenotic versus nonrestenotic vessels after balloon angioplasty in the atherosclerotic rabbit model. Circulation 1997;95:1293–1300.

    PubMed  CAS  Google Scholar 

  34. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 1998;16:387–398.

    Article  PubMed  CAS  Google Scholar 

  35. Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 2001;70:1–32.

    Article  PubMed  CAS  Google Scholar 

  36. Kagan HM. Intra-and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis. Acta Trop 2000;77:147–152.

    Article  PubMed  CAS  Google Scholar 

  37. Kagan HM, Raghavan J, Hollander W. Changes in aortic lysyl oxidase activity in diet-induced atherosclerosis in the rabbit. Arteriosclerosis 1981;1:287–291.

    PubMed  CAS  Google Scholar 

  38. Spears JR, Zhan H, Khurana S, Karvonen RL, Reiser KM. Modulation by beta-aminopropionitrile of vessel luminal narrowing and structural abnormalities in arterial wall collagen in a rabbit model of conventional balloon angioplasty versus laser balloon angioplasty. J Clin Invest 1994;93:1543–1553.

    PubMed  CAS  Google Scholar 

  39. Smeets MB, Sierevogel MJ, Perree J, Voorbij HAM, Pasterkamp G, de Kleijn DPV. Collagen accumulation in the adventitia precedes constrictive remodeling after balloon dilation. Submitted unpublished observation.

    Google Scholar 

  40. Kuzuya M, Kanda S, Sasaki T, et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental hyperplasia. Circulation 2003;108:1375–1381.

    Article  PubMed  CAS  Google Scholar 

  41. Godin D, Ivan E, Johnson C, Magid R, Galis ZS. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation 2000;102:2861–2666.

    PubMed  CAS  Google Scholar 

  42. Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 1998;98:157–163.

    PubMed  CAS  Google Scholar 

  43. de Smet BJGL, Robertus JL, Rebel JMJ, van der Helm YJM, Borst C, Post MJ. Metalloproteinase inhibition reduces constrictive arterial remodeling following balloon angioplasty: a study in the atherosclerotic yucatan micropig. J Am Coll Cardiol 1999;33:88A.

    Article  Google Scholar 

  44. Sierevogel MJ, Pasterkamp G, Velema E, de Kleijn DPV, de Smet BJGL, Borst C. MMP inhibition following balloon angioplasty inhibits constrictive remodeling in favour of expansive enlargement: an intravascular ultrasound study. Eur Heart J 1999;20:S367.

    Google Scholar 

  45. Imamura Y, Steiglitz BM, Greenspan DS. Bone morphogenetic protein-1 processes the NH2-terminal propeptide, and a furin-like proprotein convertase processes the COOH-terminal propeptide of pro-alpha1(V) collagen. J Biol Chem 1998;273(42):27,511–27,517.

    Article  CAS  Google Scholar 

  46. Cherr GS, Motew SJ, Travis JA, et al. Metalloproteinase inhibition and the response to angioplasty and stenting in atherosclerotic primates. Arterioscler Thromb Vasc Biol 2002;22:161–166.

    Article  PubMed  CAS  Google Scholar 

  47. Sierevogel MJ, Pasterkamp G, Velema E, et al. Oral matrix metalloproteinase inhibition and arterial remodeling after balloon dilation: an intravascular ultrasound study in the pig. Circulation 2001;103:302–307.

    PubMed  CAS  Google Scholar 

  48. de Smet BJ, de Kleijn D, Hanemaaijer R, et al. Metalloproteinase inhibition reduces constrictive arterial remodeling after balloon angioplasty: a study in the atherosclerotic Yucatan micropig. Circulation 2000;101:2962–2067.

    PubMed  Google Scholar 

  49. Bendeck MP, Irvin C, Reidy MA. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res 1996;78:38–43.

    PubMed  CAS  Google Scholar 

  50. Humphries S, Bauters C, Meirhaeghe A, Luong L, Bertrand M, Amouyel P. The 5A6A polymorphism in the promotor of the stromelysin-1 (MMP3) gene as a risk factor for restenosis. Eur Heart J 2002;23:721–725.

    Article  PubMed  CAS  Google Scholar 

  51. Barolet AW, Nili N, Cheema A, et al. Arterial elastase activity after balloon angioplasty and effects of elafin, an elastase inhibitor. Arterioscler Thromb Vasc Biol 2001;21:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  52. O’Blenes SB, Zaidi SH, Cheah AY, McIntyre B, Kaneda Y, Rabinovitch M. Gene transfer of the serine elastase inhibitor elafin protects against vein graft degeneration. Circulation 2000;102:III289–III295.

    PubMed  CAS  Google Scholar 

  53. Cowan B, Baron O, Crack J, Coulber C, Wilson GJ, Rabinovitch M. Elafin, a serine elastase inhibitor, attenuates post-cardiac transplant coronary arteriopathy and reduces myocardial necrosis in rabbits afer heterotopic cardiac transplantation. J Clin Invest 1996;97:2452–2468.

    PubMed  CAS  Google Scholar 

  54. Pasterkamp G, Schoneveld AH, van der Wal AC, et al. Relation of arterial geometry to luminal narrowing and histological markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol 1998;32:655–662.

    Article  PubMed  CAS  Google Scholar 

  55. Pasterkamp G, Schoneveld AH, Hijnen DJ, et al. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis 2000;150:245–253.

    Article  PubMed  CAS  Google Scholar 

  56. Ivan E, Khatri JJ, Johnson C, et al. Expansive arterial remodeling is associated with increased neointimal macrophage foam cell content: the murine model of macrophage-rich carotid artery lesions. Circulation 2002;105:2686–2691.

    Article  PubMed  Google Scholar 

  57. Okamoto E, Couse T, De Leon H, et al. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001;104:2228–2235.

    Article  PubMed  CAS  Google Scholar 

  58. Costa MA, de Wit LE, de Valk V, et al. Indirect evidence for a role of subpopulation of activated neutrophils in the remodeling process after percutaneous coronary intervention. Eur Heart J 2001;22:580–586.

    Article  PubMed  CAS  Google Scholar 

  59. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653–660.

    Article  PubMed  CAS  Google Scholar 

  60. Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986;231:405–407.

    Article  PubMed  CAS  Google Scholar 

  61. de Kleijn DP, Sluijter JP, Smit J, et al. Furin and membrane type-1 metalloproteinase mRNA levels and activation of metalloproteinase-2 are associated with arterial remodeling. FEBS Lett 2001;501:37–41.

    Article  PubMed  Google Scholar 

  62. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circulation Res 2002;90:251–262.

    PubMed  CAS  Google Scholar 

  63. Abbruzzese TA, Guzman RJ, Martin RL, Yee C, Zarins CK, Dalman RL. Matrix metalloproteinase inhibition limits arterial enlargements in a rodent arteriovenous fistula model. Surgery 1998;124:328–34, discussion 334–335.

    PubMed  CAS  Google Scholar 

  64. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol 1995;15:2–10. Erratum in: Arterioscler Thromb Vasc Biol 1995;15:429.

    PubMed  CAS  Google Scholar 

  65. Shyy JY, Lin MC, Han J, Lu Y, Petrime M, Chien S. The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 1995;92:8069–8073.

    Article  PubMed  CAS  Google Scholar 

  66. Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress: role of c-Myc. J Biol Chem 2003;278:32,994–32,999.

    Article  CAS  Google Scholar 

  67. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 1997;80:829–837.

    PubMed  CAS  Google Scholar 

  68. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 1998;101:40–50.

    Article  PubMed  CAS  Google Scholar 

  69. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  70. Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000;164:558–561.

    PubMed  CAS  Google Scholar 

  71. Okamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001;276:10,229–10,233.

    Article  CAS  Google Scholar 

  72. Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001;104:3103–3108.

    Article  PubMed  CAS  Google Scholar 

  73. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002;105:1158–1161.

    PubMed  CAS  Google Scholar 

  74. Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002;106:1985–1990.

    Article  PubMed  CAS  Google Scholar 

  75. Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185–192.

    Article  PubMed  CAS  Google Scholar 

  76. Boekholdt SM, Agema WR, Peters RJ, et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003;107:2416–2421.

    Article  PubMed  CAS  Google Scholar 

  77. Galis ZS, Johnson C, Godin D, et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 2002;91:852–859.

    Article  PubMed  CAS  Google Scholar 

  78. Hollestelle SCG, de Vries M, van Keulen JK, Schoneveld AH, van Middelaar BJ, Pasterkamp G, Quax PHA, de Kleijn DPV. Toll-like receptor 4 is involved in outward arterial remodeling. Circulation 2004;109:393–398.

    Article  PubMed  CAS  Google Scholar 

  79. Krams R, Wentzel JJ, Oomen JAF, et al. Shear stress in atherosclerosis, and vascular remodeling. Semin Intervent Cardiol 1998;3:39–44.

    CAS  Google Scholar 

  80. Weidinger FF, McLenachan JM, Cybulsky MI, et al. Persistent dysfunction of regenerated endothelium after balloon angioplasty of rabbit iliac artery. Circulation 1990;81:1667–1679.

    PubMed  CAS  Google Scholar 

  81. Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 1998;98:157–163.

    PubMed  CAS  Google Scholar 

  82. Nunes GL, Sgoutas DS, Redden RA, et al. Combination of vitamins C and E alters the response to coronary balloon injury in the pig. Arterioscl Thromb Vasc Biol 1995;15:156–165.

    PubMed  CAS  Google Scholar 

  83. Côté G, Tardif JC, Lesperance J, et al. Effects of probucol on vascular remodeling after coronary angioplasty. Circulation 1999;99:3035.

    Google Scholar 

  84. Schwarzacher SP, Lim TT, Wang B, et al. Local intramural delivery of L-arginine enhances nitric oxide generation and inhibits lesion formation after balloon angioplasty. Circulation 1997;95:1863–1869.

    PubMed  CAS  Google Scholar 

  85. Ormiston JA, Stewart FM, Roche AH, Webber BJ, Whitlock RM, Webster MW. Late regression of the dilated site after coronary angioplasty: a 5 year quantitative angiographic study. Circulation 1997;96:468–474.

    PubMed  CAS  Google Scholar 

  86. Bosmans JM, Vrints CJ, Kockx MM, Bult H, Cromheeke KMC, Herman AG. Continuous perivascular L-Arginine delivery increases total vessel area and reduces neointimal thickening after experimental balloon dilation. Arterioscl Thromb Vasc Biol 1999;19:767–776.

    PubMed  CAS  Google Scholar 

  87. Le Tourneau T, van Belle E, Corseaux D, et al. Role of nitric oxide in restenosis after experimental balloon angioplasty in the hypercholesterolemic rabbit: effects on neointimal hyperplasia and vascular remodeling. J Am Coll Cardiol 1999;33:876–882.

    Article  PubMed  Google Scholar 

  88. Varenne O, Pislaru S, Gillijns H, et al. Local adenovirus-mediated transfer of human endopthelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 1998;98:919–926.

    PubMed  CAS  Google Scholar 

  89. Baek SH, Hrabie JA, Keefer LK, Hou D, Fineberg N, Rhoades R, March KL. Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation 2002;105:2779–2784.

    Article  PubMed  CAS  Google Scholar 

  90. Indolfi C, Torella D, Coppola C, et al. Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res 2002;91:1190–1197.

    Article  PubMed  CAS  Google Scholar 

  91. de Smet BJGL, Pasterkamp G, van der Helm YJ, Borst C, Post MJ. The relation between de novo atherosclerotic remodeling and angioplasty-induced remodeling in an atherosclerotic yucatan micropig model. Arterioscler Thromb Vasc Biol 1998;188:702–707.

    Google Scholar 

  92. Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986;231:405–407.

    Article  PubMed  CAS  Google Scholar 

  93. de Smet BJGL, Robertus JL, Rebel JMJ, van der Helm YJM, Borst C, Post MJ. Metalloproteinase inhibition reduces constrictive arterial remodeling following balloon angioplasty: a study in the atherosclerotic yucatan micropig. J Am Coll Cardiol 1999;33:88A.

    Article  Google Scholar 

  94. Choi ET, Callow AD, Sehgal NL, Brown DM, Ryan US. Halofuginone, a specific collagen type I inhibitor, reduces anastomotic intimal hyperplasia. Arch Surg 1995;130(3):257–261.

    PubMed  CAS  Google Scholar 

  95. Yin X, Yutani C, Ikeda Y, et al. Tissue factor pathway inhibitor gene delivery using HVJ-AVE liposomes markedly reduces restenosis in atherosclerotic arteries. Cardiovasc Res 2002;56:454–463.

    Article  PubMed  CAS  Google Scholar 

  96. Singh R, Pan S, Mueske CS, et al. Role for tissue factor pathway in murine model of vascular remodeling. Circ Res 2001;89:71–76.

    Article  PubMed  CAS  Google Scholar 

  97. Mazur W, Ali MN, Khan M, et al. High dose rate intracoronary radiation for inhibition of neointimal formation in the stented and balloon injured porcine models of restenosis: angiographic, morphometric and histopathologic analyses. Int J Radiat Oncol Biol Phys 1996;36:777–788.

    Article  PubMed  CAS  Google Scholar 

  98. Waksman R, Rodriguez JC, Robinson KA, et al. Effect of intravascular irradiation on cell proliferation, apoptosis, and vascular remodeling after balloon overstretch injury of porcine coronary arteries. Circulation 1997;96:1944–1952.

    PubMed  CAS  Google Scholar 

  99. Rubin P, Williams JP, Riggs PN, et al. Cellular and molecular mechanisms of radiation inhibition of restenosis. part I: role of the macrophage and platelet-derived growth factor. Int J Radiat Oncol Biol Phys 1998;40:929–941.

    Article  PubMed  CAS  Google Scholar 

  100. Van Leeuwen TG, Velema E, Pasterkamp G, Post MJ, Borst C. Saline flush during excimer laser angioplasty: short and long term effects in the rabbit femoral artery. Lasers Surg Med 1998;23:128–140.

    Article  PubMed  Google Scholar 

  101. Perree J, van Leeuwen TG, Velema E, Borst C. Psoralen and long wavelength ultraviolet radiation as an adjuvant therapy for prevention of intimal hyperplasia and constrictive remodeling after balloon angioplasty. Lasers Surg Med 1998;23:281–290.

    Article  PubMed  CAS  Google Scholar 

  102. Perree J, van Leeuwen TG, Velema E, Smeets M, de Kleijn D, Borst C. UVB-activated psoralen reduces luminal narrowing after balloon dilation because of inhibition of constrictive remodeling. Photochem Photobiol 2002;75:68–75.

    Article  PubMed  CAS  Google Scholar 

  103. Gabeler EE, van Hilligersberg R, Statius van Eps RG, Sluiter W, Mulder P, van Urk H. Endovascular photodynamic therapy with animoleavulinic acid prevents balloon induced hyperplasia and constrictive remodeling. Eur J Endovasc Surg 2002;24:322–331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Pasterkamp, G., Strauss, B.H., de Kleijn, D. (2007). Arterial Remodeling. In: Duckers, H.J., Nabel, E.G., Serruys, P.W. (eds) Essentials of Restenosis. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-001-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-001-0_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-491-3

  • Online ISBN: 978-1-59745-001-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics