Skip to main content

Inorganic Chemical Conditioning and Stabilization

  • Chapter

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 6))

Abstract

Conditioning involves the chemical and/or physical treatment of biosolids to enhance water removal and improve solids capture. The three most common conditioning systems use inorganic chemicals, organic polymers (covered in another chapter), or heat. Table 1 shows and compares the effects of conditioning processes on a biosolids mixture of primary and waste-activated sludge (WAS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. US EPA, Centrifugal Dewatering/Thickening, Biosolids Technology Fact Sheet, EPA 832-F-053, US Environmental Protection Agency, Office of Water Washington, DC, 2000.

    Google Scholar 

  2. US EPA, Belt Filter Press, Biosolids Technology Fact Sheet, EPA 832-F-00-057, US Environmental Protection Agency, Office of Water Washington, DC, 2000.

    Google Scholar 

  3. US EPA, Filter Press, Recessed Plate, Biosolids Technology Fact Sheet EPA 832-F-00-058, US Environmental Protection Agency, Office of Water Washington, DC, 2000.

    Google Scholar 

  4. US EPA, Dewatering Municipal Wastewater Sludges, EPA-625/1-82-014. US Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, OH, 1982.

    Google Scholar 

  5. US EPA, Process Design Manual for Sludge Treatment and Disposal, EPA-625/1-79-011, US Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, OH, 1979.

    Google Scholar 

  6. L. K. Wang, D. A. Vaccari, Y. Li, and N. K. Shammas, Chemical precipitation, in Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Inc., Totowa, NJ, 2005.

    Google Scholar 

  7. N. K. Shammas, Coagulation and flocculation. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Inc., Totowa, NJ, 2005.

    Google Scholar 

  8. National Lime Association, Lime, Bulletin 213, Arlington, VA.

    Google Scholar 

  9. M. Hirota, H. Okada, Y. Misaka, and K. Kato, Dewatering of Organic Sludge by Using Pulverized Coal, Presented at 47th Annual Conference of the Water Pollution Control Federation, Denver, CO, 1974.

    Google Scholar 

  10. O. E. Albertson and M. Kopper, Fine coal-aided centrifugal dewatering of waste activated sludge, J. Water Pollut. Control Fed. 55(2), 145 (1983).

    CAS  Google Scholar 

  11. Martin Marietta Corp., Sludge Conditioning with Cement Kiln Dust, Bulletin 5, Martin Marietta Corp., Baltimore, MD, 1981.

    Google Scholar 

  12. P. A. Vesilind, Treatment and Disposal of Wastewater Sludges, Ann Arbor Science Publishers, Ann Arbor, MI, 1980.

    Google Scholar 

  13. L. K. Wang, Role of polyelectrolytes in the filtration of colloidal particles from water and wastewater, Sep. Purif. Methods 6(1), 153–187 (1977).

    Article  Google Scholar 

  14. L. K. Wang, Application and determination of organic polymers, Water, Air, and Soil Pollut. 9, 337–348 (HOLLAND) (1978).

    CAS  Google Scholar 

  15. L. K. Wang, Determination of Polyelectrolytes and Colloidal Charges, Technical Report no. PB86-169307, US Dept. of Commerce, National Technical Information Service, Spingfield, VA, p. 47, December, 1984.

    Google Scholar 

  16. US EPA, Innovative and alternative Technology Assessment Manual, EPA/430/9-78-009. US Environmental Protection Agency, Washington, DC, 1980.

    Google Scholar 

  17. A. Vesilind, Wastewater Treatment Plant Design, Water Environment Federation and IWA Publishing, Alexandria, VA, USA, 2003.

    Google Scholar 

  18. WEF, Design of Municipal Wastewater Treatment Plants, Manual of Practice no. 8, Water Environment Federation and American Society of Civil Engineers, Alexandria, VA, 1988.

    Google Scholar 

  19. WPCF, Sludge Conditioning, Manual of Practice no. FD-14, Water Pollution Control Federation, Alexandria, VA, 1988.

    Google Scholar 

  20. Calgon Corp. Chemical Application Bulletin 12-5d-Jar Test Procedure, Pittsburgh, PA.

    Google Scholar 

  21. P. Coakely and B. R. S. Jones, Vacuum sludge filtration, I. Interpretation of results by the concept of specific resistance, Sewage Ind. Wastes, 28, 963 (1956).

    Google Scholar 

  22. Metcalf and Eddy, Wastewater Engineering Treatment and Reuse, (4th ed.), McGraw Hill, New York, NY, 2003.

    Google Scholar 

  23. R. S. Gales and R. C. Baskerville, Capillary suction method for determination of the filtration properties of a solid/liquid suspension, Chem. Ind. 1967.

    Google Scholar 

  24. US ACE, Civil Works Construction Cost Index System Manual, 110-2-1304, US Army Corps of Engineers, Washington, DC, pp. 44 (2000-Tables Revised 31 March 2003), 2003.

    Google Scholar 

  25. US EPA, Heat Treatment/Low Pressure Oxidation Systems: Design and Operational Considerations, EPA-430/9-85-001, US Environmental Protection Agency, Office of Municipal Pollution Control, Washington, DC, 1985.

    Google Scholar 

  26. Spinosa, L. and Vesilind P. A. (eds.), Sludge into Biosolids: Processing, Disposal, Utilization. IWA Publishing, December, 2001.

    Google Scholar 

  27. W. M. Copa and M. J. Dietrich, Wet air oxidation of oils, oil refinery sludges, and spent drilling mud, Oil Waste Management Alternatives Symposia Conference Proceedings, Web Site last accessed in May 2004, http://es.epa.gov/techpubs/3/8533.html (2004).

    Google Scholar 

  28. M. Modell, Advantages of Gravity Pressure Vessel Wet Oxidation or Hydrolysis Technology over Above Ground Wet Oxidation Technology, presented for the Gulf Coast Waste Disposal Authority Blue Ribbon Panel (1996).

    Google Scholar 

  29. B.-N. Lee and J.-C. Loy, Study on wet air oxidation of aqueous ferrous cyanide solution catalyzed by three metal salts, Wat. Sci. Technol., 42(3–4), 131–136, accessed on IWA Publishing Web Site, May 2004, http://www.iwaponline.com/wst/04203/wst042030131.htm (2000).

    CAS  Google Scholar 

  30. C. R. Whitehead and E. J. Smith, Sludge heat treatment: operation and management, J. Inst. Wat. Pollut. Control 71, 31 (1976).

    Google Scholar 

  31. US EPA, Bench-Scale Evaluation of Zimpro’s Wet Air Oxidation Process on Contaminated Sediments from the Grand Calumet River, US Environmental Protection Agency Report no. EPA 905-R94-007, Great Lakes National Program Office, Chicago, IL. http://www.epa.gov/glnpo/arcs/EPA-905-R94-007/EPA-905-R94-007.html, accessed May, 2004 (1994).

    Google Scholar 

  32. US Filter, Zimpro Wet Oxidation/Wet Oxidation Systems, Web Site accessed, May, 2004, http://www.usfilter.com/water/ProductDescription.asp?WID=25&PID=272 (2004).

  33. US Filter, Overview of Hydrothermal Treatment: Wet Oxidation and Hydrolysis, Web Site accessed May 2004, http://www.zimpro.com/wetox/wo101.htm (2004).

  34. R. S. Burd, A Study of Sludge Handling and Disposa, US Department of Interior WP-20-4, May (1968).

    Google Scholar 

  35. A. L. Genter, US Patent 2,259,688, October 21, 1941.

    Google Scholar 

  36. L. V. Garrity, Sludge disposal practices at Detroit-discussion, Sewage Works J. 18, 215 (1946).

    Google Scholar 

  37. A. E. Sparr, Elutriation experience at the Bay Park Sewage Treatment Plant, Sewage Ind. Wastes 26, 1443 (1954).

    Google Scholar 

  38. D. Taylor, Sludge conditioning and filtration at Cincinnati’s Little Miami Sewage Works, Sewage and Ind. Waste 29, 1333 (1957).

    CAS  Google Scholar 

  39. A. H. Chasick and R. T. Dewling, Interstage elutriation of digested sludge, J. Water Pollut. Control Fed. 34, 390 (1962).

    CAS  Google Scholar 

  40. B. W. Dahl, J. W. Zelinski, and O. W. Taylor, Polymer aids in dewatering elutriation, J. Water Pollut. Control Fed. 44, 201 (1972).

    CAS  Google Scholar 

  41. B. L. Goodman, Chemical conditioning of sludges: six case histories, Water and Wastes Eng. 3, 62 (1966).

    CAS  Google Scholar 

  42. B. L. Goodman and C. P. Witcher, Polymer-Aided Sludge Elutriation and Filtration, J. Water Pollut. Control Fed. 37, 1643 (1965).

    CAS  Google Scholar 

  43. H. E. Babbitt and H. E. Schlenz, The Effect of Freeze Drying on Sludges, Illinois Engineering Experiment Station, Bulletin No. 198, p. 48 (1929).

    Google Scholar 

  44. Sewerage Commission City of Milwaukee, Evaluation of Conditioning and Dewatering Sewage Sludge by Freezing, Water Pollution Control Research Series 11010 EVE 01/71, (1971).

    Google Scholar 

  45. G. S. Clements, R. J. Stephenson, and C. J. Regan, Sludge dewatering by freezing with added chemicals, Part 4, J. Proc. Inst. Sewage Purif. J. 318 (1950).

    Google Scholar 

  46. C. Cheng, D. M. Updegroff, and L. W. Ross, Sludge dewatering by high rate freezing at small temperature differences, Environ. Sci. Technol. 4, 1145 (1970).

    Article  CAS  Google Scholar 

  47. A. Y. Renoux, R. D. Tyagi, and R. Samson, Effects of Irradiation and Freezing on Toxicity of Sewage Sludge Elutriate Samples, Water Quality Res. J. Can. 34(4), 589–597 (1999).

    CAS  Google Scholar 

  48. C. W. Randall, Butane is nearly “ideal” for direct slurry freezing, Water and Wastes Eng., 43, March, 1978.

    Google Scholar 

  49. A. Penman and D. W. Vanes, Winnipeg freezes sludge, slashes disposal cost 10 fold, Civil Engineering J. ASCE. 43, 65 (1973).

    Google Scholar 

  50. R. J. Rush and A. R. Stickney, Natural Freeze-Thaw Sewage Sludge Conditioning and Dewatering, Canada Environmental Protection Service Report EPS 4-WP-79-1, January, 1979.

    Google Scholar 

  51. Envirogenics Co., Biological Methods of Sludge Dewatering, FWQA-W-72-05838, NTIS PB 207-480, FWQA-14-12-427, p. 147, August, 1971.

    Google Scholar 

  52. E. A. Slagle and L. M. Roberts, Treatment of sewage and sewage sludge by electrodialysis, Sewage Works J. 14, 1021, 1942.

    CAS  Google Scholar 

  53. R. E. Beaudoin, Reduction of moisture in activated sludge filter cake by electro-osmosis, Sewage Works J. 15, 1153, 1943.

    Google Scholar 

  54. R. Hicks, Disposal of sewage sludge, The Surveyor, pp. 105, 303, April, 19, 1946.

    Google Scholar 

  55. L. F. Cooling, Dewatering of sewage sludge by electro-osmosis, Water and Sanitary Eng. 3, 246 (1952).

    CAS  Google Scholar 

  56. G. Spohr, Electrical stimulation of bacteria, Water Works and Wastes Eng. April, (1964).

    Google Scholar 

  57. G. Spohr, Electrical Stimulation of Bacteria, US patent 3,166,501.

    Google Scholar 

  58. R. H. Stallery and E. H. Eauth, Treatment of sewage sludge by the McDonald Process, Public Works, 111, March (1957).

    Google Scholar 

  59. P. Scovazo, W.-Y. Chen, L. K. Wang, and N. K. Shammas, Solvent extraction, leaching and Supercritical extraction, In Advanced Physicochemical Treatment Processes, L. K. Wang, Y.-S. Hung, and N. K. Shammas, (eds.), Humana Press, Inc., Totowa, NJ, 2006.

    Google Scholar 

  60. K. L. Nash and B. A. Moyer, (eds.), Solvent Extraction and Ion Exchange, 22(2), 2004, Marcel Dekker, Inc., NY, ISSN: 0736-6299, April, 2004.

    Google Scholar 

  61. J. Rydberg, C. Musikas, and G. R. Chopin (eds.), Principles and Practices of Solvent Extraction, Marcel Dekker, 1992.

    Google Scholar 

  62. C. Hanson, Solvent extraction-an economically competitive process, Chem. Eng. 83, May, 1979.

    Google Scholar 

  63. D. H. Logsdail and M. J. Slater, Solvent Extraction in the Process Industries—ISEC 93, Chapman and Hall, (1994).

    Google Scholar 

  64. US EPA, Energy Requirements for Municipal Control Facilities, US Environmental Protection Authority, Office of Water Program Operations, Washington, DC, March, 1977.

    Google Scholar 

  65. B. M. Saunier, Kinetics of Breakpoint Chlorination and Disinfection, PhD. Thesis, Department of Civil Engineering, University of California, Berkeley, CA, 1976.

    Google Scholar 

  66. US EPA, Partial Characterization of Chlorinated Organics in Superchlorinated Septages and Mixed Sludges, US Environmental Protection Authority Report no. EPA-600/2-78-020, Office of Research and Development, Cincinnati, Ohio, March, 1978.

    Google Scholar 

  67. T. C. Williams, Phosphorous removed at Low Cost, Water and Wastes Eng.s 13 (1975).

    Google Scholar 

  68. J. W. Oliver, W. C. Kreye, and P. H. King, Heavy metal release by chlorine oxidation of sludges, J. Water Pollut. Control Fed. 47, 2490 (1975).

    Google Scholar 

  69. W. H. Sukenik, P. H. King, and J. W. Oliver, Chlorine and acid conditioning of sludge, J. Environ. Eng. Division-ASCE 6, 1013 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shammas, N.K., Wang, L.K. (2007). Inorganic Chemical Conditioning and Stabilization. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Biosolids Treatment Processes. Handbook of Environmental Engineering, vol 6. Humana Press. https://doi.org/10.1007/978-1-59259-996-7_11

Download citation

Publish with us

Policies and ethics