Skip to main content

Characteristics and Quantity of Biosolids

  • Chapter
Biosolids Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 6))

Abstract

This first chapter principally discusses the quantities and characteristics of biosolids produced by various wastewater treatment processes. There are several sources of wastewater biosolids; these biosolids can vary widely in characteristics and quantity. From the standpoint of quantity per unit of flow, the principal variables are the strength of the wastewater, whether chemicals are utilized in the process, and the degree of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. US EPA, Process Design Manual for Phosphorus Removal. EPA-625/1-87/001, US Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, OH, 1987.

    Google Scholar 

  2. US EPA, Standards for the Use or Disposal of Sewage Sludge (40 Code of Federal Regulations Part 503). US Environmental Protection Agency, Washington, DC, 1993.

    Google Scholar 

  3. US EPA, Amendments to the Standards for the Use or Disposal of Sewage Sludge (40 Code of Federal Regulations Part 503). US Environmental Protection Agency, Washington, DC, 1995.

    Google Scholar 

  4. US EPA, Process Design Manual for Sludge Treatment and Disposal. EPA-625/1-79-011, US Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, OH, 1979.

    Google Scholar 

  5. WEF, Design of Municipal Wastewater Treatment Plants. Manual of Practice no. 8, Water Environment Federation and American Society of Civil Engineers, Alexandria, VA, 1988.

    Google Scholar 

  6. Metcalf and Eddy, Wastewater Engineering Treatment and Reuse, 4th ed., McGraw Hill, New York, NY, 2003.

    Google Scholar 

  7. O. J. Schmidt, Wastewater treatment problems at North Kansas City, Missouri, J. Water Pollut. Control Fed., 50, 635 (1978).

    CAS  Google Scholar 

  8. H. E. Babbitt and E. R. Baumann, Sewerage and Sewage Treatment, 8th ed., Wiley, NY, 1958.

    Google Scholar 

  9. S. G. Brisbin, Flow of concentrated raw sludges in pipes, J. Sanitary Eng. Division, ASCE, 83, SA3 (1957).

    Google Scholar 

  10. US EPA, Review of Techniques for Treatment and Disposal of Phosphorus-Laden Chemical Sludge. EPA-600/2-79-083, US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, February, 1979.

    Google Scholar 

  11. C. H. Knight, R. G. Mondox, and B. Hambley, Thickening and dewatering sludges produced in phosphate removal, Phosphorous Removal Design Seminar, May 28–29, Toronto (1973).

    Google Scholar 

  12. J. C. Young, J. L. Cleasby, and E. R. Baumann, Flow and load variations in treatment plant design, J. Environ. Eng. Division ASCE, 104, (EE2), 289, (1978).

    CAS  Google Scholar 

  13. A. J. Fischer, The economics of various methods of sludge disposal, Sewage Works J., 9, 2, March (1936).

    Google Scholar 

  14. C. N. Anderson, Peak sludge loads at a municipal treatment plant, 44th Annual Meeting of the Pacific Northwest Pollution Control Association, sPortland, Oregon, November 2–4 (1977).

    Google Scholar 

  15. US EPA, Cost-Effective Design of Wastewater Treatment Facilities Based on Field Derived Parameters. EPA-670/2-74-062, US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, July, 1974.

    Google Scholar 

  16. H. E. Babbitt, Sewerage and Sewage Treatment, 6th ed., Wiley, NY, 1947.

    Google Scholar 

  17. J. E. Smith, Jr., Ultimate Disposal of Sludges, Technical Workshop on Advanced Waste Treatment, Chapel Hill, North Carolina., February 9–10 (1971).

    Google Scholar 

  18. J. A. Prazink, Process control in the real world, Deeds and Data, Water Pollut. Control Fed., July (1978).

    Google Scholar 

  19. R. S. Burd, A Study of Sludge Handling and Disposal, Federal Water Pollution Control Administration Report WP-20-4 (1968).

    Google Scholar 

  20. Dewante, Stowell, Brown and Caldwell, Central Treatment Plant, County of Sacramento, Final Report, County of Sacramento, Sacramento, CA, February (1974).

    Google Scholar 

  21. Metropolitan Engineers, West Point Waste Activated Sludge Withholding Experiment, Report to Municipality of Metropolitan Seattle, WA, October (1977).

    Google Scholar 

  22. US EPA, Process Design Manual for Suspended Solids Removal. EPA-625/1-75-003a, US Environmental Protection Agency, Technology Transfer, Cincinnati, OH, January, 1975.

    Google Scholar 

  23. G. T. Kersch, Ecology of the intestinal tract, Nat. History, November (1973).

    Google Scholar 

  24. L. K. Wang, N. C. Pereira, and Y. T. Hung, (eds.), Biological Treatment Processes. Humana Press, Inc., Totowa, NJ, 2007.

    Google Scholar 

  25. L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), Advanced Biological Treatment Processes. Humana Press, Inc., Totowa, NJ, 2007.

    Google Scholar 

  26. N. K. Shammas, Optimization of Biological Nitrification. Ph.D. dissertation, Microfilm Publication, University of Michigan, Ann Arbor, Michigan (1971).

    Google Scholar 

  27. L. K. Wang and N. C. Pereira, (eds.), Handbook of Environmental Engineering, Vol. 3, Biological Treatment Processes, the Humana Press, Inc., NJ, USA, p. 520 (1986).

    Google Scholar 

  28. L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment, US Patent No. 5354458, US Patent & Trademark Office, Washington, DC, 1996.

    Google Scholar 

  29. C. P. L. Grady, Jr., G. T. Daigger, and H. C. Lim, Biological Wastewater Treatment, Marcel Dekker, Inc., New York, NY, 1999.

    Google Scholar 

  30. H. Heukelekian, H. E. Orford, and R. Manganelli, Factors affecting the quantity of sludge production in the activated sludge process, Sewage and Industrial Wastes, 23, 8 (1951).

    Google Scholar 

  31. A. W. Obayashi, B. Washington, and C. Lue-Hing, Net sludge yields obtained during single-stage nitrification studies at Chicago’s West-Southwest Treatment Plant. Proceedings of 32nd Industrial Waste Conference, May 10–12, Purdue University, Ann Arbor Science, p. 759, 1978.

    Google Scholar 

  32. N. K. Shammas, An allosteric kinetic model for the nitrification process. Proc. Tenth Annual Conference of Water Supply Improvement Association, Honolulu, Hawaii, pp. 1–30, July, 1982.

    Google Scholar 

  33. US EPA, Process Design Manual for Nitrogen Control. EPA-625/1-75-007, US Environmental Protection Agency, Technology Transfer, Cincinnati, OH, October, 1975.

    Google Scholar 

  34. N. K. Shammas, Interactions of temperature, pH and biomass on the nitrification process, J. Water Pollut. Control Fed., 58(1), 52–59, January (1986).

    CAS  Google Scholar 

  35. A. P. Hopwood and A. L. Downing, Factors affecting the rate of production and properties of activated sludge in plants treating domestic sewage, J. Inst. Sewage Purif., Part 5, 1965.

    Google Scholar 

  36. T. D. Chapman, L. C. Matsch, and E. H. Zander, Effect of high dissolved oxygen concentration in activated sludge systems, J. Water Pollut. Control Fed., 49, 2486 (1976).

    Google Scholar 

  37. M. A. Miller, Two activated sludge systems compared, Water and Wastes Eng., 15, 4 (1978).

    Google Scholar 

  38. A. A. Kalinske, Comparison of air and oxygen, J. Water Pollut. Control Fed., 48, 11 (1976).

    Google Scholar 

  39. D. S. Parker, and M. S. Merrill, Oxygen and air activated sludge: another view, J. Water Pollut. Control Fed., 48, 2511 (1976).

    CAS  Google Scholar 

  40. B. A. Sayigh and J. F. Malina, Temperature effects on the activated sludge process, J. Water Pollut. Control Fed., 50, 678 (1978).

    Google Scholar 

  41. R. E. Muck and C. P. L. Grady, Jr., Temperature effects on microbial growth in CSTRs, J. Environ. Eng. Division ASCE, 101(EE5), p. 1147, October (1974).

    Google Scholar 

  42. C. W. Randall, Jr., Discussion of “Temperature effect on microbial growth in CSTRs.” J. Environ. Eng. Division ASCE, 101(EE3), 1458, June (1975).

    Google Scholar 

  43. W. Gujer and D. Jenkins, The contact stabilization activated sludge process-oxygen utilization, sludge production, and efficiency, Water Res., 9, 516 (1975).

    Google Scholar 

  44. US EPA, Extended Aeration Sewage Treatment in Cold Climates. EPA-660/2-74-070, US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, December, 1974.

    Google Scholar 

  45. W. O. Pipes, Actinomycete scum production in activated sludge processes, J. Water Pollut. Control Fed., 50, p. 628 (1978).

    Google Scholar 

  46. H. W. Strokes and L. D. Hedenland, Tertiary treatment: wrong solution to a non-problem? Civil Eng.-ASCE, 44(9), 466 (1974).

    Google Scholar 

  47. M. T. Garrett, Jr., Hydraulic control of activated sludge growth rate, Sewage and Ind. Wastes, 30, 3 (1958).

    Google Scholar 

  48. R. I. Dick, Folklore in the design of final settling tanks, J. Water Pollut. Control Fed., 48, p. 633 (1976).

    Google Scholar 

  49. M. Sezgin, The Effect of Dissolved Oxygen Concentration on Activated Sludge Process Performance. Ph.D. Thesis, University of California, Berkeley CA (1977).

    Google Scholar 

  50. US EPA, Design Guidelines for Biological Wastewater Treatment Processes. EPA Report 11010 ESQ, US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, August (1971).

    Google Scholar 

  51. T. L. Bentley and D. F. Kincannon, Application of activated sludge design and operation, Water and Sewage Works, Reference Issue, April (1978).

    Google Scholar 

  52. Brown and Caidwell, West Point Pilot Plant Study, Vol. III, Fixed Growth Reactors, Report for Municipality of Metropolitan Seattle. Seattle, WA, December (1978).

    Google Scholar 

  53. US EPA, Attached Growth Biological Wastewater Treatment: Estimating Performance and Construction Costs and Operation and Maintenance Requirements. Contract 68-03-2186, US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, January, 1977.

    Google Scholar 

  54. N. K. Shammas, Coagulation and flocculation, in Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), The Humana Press, Inc., Totowa, NJ, 2005.

    Google Scholar 

  55. C. Koch, J. S. Lee, J. R. Bratby, and D. B. Barber, A critical evaluation of procedures for estimating biosolids production. Paper Presented at WEF/AWWA Water Residuals and Biosolids Management: Approaching the Year 2000 Specialty Conference, Philadelphia, PA, 1997.

    Google Scholar 

  56. A. Vesilind, Wastewater Treatment Plant Design, Water Environment Federation and IWA Publishing, Alexandria, VA, USA, 2003.

    Google Scholar 

  57. L. Spinosa and P. A. Vesilind, (eds.), Sludge into Biosolids: Processing, Disposal, Utilization, IWA Publishing, December (2001).

    Google Scholar 

  58. N. K. Shammas, Biocontactors for wastewater reuse, kinetic approach for achieving the required effluent quality, First Saudi Engineering Conference, Jeddah, K.S.A, May (1983).

    Google Scholar 

  59. N. K. Shammas, biocontactors for developing countries, determination of design criteria and operational characteristics. Proc. Conference on Appropriate Technology in Civil Engineering, Institution of Civil Engineers, London, pp. 49–51 (1981).

    Google Scholar 

  60. E. Marki, Results of experiments by EWAG with rotating biological filter, Eidg Technische Hochschule, Zurich-Fortbildungskurs der EWAG (1964).

    Google Scholar 

  61. F. F. Kolbe, A promising new unit for sewage treatment, Die Sivielle Inqenieur (S. Africa), December (1965).

    Google Scholar 

  62. W. J. Gillespie, D. W. Marshall, and A. M. Springer, pilot scale evaluation of rotating biological surface treatment of pulp and paper mill wastes. Proceedings of 29th Industrial Waste Conference, May 7–9, Purdue University, p. 1026 (1975).

    Google Scholar 

  63. US EPA, The Coupled Trickling Filter-Activated Sludge Process: Design and Performance. EPA-6001 2-78-116, US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, July, 1978.

    Google Scholar 

  64. R. J. Stenquist, D. S. Parker, W. E. Loftinand, R. C. Brenner, Long-term performance of a coupled trickling filter-activated sludge plant, J. Water Pollut. Control Fed., 49, 11 (1977).

    Google Scholar 

  65. R. E. Reimer, E. E. Hursley, and R. F. Wukasch, Pilot plant studies and process selection for advanced wastewater treatment, city of Indianapolis, Indiana, presented at National Conference on Environmental Engineering, July 12–14, Seattle, WA (1976).

    Google Scholar 

  66. L. K. Wang, D. A. Vaccari, Y. Li, and N. K. Shammas, Chemical precipitation. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), The Humana Press, Inc., Totowa, NJ (2005).

    Google Scholar 

  67. L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), Physicochemical Treatment Processes. Humana Press, Inc., Totowa, NJ (2005).

    Google Scholar 

  68. WPCF, Sludge Thickening. Water Pollution Control Federation, Manual of Practice FD-1, 1980.

    Google Scholar 

  69. P. Coackley and F. Wilson, Proceedings of the Filtration Society, Filtration Separation, 61, Jan–Feb (1971).

    Google Scholar 

  70. P. A. Vesilind, Treatment and Disposal of Wastewater Sludges, Ann Arbor Science Publishers, Ann Arbor, MI (1980).

    Google Scholar 

  71. US EPA, Environmental Regulations and Technology, Use and Disposal of Municipal wastewater Sludge. EPA-625/10-84/003, US Environmental Protection Agency, Cincinnati, OH, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shammas, N.K., Wang, L.K. (2007). Characteristics and Quantity of Biosolids. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Biosolids Treatment Processes. Handbook of Environmental Engineering, vol 6. Humana Press. https://doi.org/10.1007/978-1-59259-996-7_1

Download citation

Publish with us

Policies and ethics