Skip to main content

Positron Emission Tomography in Well-Differentiated Thyroid Cancer

  • Chapter
Thyroid Cancer
  • 1504 Accesses

Abstract

Positron emission tomography (PET) is a diagnostic technique that has become an important method in oncology. The basis for this test is the injection of a positron-emitting radionuclide that localizes in cancers and allows imaging. A positron is a positive electron, and when emitted, travels a few millimeters before contacting an electron, which has a negative charge. These particles of equal mass and opposite charges annihilate one another. The mass of the two electrons produces two photons each with an energy of 511 keV. This is derived from the equation, e = mc2. The photons travel in opposing directions at an angle of 180°. A positron camera usually consists of a ring of detectors that are designed to identify photons interacting at precisely the same time on opposite positions on the ring (180°).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patton J, Turkington TG. Coincidence imaging with a dual-head scintillation camera. J Nucl Med 1999; 40:432–441.

    PubMed  CAS  Google Scholar 

  2. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000; 41:1177–1189.

    PubMed  CAS  Google Scholar 

  3. Weihrauch MR, Dietlein M, Schicha H, et al. Prognostic significance of 18F-fluorodeoxyglucose positron emission tomography in lymphoma. Leuk Lymphoma 2003; 44:15–22.

    Article  PubMed  Google Scholar 

  4. Schiepers C, Filmont JE, Czernin J. PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2003; 30(Suppl 1):S82–S88.

    Article  PubMed  CAS  Google Scholar 

  5. Moerlein SM, Mathis CA, Brennan KM, Budinger TF. Synthesis and in vivo evaluation of 122I-and 131I-labelled iodoperidol, a potential agent for the tomographic assessment of cerebral perfusion. Int J Rad Appl Instrum B 1987; 14:91–98.

    PubMed  CAS  Google Scholar 

  6. Yasuda S, Ide M, Takagi S, Shohtsu A. Cancer screening with wholebody FDG PET. Kaku Igaku 1996; 33:1065–1071.

    PubMed  CAS  Google Scholar 

  7. Yasuda S, Shohtsu A, Ide M, et al. Chronic thyroiditis: Diffuse uptake of FDG at PET. Radiology 1998; 207:775–778.

    PubMed  CAS  Google Scholar 

  8. Borner AR, Voth E, Wienhard K, et al. F-qi-FDG PET of the thyroid gland in Graves’ disease. Nuklearmedizin 1998; 37:227–233.

    PubMed  CAS  Google Scholar 

  9. Schmid DT, Kneifel S, Stoeckli SJ, et al. Increased 18F-FDG uptake mimicking thyroid cancer in a patient with Hashimoto’s thyroiditis. Eur Radiol 2003; 13:2119–2121.

    Article  PubMed  Google Scholar 

  10. Cohen MS, Arslan N, Dehdashti F, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 2001; 130:941–946.

    Article  PubMed  CAS  Google Scholar 

  11. Kang KW, Kim SK, Kang HS, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab 2003; 88:4100–4104.

    Article  PubMed  CAS  Google Scholar 

  12. Ramos CD, Chisin R, Yeung HW, et al. Incidental focal thyroid uptake on FDG positron emission tomographic scans may represent a second primary tumor. Clin Nucl Med 2001; 26:193–197.

    Article  PubMed  CAS  Google Scholar 

  13. Adler LP, Bloom AD. Positron emission tomography of thyroid masses. Thyroid 1993; 3:195–200.

    Article  PubMed  CAS  Google Scholar 

  14. Uematsu H, Sadato N, Ohtsubo T, et al. Fluorine-18-fluorodeoxyglucose PET versus thallium-201 scintigraphy evaluation of thyroid tumors. J Nucl Med 1998; 39:453–459.

    PubMed  CAS  Google Scholar 

  15. Gianoukakis AG, Karam M, Cheema A, Cooper JA. Autonomous thyroid nodules visualized by positron emission tomography with (18)f-fluorodeoxyglucose: a case report and review of the literature. Thyroid 2003; 13:395–399.

    Article  PubMed  CAS  Google Scholar 

  16. Park CH, Lee EJ, Kim JK, et al. Focal F-18 FDG uptake in a nontoxic autonomous thyroid nodule. Clin Nucl Med 2002; 27:136–137.

    Article  PubMed  Google Scholar 

  17. Keyes JW, Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995; 36:1836–1839.

    PubMed  Google Scholar 

  18. Cook G, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Normal variants, artefacts and interpretative pitfalls in PET with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999; 26:1363–1378.

    Article  PubMed  CAS  Google Scholar 

  19. Cook G, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med 2004; 34:122–133.

    Article  PubMed  Google Scholar 

  20. Barrington S, Maisey MN. Skeletal muscle uptake of fluorine-18 FDG: effect of oral diazepam. J Nucl Med 1996; 37:1127–1129.

    PubMed  CAS  Google Scholar 

  21. Dobert N, Menzel C, Hamscho N, et al. Atypical thoracic and supraclavicular FDG-uptake in patients with Hodgkin’s and non-Hodgkin’s lymphoma. Q J Nucl Med 2004; 48:33–38.

    CAS  Google Scholar 

  22. Hany TF, Gharehpapagh E, Kamel EM, et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 2002; 29:1393–1398.

    Article  PubMed  Google Scholar 

  23. Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 2003; 44:1267–1270.

    PubMed  Google Scholar 

  24. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 2003; 44:170–176.

    PubMed  CAS  Google Scholar 

  25. Yeung HW, Grewal RK, Gonen M, et al. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 2003; 44:1789–1796.

    PubMed  Google Scholar 

  26. Tatsumi M, Engles JM, Ishimori T, et al. Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 2004; 45:1189–1193.

    PubMed  CAS  Google Scholar 

  27. Igerc I, Kumnig G, Heinisch M, et al. Vocal cord muscle activity as a drawback to FDG-PET in the followup of differentiated thyroid cancer. Thyroid 2002; 12:87–89.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu Z, Chou C, Yen TC, Cui R. Elevated F-18 FDG uptake in laryngeal muscles mimicking thyroid cancer metastases. Clin Nucl Med 2001; 26:689–691.

    Article  PubMed  CAS  Google Scholar 

  29. Yeretsian RA, Blodgett TM, Branstetter BFT, et al. Teflon-induced granuloma: a false-positive finding with PET resolved with combined PET and CT. AJNR Am J Neuroradiol 2003; 24:1164–1166.

    PubMed  Google Scholar 

  30. Alibazoglu H, Alibazoglu B, Hollinger EF, et al. Normal thymic uptake of 2-deoxy-2[F-18]fluoro-D-glucose. Clin Nucl Med 1999; 24:597–600.

    Article  PubMed  CAS  Google Scholar 

  31. Kawano T, Suzuki A, Ishida A, et al. The clinical relevance of thymic fluorodeoxyglucose uptake in pediatric patients after chemotherapy. Eur J Nucl Med Mol Imaging 2004; 31:831–836.

    Article  PubMed  CAS  Google Scholar 

  32. Rini JN, Leonidas JC, Tomas MB, et al. FDG uptake in the anterior mediastinum. Physiologic thymic uptake or disease? Clin Positron Imaging 1999; 2:332.

    Article  PubMed  Google Scholar 

  33. Wittram C, Fischman AJ, Mark E, et al. Thymic enlargement and FDG uptake in three patients: CT and FDG positron emission tomography correlated with pathology. AJR Am J Roentgenol 2003; 180:519–522.

    PubMed  Google Scholar 

  34. Nakahara T, Fujii H, Ide M, et al. FDG uptake in the morphologically normal thymus: comparison of FDG positron emission tomography and CT. Br J Radiol 2001; 74:821–824.

    PubMed  CAS  Google Scholar 

  35. Patel PM, Alibazoglu H, Ali A, et al. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med 1996; 21:772–725.

    Article  PubMed  CAS  Google Scholar 

  36. Pineda J, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995; 80:1488–1492.

    Article  PubMed  CAS  Google Scholar 

  37. Schlumberger M, Mancusi F, Baudin E, Pacini F. 131I therapy for elevated thyroglobulin levels. Thyroid 1997; 7:273–276.

    Article  PubMed  CAS  Google Scholar 

  38. Wartofsky L. Management of scan negative thyroglobulin positive differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998; 83:4195–4199.

    Article  PubMed  CAS  Google Scholar 

  39. McDougall I. 131I treatment of 131I negative whole body scan, and positive thyroglobulin in differentiated thyroid carcinoma: What is being treated? Thyroid 1997; 7:669–672.

    Article  PubMed  CAS  Google Scholar 

  40. Fatourechi V, Hay ID, Javedan H, et al. Lack of impact of radioiodine therapy in tg-positive, diagnostic whole-body scan-negative patients with follicular cell-derived thyroid cancer. J Clin Endocrinol Metab 2002; 87:1521–1526.

    Article  PubMed  CAS  Google Scholar 

  41. McDougall IR. Management of thyroglobulin positive/whole-body scan negative: is Tg positive/131I therapy useful? J Endocrinol Invest 2001; 24:194–198.

    PubMed  CAS  Google Scholar 

  42. Hoefnagel B, Delprat CC, Marcuse HR, Vijlder JJM. Role of thallium-201 total-body scintigraphy in follow-up of thyroid carcinoma. J Nucl Med 1986; 27:1854–1857.

    PubMed  CAS  Google Scholar 

  43. Iida Y, Hidaka A, Hatabu H, et al. Follow-up study of postoperative patients with thyroid cancer by thallium-201 scintigraphy and serum thyroglobulin measurement. J Nucl Med 1991; 32:2098–2100.

    PubMed  CAS  Google Scholar 

  44. Nakada K, Katoh C, Kanegae E, et al. Thallium-201 scintigraphy to predict therapeutic outcome of iodine-131 therapy of metastatic thyroid carcinoma. J Nucl Med 1998; 39:807–810.

    PubMed  CAS  Google Scholar 

  45. Brandt-Mainz K, Muller SP, Reiners C, Bockisch A. Relationship between thyroglobulin and reliability of thallium 201 scintigraphy in differentiated thyroid cancer. Nuklearmedizin 2000; 39:20–25.

    PubMed  CAS  Google Scholar 

  46. Yen TC, Lin HD, Lee CH, et al. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hurthle cell carcinoma of the thyroid gland after total thyroidectomy: a comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med 1994; 21:980–983.

    Article  PubMed  CAS  Google Scholar 

  47. Almeida-Filho P, Ravizzini GC, Almeida C, Borges-Neto S. Wholebody Tc-99m sestamibi scintigraphy in the follow-up of differentiated thyroid carcinoma. Clin Nucl Med 2000; 25:443–436.

    Article  PubMed  CAS  Google Scholar 

  48. Gallowitsch H, Mikosch P, Kresnik E, et al. Thyroglobulin and lowdose iodine-131 and technetium-99m-tetrofosmin whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med 1998; 39:870–875.

    PubMed  CAS  Google Scholar 

  49. Lind P, Gallowitsch HJ, Langsteger W, et al. Technetium-99mtetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med 1997; 38:348–352.

    PubMed  CAS  Google Scholar 

  50. Lind P. Multi-tracer imaging of thyroid nodules: is there a role in the preoperative assessment of nodular goiter? Eur J Nucl Med 1999; 26:795–797.

    Article  PubMed  CAS  Google Scholar 

  51. Lind P, Gallowitsch HJ, Mikosch P, et al. Comparison of different tracers in the follow up of differentiated thyroid carcinoma. Acta Med Austriaca 1999; 26:115–117.

    PubMed  CAS  Google Scholar 

  52. Drac-Kaniewska J, Kozlowicz-Gudzinska I, Tomaszewicz-Kubasik H, et al. 99mTc Tetrofosmin in diagnosis of distant metastases from differentiated thyroid cancer. Wiad Lek 2001; 54(Suppl 1):357–362.

    PubMed  Google Scholar 

  53. Ahlman H, Tisell LE, Wangberg B, et al. The relevance of somatostatin receptors in thyroid neoplasia. Yale J Biol Med 1997; 70:523–533.

    PubMed  CAS  Google Scholar 

  54. Sarlis NJ, Gourgiotis L, Guthrie LC, et al. In-111 DTPA-octreotide scintigraphy for disease detection in metastatic thyroid cancer: comparison with F-18 FDG positron emission tomography and extensive conventional radiographic imaging. Clin Nucl Med 2003; 28:208–217.

    Article  PubMed  Google Scholar 

  55. Baudin E, Schlumberger M, Lumbroso J, et al. Octreotide scintigraphy in patients with differentiated thyroid carcinoma; contribution for patients with negative radioiodine scans. J Clin Endocrinol Metab 1996; 81:2541–2544.

    Article  PubMed  CAS  Google Scholar 

  56. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987; 28:910–914.

    PubMed  CAS  Google Scholar 

  57. Adams S, Baum RP, Hertel A, et al. Comparison of metabolic and receptor imaging in recurrent medullary thyroid carcinoma with histopathological findings. Eur J Nucl Med 1998; 25:1277–1283.

    Article  PubMed  CAS  Google Scholar 

  58. Adams S, Baum R, Rink T, et al. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998; 25:79–83.

    Article  PubMed  CAS  Google Scholar 

  59. Alnafisi N, Driedger AA, Coates G, et al. FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med 2000; 41:1010–1015.

    PubMed  CAS  Google Scholar 

  60. Altenvoerde G, Lerch H, Kuwert T, et al. Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbecks Arch Surg 1998; 383:160–163.

    PubMed  CAS  Google Scholar 

  61. Berger F, Knesewitsch P, Tausig A, et al. [18F] Fluorodeoxyglucose hybrid PET in patients with differentiated thyroid cancer: Comparison with dedicated PET. Paris, France: Eur Ass Nucl Med Congress, 2000.

    Google Scholar 

  62. Boer A, Szakall S, Jr., Klein I, et al. FDG PET imaging in hereditary thyroid cancer. Eur J Surg Oncol 2003; 29:922–928.

    Article  PubMed  CAS  Google Scholar 

  63. Boerner AR, Petrich T, Weckesser E, et al. Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002; 29:231–236.

    Article  PubMed  CAS  Google Scholar 

  64. Brandt-Mainz K, Muller SP, Gorges R, et al. The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med 2000; 27:490–496.

    Article  PubMed  CAS  Google Scholar 

  65. Macapinlac HA. Clinical usefulness of FDG PET in differentiated thyroid cancer. J Nucl Med 2001; 42:77–78.

    PubMed  CAS  Google Scholar 

  66. Wong CO, Dworkin HJ. Role of FDG PET in metastatic thyroid cancer. J Nucl Med 1999; 40:993–934.

    PubMed  CAS  Google Scholar 

  67. Khan N, Oriuchi N, Higuchi T, et al. PET in the follow-up of differentiated thyroid cancer. Br J Radiol 2003; 76:690–695.

    Article  PubMed  CAS  Google Scholar 

  68. Crippa F, Alessi A, Gerali A, Bombardieri E. FDG-PET in thyroid cancer. Tumori 2003; 89:540–543.

    PubMed  Google Scholar 

  69. Armstrong S, Worsley D, Blair GK. Pediatric surgical images: PET evaluation of papillary thyroid carcinoma recurrence. J Pediatr Surg 2002; 37:1648–1649.

    Article  PubMed  Google Scholar 

  70. Fiene ULR, Hanke JP, Wohrle H, Muller-Schauenburg W. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. Nuclearmedizin 1995; 34:127–134.

    Google Scholar 

  71. Shiga T, Tsukamoto E, Nakada K, et al. Comparison of (18)F-FDG, (131)I-Na, and (201)Tl in diagnosis of recurrent or metastatic thyroid carcinoma. J Nucl Med 2001; 42:414–419.

    PubMed  CAS  Google Scholar 

  72. Dietlein M, Moka D, Scheidhauer K, et al. Follow-up of differentiated thyroid cancer: comparison of multiple diagnostic tests. Nucl Med Commun 2000; 21:991–1000.

    Article  PubMed  CAS  Google Scholar 

  73. McDougall IR, Davidson J, Segall GM. Positron emission tomography of the thyroid, with an emphasis on thyroid cancer. Nucl Med Commun 2001; 22:485–492.

    Article  PubMed  CAS  Google Scholar 

  74. Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000; 85:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  75. Goshen E, Cohen O, Rotenberg G, et al. The clinical impact of 18FFDG gamma PET in patients with recurrent well differentiated thyroid carcinoma. Nucl Med Commun 2003; 24:9599–9561.

    Article  Google Scholar 

  76. Karwowski J, Jeffrey RB, McDougall IR, Weigel RJ. Intraoperative ultrasonography improves identification of recurrent thyroid cancer. Surgery 2002; 132:924–928.

    Article  PubMed  Google Scholar 

  77. Wang W, Macapinlac H, Larson SM, et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999; 84:2291–2302.

    Article  PubMed  CAS  Google Scholar 

  78. Grunwald F, Schomburg A, Bender H, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1996; 23:312–319.

    Article  PubMed  CAS  Google Scholar 

  79. Sisson JC, Ackermann RJ, Meyer MA, Wahl RL. Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 1993; 77:1090–1094.

    Article  PubMed  CAS  Google Scholar 

  80. Filetti S, Damante G, Foti D. Thyrotropin stimulates glucose transport in cultured rat thyroid cells. Endocrinology 1987; 120:2576–2581.

    Article  PubMed  CAS  Google Scholar 

  81. Moog F, Linke R, Manthey N, et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 2000; 41:1989–1995.

    PubMed  CAS  Google Scholar 

  82. Petrich T, Borner AR, Otto D, et al. Influence of rhTSH on [(18)F] fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2002; 29:641–647.

    Article  PubMed  CAS  Google Scholar 

  83. Lambrecht RM, Woodhouse N, Phillips R, et al. Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging 1988; 3:197–200.

    PubMed  CAS  Google Scholar 

  84. Nahas Z, Goldenberg D, Fakhry C, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 2005; 115:237–243.

    Article  PubMed  Google Scholar 

  85. Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991; 18:357–366.

    Article  PubMed  CAS  Google Scholar 

  86. Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996; 37:1557–1562.

    PubMed  CAS  Google Scholar 

  87. Flower M, Al-Saadi A, Harmer CL, et al. Dose response study on thyrotoxic patients undergoing positron emission tomography and radioiodine therapy. Eur J Nucl Med 1994; 21:531–536.

    Article  PubMed  CAS  Google Scholar 

  88. Frey P, Townsend D, Jeavons A, Donath A. In vivo imaging of the human thyroid with a positron camera using I-124. In vivo imaging of the human thyroid with a positron camera using I-124. Eur J Nucl Med 1985; 10:472–476.

    Article  PubMed  CAS  Google Scholar 

  89. Frey P, Townsend D, Flattet A, et al. Tomographic imaging of the human thyroid using 124I. J Clin Endocrinol Metab 1986; 63:918–927.

    Article  PubMed  CAS  Google Scholar 

  90. Crawford DC, Flower MA, Pratt BE, et al. Thyroid volume measurement in thyrotoxic patients: comparison between ultrasonography and iodine-124 positron emission tomography. Eur J Nucl Med 1997; 24:1470–1478.

    Article  PubMed  CAS  Google Scholar 

  91. Eschmann SM, Reischl G, Bilger K, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002; 29:760–767.

    Article  PubMed  CAS  Google Scholar 

  92. Sgouros G, Kolbert KS, Sheikh A, et al. Patient specific dosimetry for 131-I thyroid cancer therapy using 124-I PET and 3-dimensionalinternal dosimetry (3D-ID) software. J Nucl Med 2004; 45:1366–1372.

    PubMed  CAS  Google Scholar 

  93. Freudenberg LS, Antoch G, Gorges R, et al. Combined PET/CT with iodine-124 in diagnosis of spread metastatic thyroid carcinoma: a case report. Eur Radiol 2003; 13(Suppl 4):L19–L23.

    Article  PubMed  Google Scholar 

  94. Freudenberg LS, Antoch G, Jentzen W, et al. Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004; 14:2092–2098.

    Article  PubMed  CAS  Google Scholar 

  95. Chung J-K, So Y, Lee JS, et al. Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. J Nucl Med 1999; 40:486–492.

    Google Scholar 

  96. Dietlein M, Scheidhauer K, Voth E, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 wholebody scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997; 24:1342–1348.

    Article  PubMed  CAS  Google Scholar 

  97. Grunwald F, Kalicke T, Feine U, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999; 26:1547–1552.

    Article  PubMed  CAS  Google Scholar 

  98. Wang W, Macapinlac H, Larson SM, et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999; 84:2291–2302.

    Article  PubMed  CAS  Google Scholar 

  99. Stokkel MP, de Klerk JH, Zelissen PM, et al. Fluorine-18 fluorodeoxyglucose dual-head positron emission tomography in the detection of recurrent differentiated thyroid cancer: preliminary results. Eur J Nucl Med 1999; 26:1606–1609.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McDougall, I.R. (2006). Positron Emission Tomography in Well-Differentiated Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_34

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics