Skip to main content

Stunning: Untoward Effect of 131I Thyroid Imaging Prior to Radioablation Therapy

  • Chapter
Thyroid Cancer

Abstract

Thyroid stunning is a radiobiological phenomenon. It may be defined as a temporary suppression of iodine, trapping function of the thyrocytes and thyroid cancer cells as a result of the radiation given off by the scanning (or first) dose of 131I. The tissue-absorbed radiation dose from the scanning is often sufficient to cause hypofunction but usually not enough to destroy the target cells. The stunned cells may not be able to take up the ensuing therapeutic radioiodine-131 to the degree of their original unaffected capacity. It may lead to an incomplete ablation of the thyroid remnant or metastatic lesion. Stunning is radiation dose-dependent, i.e., the higher the radiation-absorbed dose to the target tissue, the greater the stunning effect. Stunning is a matter of quantity, not quality, and certainly is not an “all or none” phenomenon; there is a spectrum of severity. When severe, there is often a visually apparent reduction in uptake of the therapy dose of 131I in the target lesion when the diagnostic and posttherapy scans are compared. When mild, it may be noticeable only when the thyroid iodide uptake function is measured. However, the visual evidence of decreased radioiodine uptake caused by stunning could be confounded by one or more uncontrolled differences in technical and/or physiologic constraints between the diagnostic and posttreatment scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park HM. I-123: Almost a designer radioiodine for thyroid scanning. J Nucl Med 2002; 43:77–78.

    PubMed  CAS  Google Scholar 

  2. Park HM. Potential adverse effect of high survey dose of I-131 administered prior to I-131 therapy in the management of differentiated thyroid cancers. In Schmidt H, Van Der Schoot JB, editors. Nuclear Medicine: The State of the Art of Nuclear Medicine in Europe. Schattauer, Stuttgart, Germany, 1991:340–342.

    Google Scholar 

  3. Park HM, Perkins OW, Edmondson JW, et al. Influence of diagnostic radioiodines on the uptake of ablative dose of I-131. Thyroid 1994; 4:49–54.

    Article  PubMed  CAS  Google Scholar 

  4. Park HM. The stunning effect in radioiodine therapy of thyroid cancer. Nucl Med Ann 2001;49–67.

    Google Scholar 

  5. McDougall IR. 74 MBq I-131 does not prevent uptake of therapeutic doses of I-131 in differentiated thyroid cancer. Nucl Med Comm 1997; 18:505–512.

    Article  CAS  Google Scholar 

  6. Medvedec M, Pavlinovic Z, Dodig D. 74 MBq radioiodine I-131 does prevent uptake of therapeutic activity of I-131 in residual thyroid tissue. Eur J Nucl Med 1999; 26:1013.

    Google Scholar 

  7. Huic D, Medvedec M, Dodig D, et al. Radioiodine uptake in thyroid cancer patients after diagnostic application of low-dose 131I. Nucl Med Comm 1996; 17:839–842.

    Article  CAS  Google Scholar 

  8. McMenemin RM, Hilditch TE, Dempsey MF, Reed NS. Thyroid stunning after 131I diagnostic whole-body scanning. J Nucl Med 2001; 42:986–987.

    PubMed  CAS  Google Scholar 

  9. Jeevanram RK, Shah DH, Sharma SM, Ganatra RD. Influence of initial large dose on subsequent uptake of therapeutic radioiodine in thyroid cancer patients. Nucl Med Biol 1986; 13:277–279.

    CAS  Google Scholar 

  10. Huic D, Medvedec M, Dodig D, et al. Radioiodine uptake in thyroid cancer patients after diagnostic application of low-dose I-131. Nucl Med Comm 1996; 17:839–842.

    Article  CAS  Google Scholar 

  11. Leger FA, Izembart M, Dagousset F, et al. Decreased uptake of therapeutic doses of I-131 after 185 MBq I-131 diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med 1998; 25:242–246.

    Article  PubMed  CAS  Google Scholar 

  12. Postgard P, Himmelman J, Lindencrona L, et al. Stunning of iodide transport by I-131 irradiation in cultured thyroid epithelial cells. J Nucl Med 2002; 43:828–834.

    PubMed  CAS  Google Scholar 

  13. Cholewinski S, Yoo K, Klieger P, O’Mara R. Absence of thyroid stunning after diagnostic whole-body scanning with 185 MBq I-131. J Nucl Med 2000; 41:1198–1202.

    PubMed  CAS  Google Scholar 

  14. Dam HQ, Kim SM, Lin HC, Intenzo CM. 131I therapeutic efficacy is not influenced by stunning after diagnostic whole-body scanning. Radiology 2004; 232:527–533.

    Article  PubMed  Google Scholar 

  15. Sabri O, Zimny M, Schreckenberger M, et al. Does thyroid stunning exist? A model with benign thyroid disease. Eur J Nucl Med 2000; 27:1591–1597.

    Article  PubMed  CAS  Google Scholar 

  16. Lassmann M, Luster M, Hänscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004; 45:619–625.

    PubMed  Google Scholar 

  17. Medvedec M, Grosev D, Loncaric S, et al. As soon as possible is already too late. J Nucl Med 2001; 42:322P.

    Google Scholar 

  18. Gerard S. The role of I-123 in the management of differentiated thyroid cancer. CME symposium presented at the 74th Annual Meeting of the American Thyroid Association, October 11, 2002.

    Google Scholar 

  19. Koch W, Knesewitsch P, Tatsch K, Hahn K. Stunning effects in radioiodine therapy of thyroid carcinoma: existence, clinical effects and ways out. Nuclearmedizin 2003; 42:10–14.

    CAS  Google Scholar 

  20. Park H, Park Y, Zhou X. Detection of thyroid remnant/metastasis without stunning: An ongoing dilemma. Thyroid 1997; 7:277–280.

    PubMed  CAS  Google Scholar 

  21. Muratet J, Daver A, Minier J, Larra F. Influence of scanning doses of I-131 on subsequent first ablative treatment outcome in patients operated on for differentiated thyroid carcinoma. J Nucl Med 1998; 39:1556–1550.

    Google Scholar 

  22. Lees W, Mansberg R, Roberts J, et al. The clinical effects of thyroid stunning after diagnostic whole-body scanning with 185 MBq I-131. Eur J Nucl Med 2002; 29:1421–1427.

    Article  CAS  Google Scholar 

  23. Morris LF, Waxman AD, Braunstein GD. The non-impact of thyroid stunning: Remnant ablation rates in I-131-scanned and non-scanned individuals. J Clin Endocrinol Metab 2001; 86:3507–3511.

    Article  PubMed  CAS  Google Scholar 

  24. MIRD (Medical Internal Radiation Dose) Committee Report #5. Summary of current radiation dose estimates to humans from 123I, 124I, 125I, 126I, 130I, 131I, and 132I as sodium iodide. J Nucl Med 1975; 16:857–860.

    Google Scholar 

  25. Waxman A, Ramanna L, Chapman N, et al. Significance of I-131 scan dose in patients with thyroid cancer: determination of ablation: concise communication. J Nucl Med 1981; 22:861–865.

    PubMed  CAS  Google Scholar 

  26. Gerard SK, Cavalieri RR. I-123 diagnostic thyroid tumor whole-body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med 2002; 27:1–8.

    Article  PubMed  Google Scholar 

  27. Gulzar Z, Jana S, Young I, et al. Neck and whole-body scanning with a 5 mCi (185 MBq) dose of I-123 as diagnostic tracer in patients with well-differentiated thyroid cancer. Endocr Pract 2001; 7:244–249.

    PubMed  CAS  Google Scholar 

  28. Mandel SJ, Shankar LK, Benard F, et al. Superiority of iodine-123 compared with iodine-131 scanning for thyroid remnants in patients with differentiated thyroid cancer. Clin Nucl Med 2001; 26:6–9.

    Article  PubMed  CAS  Google Scholar 

  29. Sarkar SD, Kalapparambath TP, Palestro CJ. Comparison of I-123 and I-131 for whole-body imaging in thyroid cancer. J Nucl Med 2002; 43:632–634.

    PubMed  Google Scholar 

  30. Bautovich GJ, Towson JE, Eberl S, et al. Comparison of iodine-123 and iodine-131 as a scanning agent for the detection of metastatic thyroid cancer. J Nucl Med 1997; 38:150P–151P.

    Google Scholar 

  31. Shankar LK, Yamamoto AJ, Alavi A, Mandel SJ. Comparison of 123I scintigraphy at 5 and 24 hours in patients with differentiated thyroid cancer. J Nucl Med 2002; 43:72–76.

    PubMed  Google Scholar 

  32. De Geus-Oei LF, Pauwels EKJ, Stokkel MPM. A comparison between low and high dose I-123 WBS in the follow-up of thyroid cancer. Eur J Nucl Med 2000; 27(Suppl):931.

    Google Scholar 

  33. Kalinyak JE. I-123 as a diagnostic tracer in the management of thyroid cancer. Editorial. Nucl Med Comm 2002; 23:509–511.

    Article  CAS  Google Scholar 

  34. Berbano R, Naddaf S, Echemendia E, et al. Use of iodine-123 as a diagnostic tracer for neck and whole-body scanning in patients with well-differentiated thyroid cancer. Endocr Pract 1998; 4:11–16.

    PubMed  CAS  Google Scholar 

  35. Anderson GS, Fish S, Nakhoda K, et al. Comparison of I-123 and I-131 for whole-body imaging after stimulation by recombinant human thyrotropin: a preliminary report. Clin Nucl Med 2003; 28:93–96.

    Article  PubMed  Google Scholar 

  36. Perros P. Recombinant human thyroid-stimulating hormone (rhTSH) in the radioablation of well-differentiated thyroid cancer: preliminary therapeutic experience. J Endocrinol Invest 1999; 22:30–34.

    PubMed  CAS  Google Scholar 

  37. Berg G, Lindstedt G, Suurkula M, Jansson S. Radioiodine ablation and therapy in differentiated thyroid cancer under stimulation with recombinant human thyroid-stimulating hormone. J Endocrinol Invest 2002; 25:44–52.

    PubMed  CAS  Google Scholar 

  38. Robbins RJ, Larson SM, Sinha N, et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med 2002; 43:1482–1488.

    PubMed  CAS  Google Scholar 

  39. Jarzab B, Handkiewicz-Junak D, Roskosz J, et al. Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid carcinoma: a single-centre study of 54 patients. Eur J Nucl Med Mol Imaging 2003; 30:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  40. Luster M, Sherman SI, Skarulis MC, et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging 2003; 30:1371–1377.

    Article  PubMed  CAS  Google Scholar 

  41. Rawson RW, Rall JE, Peacock W. Limitations and indications in the treatment of cancer of the thyroid with radioactive iodine. J Clin Endocrinol Metab 1951; 11:1128–1131.

    Article  PubMed  CAS  Google Scholar 

  42. Pluijmen MJHM, Eustatia-Rutten C, Goslings BM, et al. Effects of low-iodide diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol 2003; 58:428–435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Park, HM., Gerard, S.K. (2006). Stunning: Untoward Effect of 131I Thyroid Imaging Prior to Radioablation Therapy. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_36

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics