Skip to main content

Radionuclide Imaging and Treatment of Thyroid Cancer in Children

  • Chapter
Thyroid Cancer
  • 1501 Accesses

Abstract

Radioactive iodine (RAI) was first proposed as a specific treatment for thyroid cancer by Seidlin et al. in 1946 (1). Since then, RAI has been incorporated into treatment protocols for adults and children with differentiated thyroid cancer (DTC; 2). Adjunctive RAI therapy improves diseasefree survival in young adults (including some adolescents) with disease similar in histology and extent to that commonly found in children (3). Until recently, however, studies specifically examining the benefits of RAI in children have been difficult to perform because the number of patients is small and the prognosis is favorable for almost all children, regardless of adjunctive therapy (415). The American Thyroid Association and American Association of Clinical Endocrinologists have published practice guidelines for the management of thyroid cancer in adults, but the treatment of thyroid cancer in children remains controversial (2,16). A number of questions are left unresolved regarding the use of RAI in children. (1) Which children are most likely to benefit from RAI therapy? (2) What is the optimal dose of RAI for children?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of thyroid. JAMA 1946; 132:838–847.

    Google Scholar 

  2. Singer PA, Cooper DS, Daniels GH, et al. Treatment guidelines for patients with thyroid nodules and well-differentiated thyroid cancer. American Thyroid Association. Arch Intern Med 1996; 1996:2165–2172.

    Article  Google Scholar 

  3. DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab 1990; 71:414–424.

    PubMed  CAS  Google Scholar 

  4. Gorlin JB, Sallan SE. Thyroid cancer in childhood. Endocrinol Metab Clin North Am 1990; 19:649–662.

    PubMed  CAS  Google Scholar 

  5. Welch Dinauer CA, Tuttle RM, Robie DK, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol (Oxf) 1998; 49:619–628.

    Article  CAS  Google Scholar 

  6. McClellan DR, Francis GL. Thyroid cancer in children, pregnant women, and patients with Graves’ disease. Endocrinol Metab Clin North Am 1996; 25:27–48.

    Article  PubMed  CAS  Google Scholar 

  7. Feinmesser R, Lubin E, Segal K, Noyek A. Carcinoma of the thyroid in children—a review. J Pediatr Endocrinol Metab 1997; 10:561–568.

    PubMed  CAS  Google Scholar 

  8. Geiger JD, Thompson NW. Thyroid tumors in children. Otolaryngol Clin North Am 1996; 29:711–719.

    PubMed  CAS  Google Scholar 

  9. LaQuaglia M, Telander R. Differentiated and medullary thyroid cancer in children and adolescence. Semin Pediatr Surg 1997; 6:42–49.

    CAS  Google Scholar 

  10. LaQuaglia M, Black T, Holcomb G, et al. Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. A report from the Surgical Discipline Committee of the Children’s Cancer Group. J Pediatr Surg 2000; 35:955–959.

    Article  CAS  Google Scholar 

  11. Landau D, Vini L, AHern R, Harmer C. Thyroid cancer in children: the Royal Marsden Hospital experience. Eur J Cancer 2000; 36:214–220.

    Article  PubMed  CAS  Google Scholar 

  12. Newman KD, Black T, Heller G, et al. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg 1998; 227:533–541.

    Article  PubMed  CAS  Google Scholar 

  13. Poth M. Thyroid cancer in children and adolescents. In Wartofsky L, editor. Thyroid Cancer: A Comprehensive Guide to Clinical Management. Totowa, NJ: Humana Press, 2000:121–128.

    Google Scholar 

  14. Skinner MA. Cancer of the thyroid gland in infants and children. Semin Pediatr Surg 2001; 10:119–126.

    Article  PubMed  CAS  Google Scholar 

  15. Tronko MD, Bogdanova TI, Komissarenko IV, et al. Thyroid carcinoma in children and adolescents in Ukraine after the Chernobyl nuclear accident: statistical data and clinicomorphologic characteristics. Cancer 1999; 86:149–156.

    Article  PubMed  CAS  Google Scholar 

  16. Thyroid Carcinoma Task Force. AACE/AAES medical/surgical guidelines for clinical practice: management of thyroid carcinoma. American Association of Clinical Endocrinologists. American College of Endocrinology. Endocr Pract 2001; 7:202–220.

    Google Scholar 

  17. Harness JK, Thompson NW, McLeod MK, et al. Differentiated thyroid carcinoma in children and adolescents. World J Surg 1992; 16:547–553.

    Article  PubMed  CAS  Google Scholar 

  18. Fassina AS, Rupolo M, Pelizzo MR, Casara D. Thyroid cancer in children and adolescents. Tumori 1994; 80:257–262.

    PubMed  CAS  Google Scholar 

  19. Samuel AM, Sharma SM. Differentiated thyroid carcinomas in children and adolescents. Cancer 1991; 67:2186–2190.

    Article  PubMed  CAS  Google Scholar 

  20. Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med 1998; 39:1531–1536.

    PubMed  CAS  Google Scholar 

  21. Maxon HR. The role of radioiodine in the treatment of childhood thyroid cancer—a dosimetric approach. In Jacob Robbins M, editor. Treatment of Thyroid Cancer in Childhood. Bethesda, MD: NIDDK, National Institutes of Health, 1992:109–126.

    Google Scholar 

  22. Yeh SD, La Quaglia MP. 131I therapy for pediatric thyroid cancer. Semin Pediatr Surg 1997; 6:128–133.

    PubMed  CAS  Google Scholar 

  23. Chow S, Law S, Mendenhall W, et al. Differentiated thyroid carcinoma in childhood and adolescence—clinical course and role of radioiodine. Pediatr Blood Cancer 2004; 42:176–183.

    Article  PubMed  Google Scholar 

  24. Tisell LE, Nilsson B, Molne J, et al. Improved survival of patients with papillary thyroid cancer after surgical microdissection. World J Surg 1996; 20:854–859.

    Article  PubMed  CAS  Google Scholar 

  25. Scheumann GF, Gimm O, Wegener G, et al. Prognostic significance and surgical management of locoregional lymph node metastases in papillary thyroid cancer. World J Surg 1994; 18:559–567.

    Article  PubMed  CAS  Google Scholar 

  26. Welch Dinauer CA, Tuttle RM, Robie DK, et al. Extensive surgery improves recurrence-free survival for children and young patients with class I papillary thyroid carcinoma. J Pediatr Surg 1999; 34:1799–1804.

    Article  PubMed  CAS  Google Scholar 

  27. Robbins RJ, Chon JT, Fleisher M, et al. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma? J Clin Endocrinol Metab 2002; 87:3242–3247.

    Article  PubMed  CAS  Google Scholar 

  28. Mazzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab 2002; 87:1490–1498.

    Article  PubMed  CAS  Google Scholar 

  29. McCowen KD, Adler RA, Ghaed N, et al. Low dose radioiodide thyroid ablation in postsurgical patients with thyroid cancer. Am J Med 1976; 61:52–58.

    Article  PubMed  CAS  Google Scholar 

  30. Samaan NA, Schultz PN, Hickey RC, et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab 1992; 75:714–720.

    Article  PubMed  CAS  Google Scholar 

  31. Reynolds JC. Comparison of I-131 absorbed radiation doses in children and adults: a tool for estimating therapeutic I-131 doses in children. In Jacob Robbins M, editor. Treatment of Thyroid Cancer in Childhood. Bethesda, MD: NIDDK, National Institutes of Health, 1992:127–135.

    Google Scholar 

  32. Dorn R, Kopp J, Vogt H, et al. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 2003; 44:451–456.

    PubMed  CAS  Google Scholar 

  33. Benua R, Leeper R. A method and rationale for treating thyroid carcinoma with the largest safe dose of I-131. In Meideiros-Neto G, Gaitan E, editors. Frontiers in Thyroidology. New York, NY: Plenum, 1986:1317–1321.

    Google Scholar 

  34. Leger FA, Izembart M, Dagousset F, et al. Decreased uptake of therapeutic doses of iodine-131 after 185-MBq iodine-131 diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med 1998; 25:242–246.

    Article  PubMed  CAS  Google Scholar 

  35. Kao CH, Yen TC. Stunning effects after a diagnostic dose of iodine-131. Nuklearmedizin 1998; 37:30–32.

    PubMed  CAS  Google Scholar 

  36. Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid 2002; 12:683–702.

    Article  PubMed  Google Scholar 

  37. Schlumberger M, De Vathaire F. 131 iodine: medical use. Carcinogenic and genetic effects. Ann Endocrinol 1996; 57:166–176.

    CAS  Google Scholar 

  38. Shore RE. Issues and epidemiological evidence regarding radiationinduced thyroid cancer. Radiat Res 1992; 131:98–111.

    Article  PubMed  CAS  Google Scholar 

  39. Thompson DE, Mabuchi K, Ron E, et al. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 1994; 137(2 Suppl):S17–S67.

    Article  PubMed  CAS  Google Scholar 

  40. Rubino C, F de Vathaire, ME Dottorini, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer 2003; 89:1638–1644.

    Article  PubMed  CAS  Google Scholar 

  41. Puerto S, Marcos R, Ramirez M, et al. Equal induction and persistence of chromosome aberrations involving chromosomes 1, 4, and 10 in thyroid cancer patients treated with radioactive iodine. Mutation Res Gene Toxicol Environ Mutagenesis 2000; 469:147–158.

    Article  CAS  Google Scholar 

  42. Richter HE, Lohrer HD, Hieber L, et al. Microsatellite instability and loss of heterozygosity in radiation-associated thyroid carcinomas of Belarussian children and adults. Carcinogenesis 1999; 20:2247–2252.

    Article  PubMed  CAS  Google Scholar 

  43. Baugnet-Mahieu L, Lemaire M, Leonard E, et al. Chromosome aberrations after treatment with radioactive iodine for thyroid cancer. Radiat Res 1994; 140:429–431.

    Article  PubMed  CAS  Google Scholar 

  44. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid 2003; 13:265–271.

    Article  PubMed  CAS  Google Scholar 

  45. Goolden AW, Kam K, Fitzpatrick M, Munro A. Oedema of the neck after ablation of the thyroid with radioactive iodine. Br J Radiol 1986; 59:583–586.

    Article  PubMed  CAS  Google Scholar 

  46. Kloos R, Duvuuri V, Jhiang S, et al. Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab 2002; 87:5817–5820.

    Article  PubMed  CAS  Google Scholar 

  47. Raymond JP, Izembart M, Marliac V, et al. Temporary ovarian failure in thyroid cancer patients after thyroid remnant ablation with radioactive iodine. J Clin Endocrinol Metab 1989; 69:186–190.

    PubMed  CAS  Google Scholar 

  48. Handelsman DJ, Turtle JR. Testicular damage after radioactive iodine (I-131) therapy for thyroid cancer. Clin Endocrinol (Oxf) 1983; 18:465–472.

    CAS  Google Scholar 

  49. Smith MB, Xue H, Takahashi H, et al. Iodine 131 thyroid ablation in female children and adolescents: long-term risk of infertility and birth defects. Ann Surg Oncol 1994; 1:128–131.

    Article  PubMed  CAS  Google Scholar 

  50. Vassilopoulou-Sellin R, Schultz PN, Haynie TP. Clinical outcome of patients with papillary thyroid carcinoma who have recurrence after initial radioactive iodine therapy. Cancer 1996; 78:493–501.

    Article  PubMed  CAS  Google Scholar 

  51. Vassilopoulou-Sellin R, Goepfert H, Raney B, Schultz PN. Differentiated thyroid cancer in children and adolescents: clinical outcome and mortality after long-term follow-up. Head Neck 1998; 20:549–555.

    Article  PubMed  CAS  Google Scholar 

  52. Vassilopoulou-Sellin R. Long-term outcome of children with papillary thyroid cancer. Surgery 2001; 129:769.

    Article  PubMed  CAS  Google Scholar 

  53. Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg 2004; 28:1187–1198.

    Article  PubMed  Google Scholar 

  54. Powers PA, Dinauer CA, Tuttle RM, Francis GL. Treatment of recurrent papillary thyroid carcinoma in children and adolescents. J Pediatr Endocrinol Metab 2003; 16:1033–1040.

    PubMed  Google Scholar 

  55. Belfiore A, Giuffrida D, La Rosa GL, et al. High frequency of cancer in cold thyroid nodules occurring at young age. Acta Endocrinol (Copenh) 1989; 121:197–202.

    CAS  Google Scholar 

  56. Hopwood NJ, Kelch RP. Thyroid masses: approach to diagnosis and management in childhood and adolescence. Pediatr Rev 1993; 14:481–487.

    PubMed  CAS  Google Scholar 

  57. Hung W, Anderson KD, Chandra RS, et al. Solitary thyroid nodules in 71 children and adolescents. J Pediatr Surg 1992; 27:1407–1409.

    Article  PubMed  CAS  Google Scholar 

  58. Lugo-Vicente H, Ortiz VN. Pediatric thyroid nodules: insights in management. Bol Asoc Med P R 1998; 90:74–78.

    PubMed  CAS  Google Scholar 

  59. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 2003; 88:1433–1441.

    Article  PubMed  CAS  Google Scholar 

  60. Wartofsky L. Editorial: Using baseline and recombinant human TSH-stimulated Tg measurements to manage thyroid cancer without diagnostic 131-I scanning. J Clin Endocrinol Metab 2002; 87:1486–1489.

    Article  PubMed  CAS  Google Scholar 

  61. Mezzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab 2002; 87:1490–1498.

    Article  Google Scholar 

  62. Robbins RJ, Chon JT, Fleisher M, Larson SM, Tuttle RM. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma? J Clin Endocrinol Metab 2002; 87:3242–3247.

    Article  PubMed  CAS  Google Scholar 

  63. David A, Blotta A, Rossi R, et al. Clinical value of different responses of serum thyroglobulin to recombinant human thyrotropin in the follow-up of patients with differentiated thryoid carcinoma. Thyroid 2005; 15:267–273.

    Article  PubMed  CAS  Google Scholar 

  64. Pacini F, Molinaro E, Castagna MG, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab 2003; 88:3668–3673.

    Article  PubMed  CAS  Google Scholar 

  65. Frasoldati A, Pesenti M, Gallo M, et al. Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer 2003; 97:90–96.

    Article  PubMed  Google Scholar 

  66. Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F]-fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000; 85:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  67. Robbins RJ, Hill RH, Wang W, et al. Inhibition of metabolic activity in papillary thyroid carcinoma by a somatostatin analogue. Thyroid 2000; 10:177–183.

    Article  PubMed  CAS  Google Scholar 

  68. Wang W, Macapinlac H, Larson SM, et al. [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999; 84:2291–2302.

    Article  PubMed  CAS  Google Scholar 

  69. Yeo JS, Chung JK, So Y, et al. F-18-fluorodeoxyglucose positron emission tomography as a presurgical evaluation modality for I-131 scan-negative thyroid carcinoma patients with local recurrence in cervical lymph nodes. Head Neck 2001; 23:94–103.

    Article  PubMed  CAS  Google Scholar 

  70. Chung JK, So Y, Lee JS, et al. Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. J Nucl Med 1999; 40:986–992.

    PubMed  CAS  Google Scholar 

  71. Alnafisi NS, Driedger AA, Coates G, et al. FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med 2000; 41:1010–1015.

    PubMed  CAS  Google Scholar 

  72. Schluter B, Bohuslavizki KH, Beyer W, et al. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001; 42:71–76.

    PubMed  CAS  Google Scholar 

  73. Nahas Z, Goldenberg D, Fakhry C, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 2005; 115:237–243.

    Article  PubMed  Google Scholar 

  74. Frilling A, Tecklenborg K, Gorges R, et al. Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 2001; 234:804–811.

    Article  PubMed  CAS  Google Scholar 

  75. Frilling A, Gorges R, Tecklenborg K, et al. Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma. Surgery 2000; 128:1067–1074.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Francis, G.L. (2006). Radionuclide Imaging and Treatment of Thyroid Cancer in Children. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics