Skip to main content

Flotation Thickening

  • Chapter

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 6))

Abstract

Flotation is a solid-liquid separation process. Separation is artificially induced by introducing fine gas bubbles (usually air) into the flotation process system. The gas bubbles become attached to the solid particulates, forming a gas-solid aggregate with an overall bulk density less than the density of the liquid; thus, these aggregates rise to the surface of the fluid. Once the solid particles have been floated to the surface, they can be collected by a skimming operation (115).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Burd, A Study of Sludge Handling and Disposal, Publication WP-20-4, Federal Water Pollution Control Administration, Washington, DC, 1968.

    Google Scholar 

  2. J. K. Edzwald, J. P. Walsh, G. S. Kaminski, and H. J. Dunn, Flocculation and air requirements for dissolved air flotation. J. Am. Water Works Assoc. 84(3), 92–100 (1992).

    CAS  Google Scholar 

  3. W. W. Eckenfelder, Water Quality Engineering for Practicing Engineers, Barnes and Nobel, New York, NY, 1970.

    Google Scholar 

  4. T. H. Chung and D. Y. Kim, Significance of pressure and recirculation in sludge thickening by dissolved air flotation. Water Sci. Technol. 36(12), 223–230 (1997).

    Article  Google Scholar 

  5. Metcalf and Eddy, Inc., Wastewater Engineering; Collection, Treatment, and Disposal, McGraw-Hill Book Co., New York, NY, 1991.

    Google Scholar 

  6. R. F. Weston, Inc., Process Design Manual for Upgrading Existing Wastewater Treatment Plants, US Environmental Protection Agency, Washington, DC, 1971.

    Google Scholar 

  7. G. J. Stander and L. B. J. Van Vuuren, Flotation of sewage and waste solids. In: Advances in Water Quality Improvements—Physical and Chemical Processes, E. F. Gloyna and W. W. Eckenfelder, Jr. (eds.), University of Texas Press, Austin, TX, 1970.

    Google Scholar 

  8. US EPA, Sludge Handling and Disposal, US Environmental Protection Agency, Washington, DC, 1973.

    Google Scholar 

  9. L. R. J. Van Vuuren, Dispersed air flocculation/flotation for stripping of organic pollutants from effluents, Water Res. 2, 177–183 (1968).

    Article  Google Scholar 

  10. B. Pascual, B. Tansel, and R. Shalewitz, Economic sensitivity of the dissolved air flotation process with respect to the operational variables. Proc. of the 49th Ind. Waste Conference, Lewis Publishers, Chelsea, MI, 1994.

    Google Scholar 

  11. L. K. Wang, Adsorptive bubble separation and dispersed air flotation and electroflotation. In: Advanced Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), Humana Press, Inc., Totowa, NJ, pp. 81–122, 2006.

    Chapter  Google Scholar 

  12. L. K. Wang, E. Fahey, and Z. Wu, Dissolved air flotation. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas, eds., Humana Press, Inc., Totowa, NJ, pp. 431–500, 2005.

    Google Scholar 

  13. US EPA, Innovative and Alternative Technology Assessment Manual, EPA-430/9-78-009. US Environmental Protection Agency, Washington, DC, 1980.

    Google Scholar 

  14. US EPA, Design of Wastewater Treatment Facilities Major Systems, EPA-430/9-79-008. US Environmental Protection Agency, Washington, DC, 1978.

    Google Scholar 

  15. US EPA, Process Design Manual for Sludge Treatment and Disposal, EPA-625/1-79-011. US Environmental Protection Agency, Washington, DC, 1979.

    Google Scholar 

  16. M. Krofta and L. K. Wang, Flotation Engineering, First Edition. Lenox Institute of Water Technology, Lenox, MA. Technical Manual No. Lenox/1-06-2000/368 (2000).

    Google Scholar 

  17. L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment, US Patent No. 5354458. US Patent & Trademark Office, Washington, DC, 1996.

    Google Scholar 

  18. L. K. Wang, Bubble dynamics and material balances of dissolved gas flotation process, Water Treatment, 10, 41–54 (1995).

    Google Scholar 

  19. L. K. Wang, P. Wang, and N. L. Clesceri, Groundwater decontamination using sequencing batch processes, Water Treatment 10, 121–134 (1995).

    CAS  Google Scholar 

  20. L. K. Wang and M. H. S. Wang, Laboratory simulation of water and wastewater treatment processes, Water Treatment 10, 261–282 (1995).

    CAS  Google Scholar 

  21. L. K. Wang, The State of the Art Technologies for Water Treatment and Management, United National Industrial Development Organization (UNIDO) Technical Paper No. 8-8-95, 145, August, 1995.

    Google Scholar 

  22. L. K. Wang and C. S. Hwang, Removal of trihalomethane precursor (humic acid) by innovative dissolved air flotation and conventional sedimentation, Proceedings of the 1991 Annual Conference of the Korean Society of Water Pollution Research and Control, Seoul Korea, 10 p. Water Treatment 8(1), March, 1993, pp. 7–16.

    CAS  Google Scholar 

  23. L. K. Wang, Water and waste treatment using advanced dissolved air flotation, Proceedings of the 1991 Annual Conference of the Korea Society of Water Pollution Research and Control, Seoul, Korea, February, 1991, p. 33.

    Google Scholar 

  24. J. P. Malley and J. K. Edzwald, Concepts of dissolved air flotation of drinking water. J. Water SRT-Aqua 40(1), 7–17 (1991).

    CAS  Google Scholar 

  25. L. K. Wang, M. H. S. Wang, and P. Kolodzicj, Innovative and cost effective Lenox water purification plant, Water Treatment 7, 387–406 (1992).

    CAS  Google Scholar 

  26. M. Krofta, L. K. Wang, and C. D. Pollman, Treatment of seafood processing wastewater by dissolved air flotation, carbon adsorption and free chlorination, Proc. 43rd Ind. Waste Conference, Lewis Publishers, Chelsea, Michigan, 1989, p. 535.

    Google Scholar 

  27. M. Krofta and L. K. Wang, Total closing of paper mills with reclamation and deinking installations, Proceedings of the 43rd Industrial Waste Conference, 1989, 673 p.

    Google Scholar 

  28. L. K. Wang, Design and specifications of Pittsfield water treatment system consisting of air flotation and sand filtration, Water Treatment 6, 127–146 (1991).

    CAS  Google Scholar 

  29. M. Krofta and L. K. Wang, Sludge thickening and dewatering by dissolved air flotation. Floatpress Drying, 2, 765–771, Hemisphere Publishing Corp., Harper & Row Publishers, New York (1986).

    Google Scholar 

  30. M. Krofta and L. K. Wang, Sludge thickening and dewatering by dissolved air flotation: process design, Drying, 2, 772–780, Hemisphere Publishing Corp., Harper & Row Publishers, New York (1986).

    Google Scholar 

  31. M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts water supply: water purification by flotation, J. New England Water Works Assoc. 249–264 (1985).

    Google Scholar 

  32. M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts water supply: sludge thickening by flotation or lagoon, J. New England Water Works Assoc. 265–284 (1985).

    Google Scholar 

  33. L. K. Wang, Removal of organic pollutants by adsorptive bubble separation processes, 1974 Earth Environment and Resources Conference Digest of Technical Papers, Vol. 1(74), September 1974, pp. 56–57.

    CAS  Google Scholar 

  34. L. K. Wang, Chemistry of nitrification-denitrification process, J. Environ. Sci. 21, 23–28 (1978).

    CAS  Google Scholar 

  35. L. K. Wang and Y. Li, Sequencing batch reactors. In: Biological Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung, (eds.), Humana Press, Totowa, NJ, 2007.

    Google Scholar 

  36. S. Cizinska, V. Matejo, C. Wase, Y. Klasson, J. Krejci, and G. Dalhammar, Thickening of waste activated sludge by biological flotation, Water Res. 26, 139 (1992).

    Article  CAS  Google Scholar 

  37. W. A. Selke, L. K. Wang, N. K. Shammas, and D. B. Aulenbach, Correction Factor of Gas Dissolution Under Pressure for Flotation System Design, Technical Note, International Association of Flotation Technology, Newtonville, NY, November, 2003.

    Google Scholar 

  38. L. K. Wang, Treatment of power industry wastes. In: Waste Treatment in the Process Industries, L. K. Wang (eds.). CRC/Taylor and Francis, Boca Raton, FL, p. 614, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, L.K., Shammas, N.K., Selke, W.A., Aulenbach, D.B. (2007). Flotation Thickening. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Biosolids Treatment Processes. Handbook of Environmental Engineering, vol 6. Humana Press. https://doi.org/10.1007/978-1-59259-996-7_3

Download citation

Publish with us

Policies and ethics