Skip to main content

Molecular Pathogenesis of Thyroid Cancer

  • Chapter
Thyroid Cancer

Abstract

The thyroid follicular epithelial cell (thyrocyte) responds to myriad growth-stimulating substances, including hormones, growth factors, cytokines, and other mitogens (115), as exemplified in Table 1. Thyrocyte responses to these factors are mediated by distinct signal transduction pathways (Figs. 1–3). Each pathway features a cell surface receptor that is linked to a specific cytoplasmic signal transduction cascade:

  1. 1.

    Receptor tyrosine kinase (RTK)/RAS/RAF/MEK/mitogenactivated protein kinase (MAPK) pathway (Fig. 1).

  2. 2.

    Thyrotropin (TSH) receptor/adenylate cyclase/protein kinase A (PKA) pathway (Fig. 2).

  3. 3.

    Receptor/phospholipase C (PLC)/protein kinase C (PKC) pathway (Fig. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewinski A, Pawlikowski M, Cardinali DP. Thyroid growth-stimulating and growth-inhibiting factors. Biol Signals 1993; 2:313–351.

    Article  PubMed  CAS  Google Scholar 

  2. Roger P, Taton M, Van Sande J, Dumont JE. Mitogenic effects of thyrotropin and adenosine 3’,5’-monophosphate in differentiated normal human thyroid cells in vitro. J Clin Endocrinol Metab 1988; 66:1158–1165.

    PubMed  CAS  Google Scholar 

  3. Hershman JM, Lee HY, Sugawara M, Mirell CJ, Pang XP, Yanagisawa M, Pekary AE. Human chorionic gonadotropin stimulates iodide uptake, adenylate cyclase, and deoxyribo-nucleic acid synthesis in cultured rat thyroid cells. J Clin Endocrinol Metab 1988; 67:74–79.

    PubMed  CAS  Google Scholar 

  4. Tramontano D, Gushing GW, Moses AC, Ingbar SH. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology 1986; 119:940–942.

    PubMed  CAS  Google Scholar 

  5. Roger PP, Dumont JE. Epidermal growth factor controls the proliferation and the expression of differentiation in canine thyroid cells in primary culture. FEBS Lett 1982; 144:209–212.

    Article  PubMed  CAS  Google Scholar 

  6. Grubeck-Loebenstein B, Buchan G, Sadeghi R, Kissonerghis M, Londei M, Turner M, et al. Transforming growth factor beta regulates thyroid growth: role in the pathogenesis of nontoxic goiter. J Clin Invest 1989; 83:764–770.

    PubMed  CAS  Google Scholar 

  7. Eggo MC, Hopkins JM, Franklyn JA, Johnson GD, Sanders DS, Sheppard MC. Expression of fibroblast growth factors in thyroid cancer. J Clin Endocrinol Metab 1995; 80:1006–1011.

    Article  PubMed  CAS  Google Scholar 

  8. Eccles N, Ivan M, Wynford-Thomas D. Mitogenic stimulation of normal and oncogene-transformed human thyroid epithelial cells by hepatocyte growth factor. Mol Cell Endocrinol 1996; 117:247–251.

    Article  PubMed  CAS  Google Scholar 

  9. Lupulescu A. Goiter formation following prostaglandin administration in rats. Am J Pathol 1976; 85:21–35.

    PubMed  CAS  Google Scholar 

  10. Pawlikowski M, Kunert-Radek J, Lewinski A. Effect of prostaglandins on the mitotic activity of rat thyroid in organ culture. Endokrynol Pol 1982; 33:129–134.

    PubMed  CAS  Google Scholar 

  11. Mine M, Tramontano D, Chin WW, Ingbar SH. Interleukin-1 stimulates thyroid cell growth and increases the concentration of the c-myc protooncogene mRNA in thyroid follicular cells in culture. Endocrinology 1987; 120:1212–1214.

    PubMed  CAS  Google Scholar 

  12. Raspe E, Laurent E, Andry G, Dumont JE. ATP, bradykinin, TRH and TSH activate the Ca2+-phosphatidylinositol cascade of human thyrocytes in primay culture. Mol Cell Endocrinol 1991; 81:175–183.

    Article  PubMed  CAS  Google Scholar 

  13. Sho K, Okajima F, Majid MA, Kondo Y. Reciprocal modulation of thyrotropin actions by Pl-purinergic agonists in FRTL-5 thyroid cells. J Biol Chem 1991; 266:12,180–12,184.

    PubMed  CAS  Google Scholar 

  14. Raspe E, Laurent E, Corvilain B, Verjans B, Erneux C, Dumont JE. Control of the intracellular Ca2+ concentration and inositol phosphate accumulation in dog thyrocyte primary culture: evidence for different kinetics of Ca2+-phosphatidylinositol cascade activation and for involvement in the regulation of H2O2 production. J Cell Physiol 1991; 146:242–250.

    Article  PubMed  CAS  Google Scholar 

  15. Ando T, Latif R, Pritsker A, Moran T, Nagayama Y, Davies TF. A monoclonal thyroid-stimulating antibody. J Clin Invest 2002; 110:1667–1674.

    Article  PubMed  CAS  Google Scholar 

  16. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, Blalock WL, et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 2003; 22:469–480.

    PubMed  CAS  Google Scholar 

  17. Lemoine NR, Hughes CM, Gullick WJ, Brown CL, Wynford-Thomas D. Abnormalities of the EGF receptor system in human thyroid neoplasia. Int J Cancer 1991; 49:558–561.

    Article  PubMed  CAS  Google Scholar 

  18. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of Sos RAS exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993; 363:45–51.

    Article  PubMed  CAS  Google Scholar 

  19. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A. The ras-rasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants. Science 1997; 277:333–338.

    Article  PubMed  CAS  Google Scholar 

  20. Rochefort P, Caillou B, Michiels FM, Ledent C, Talbot M, Schlumberger M, et al. Thyroid pathologies in transgenic mice expressing a human activated RAS gene driven by a thyroglobulin promoter. Oncogene 1996; 12:111–118.

    PubMed  CAS  Google Scholar 

  21. Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001; 93:53–62.

    Article  PubMed  CAS  Google Scholar 

  22. Roberts TM. A signal chain of events. Nature 1992; 360:534–535.

    Article  PubMed  CAS  Google Scholar 

  23. Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 1999; 151:65–77.

    Article  PubMed  CAS  Google Scholar 

  24. Figge J, Wright C, Collins CJ, Roberts TM, Livingston DM. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac represser in monkey cells. Cell 1988; 52:713–722.

    Article  PubMed  CAS  Google Scholar 

  25. Liu HS, Scrable H, Villaret DB, Lieberman MA, Stambrook PJ. Control of Ha-RAS-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res 1992; 52:983–989.

    PubMed  CAS  Google Scholar 

  26. Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ. The human Ha-RAS oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Nati Acad Sci USA 1994; 91:5124–5128.

    Article  CAS  Google Scholar 

  27. Finney RE, Bishop JM. Predisposition to neoplastic transformation caused by gene replacement of H-RAS1. Science 1993; 260:1524–1527.

    Article  PubMed  CAS  Google Scholar 

  28. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268:1766–1769.

    Article  PubMed  CAS  Google Scholar 

  29. Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000; 19:3948–3954.

    Article  PubMed  CAS  Google Scholar 

  30. Dremier S, Coulonval K, Perpete S, Vandeput F, Fortemaison N, Van Keymeulen A, et al. The role of cyclic AMP and its effect on protein kinase A in the mitogenic action of thyrotropin on the thyroid cell. Ann NY Acad Sci 2002; 968:106–121.

    PubMed  CAS  Google Scholar 

  31. Russo D, Arturi F, Wicker R, Chazenbalk GD, Schlumberger M, DuVillard JA, et al. Genetic alterations in thyroid hyperfunctioning adenomas. J Clin Endocrinol Metab 1995; 80:1347–1351.

    Article  PubMed  CAS  Google Scholar 

  32. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38:713–721.

    Article  PubMed  CAS  Google Scholar 

  33. Harris CC, Hollstein M. Clinical Implications of the p53 tumorsuppressor gene. N Engl J Med 1993; 329:1318–1327.

    Article  PubMed  CAS  Google Scholar 

  34. Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science 1990; 249:1046–1049.

    Article  PubMed  CAS  Google Scholar 

  35. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell 1992; 70:523–526.

    Article  PubMed  CAS  Google Scholar 

  36. Namba H, Hara T, Tukazaki T, Migita K, Ishikawa N, Ito K, et al. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/ Cip1 pathway in human thyroid cells. Cancer Res 1995; 55:2075–2080.

    PubMed  CAS  Google Scholar 

  37. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992; 71:543–546.

    Article  PubMed  CAS  Google Scholar 

  38. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362:849–852.

    Article  PubMed  CAS  Google Scholar 

  39. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70:923–935.

    Article  PubMed  CAS  Google Scholar 

  40. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 1990; 348:747–749.

    Article  PubMed  CAS  Google Scholar 

  41. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  42. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265:346–355.

    Article  PubMed  CAS  Google Scholar 

  43. Powell Jr DJ, Russell JP, Li G, Kuo BA, Fidanza V, Huebner K, Rothstein JL. Altered gene expression in immunogenic poorly differentiated thyroid carcinomas from RET/PTC3p53-/-mice. Oncogene 2001; 20:3235–3246.

    Article  CAS  PubMed  Google Scholar 

  44. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358:80–83.

    Article  PubMed  CAS  Google Scholar 

  45. Momand J, Zambetti GP, Olson DC, George DL, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  46. Oliner J, Pietenpol J, Thiagalingam S, Gyuris J, Kinzler K, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 1993; 362:857–860.

    Article  PubMed  CAS  Google Scholar 

  47. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996; 274:948–953.

    Article  PubMed  CAS  Google Scholar 

  48. Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12:461–468.

    PubMed  CAS  Google Scholar 

  49. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm2 autoregulatory feedback loop. Genes Dev 1993; 7:1126–1132.

    Article  PubMed  CAS  Google Scholar 

  50. Sher CJ. Cancer cell cycles. Science 1996; 274:1672–1677.

    Article  Google Scholar 

  51. Figge J, Breese K, Vajda S, Zhu QL, Eisele L, Andersen TT, et al. The binding domain structure of retinoblastoma-binding proteins. Protein Sci 1993; 2:155–164.

    PubMed  CAS  Google Scholar 

  52. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54:275–283.

    Article  PubMed  CAS  Google Scholar 

  53. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334:124–129.

    Article  PubMed  CAS  Google Scholar 

  54. Ledent C, Dumont J, Vassart G, Parmentier M. Thyroid adenocarcinomas secondary to tissue-specific expression of simian virus-40 large T-antigen in transgenic mice. Endocrinology 1991; 129:1391–1401.

    PubMed  CAS  Google Scholar 

  55. Reynolds RK, Hoekzema GS, Vogel J, Hinrichs SH, Jay G. Multiple endocrine neoplasia induced by the promiscuous expression of a viral oncogene. Proc Natl Acad Sci USA 1988; 85:3135–3139.

    Article  PubMed  CAS  Google Scholar 

  56. Ledent C, Marcotte A, Dumont JE, Vassart G, Parmentier M. Differentiated carcinomas develop as a consequence of the thyroid specific expression of a thyroglobulin-human papillomavirus type 16 E7 transgene. Oncogene 1995; 10:1789–1797.

    PubMed  CAS  Google Scholar 

  57. Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med 2002; 347:1593–1603.

    Article  PubMed  CAS  Google Scholar 

  58. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol 1999; 9:M57–M60.

    Article  PubMed  CAS  Google Scholar 

  59. Namba H, Matsuo K, Fagin JA. Clonal composition of benign and malignant human thyroid tumors. J Clin Invest 1990; 86:120–125.

    PubMed  CAS  Google Scholar 

  60. Thomas GA, Williams D, Williams ED. The clonal origin of thyroid nodules and adenomas. Am J Pathol 1989; 134:141–147.

    PubMed  CAS  Google Scholar 

  61. Gerber H, Burgi U, Peter HJ. Etiology and pathogenesis of thyroid nodules. Exp Clin Endocrinol 1993; 101:97–101.

    Google Scholar 

  62. Matsuo K, Tang SH, Zeki K, Gutman RA, Fagin JA. Aberrant DNA methylation in human thyroid tumors. J Clin Endocrinol Metab 1993; 77:991–995.

    Article  PubMed  CAS  Google Scholar 

  63. Laird PW, Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 1996; 30:441–464.

    Article  PubMed  CAS  Google Scholar 

  64. Aasland R, Akslen LA, Varhaug JE, Lillehaug JR. Co-expression of the genes encoding transforming growth factor-alpha and its receptor in papillary carcinomas of the thyroid. Int J Cancer 1990; 46:382–387.

    Article  PubMed  CAS  Google Scholar 

  65. Mizukami Y, Nonomura A, Hashimoto T, Michigishi T, Noguchi M, Matsubara F, Yanaihara N. Immunohistochemical demonstration of epidermal growth factor and c-myc oncogene product in normal, benign and malignant thyroid tissues. Histopathology 1991; 18:11–18.

    Article  PubMed  CAS  Google Scholar 

  66. Williams DW, Williams ED, Wynford-Thomas D. Evidence for autocrine production of IGF-1 in human thyroid adenomas. Mol Cell Endocrinol 1989; 61:139–143.

    Article  PubMed  CAS  Google Scholar 

  67. Minuto F, Barreca A, Del Monte P, Cariola G, Torre GC, Giordano G. Immunoreactive insulin-like growth factor I (IGF-I) and IGF-I-binding protein content in human thyroid tissue. J Clin Endocrinol Metab 1989; 68:621–626.

    PubMed  CAS  Google Scholar 

  68. Tode B, Serio M, Rotella CM, Galli G, Franceschelli F, Tanini A, Toccafondi R. Insulin-like growth factor I: autocrine secretion by human thyroid follicular cells in primary culture. J Clin Endocrinol Metab 1989; 69:639–647.

    PubMed  CAS  Google Scholar 

  69. Boelaert K, McCabe CJ, Tannahill LA, Gittoes NJ, Holder RL, Watkinson JC, et al. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 2003; 88:2341–2347.

    Article  PubMed  CAS  Google Scholar 

  70. Bunone G, Vigneri P, Mariani L, Buto S, Collini P, Pilotti S, et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 1999; 155:1967–1976.

    PubMed  CAS  Google Scholar 

  71. Poulaki V, Mitsiades CS, McMullan C, Sykoutri D, Fanourakis G, Kotoula V, et al. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab 2003; 88:5392–5398.

    Article  PubMed  CAS  Google Scholar 

  72. Viglietto G, Maglione D, Rambaldi M, Cerutti J, Romano A, Trapasso F, et al. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 1995; 11:1569–1579.

    PubMed  CAS  Google Scholar 

  73. Soh EY, Duh QY, Sobhi SA, Young DM, Epstein HD, Wong MG, et al. Vascular endothelial growth factor expression is higher in differentiated thyroid cancer than in normal or benign thyroid. J Clin Endocrinol Metab 1997; 82:3741–3747.

    Article  PubMed  CAS  Google Scholar 

  74. Bauer AJ, Terrell R, Doniparthi NK, Patel A, Tuttle RM, Saji M, et al. Vascular endothelial growth factor monoclonal antibody inhibits growth of anaplastic thyroid cancer xenografts in nude mice. Thyroid 2002; 12:953–961.

    Article  PubMed  CAS  Google Scholar 

  75. Bauer AJ, Patel A, Terrell R, Doniparthi K, Saji M, Ringel M, et al. Systemic administration of vascular endothelial growth factor monoclonal antibody reduces the growth of papillary thyroid carcinoma in a nude mouse model. Ann Clin Lab Sci 2003; 33:192–199.

    PubMed  CAS  Google Scholar 

  76. Fenton C, Patel A, Dinauer C, Robie DK, Tuttle RM, Francis GL. The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid 2000; 10:349–357.

    PubMed  CAS  Google Scholar 

  77. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19:3159–3167.

    Article  PubMed  CAS  Google Scholar 

  78. Aasland R, Lillehaug JR, Male R, Josendal O, Varhaug JE, Kleppe K. Expression of oncogenes in thyroid tumors: coexpression of c-erbB2/neu and c-erbB. Br J Cancer 1988; 57:358–363.

    PubMed  CAS  Google Scholar 

  79. Sugg SL, Ezzat S, Zheng L, Freeman JL, Rosen IB, Asa SL. Oncogene profile of papillary thyroid carcinoma. Surgery 1999; 125:46–52.

    PubMed  CAS  Google Scholar 

  80. Bieche I, Franc B, Vidaud D, Vidaud M, Lidereau R. Analyses of MYC, ERBB2, and CCND1 genes in benign and malignant thyroid follicular cell tumors by real-time polymerase chain reaction. Thyroid 2001; 11:147–152.

    Article  PubMed  CAS  Google Scholar 

  81. Di Carlo A, Mariano A, Pisano G, Parmeggiani U, Beguinot L, Macchia V. Epidermal growth factor receptor and thyrotropin response in human thyroid tissues. J Endocrinol Invest 1990; 13:293–299.

    PubMed  Google Scholar 

  82. Bergstrom JD, Westermark B, Heldin NE. Epidermal growth factor receptor signaling activates met in human anaplastic thyroid carcinoma cells. Exp Cell Res 2000; 259:293–299.

    Article  PubMed  CAS  Google Scholar 

  83. Heldin NE, Gustavsson B, Claesson-Welsh L, Hammacher A, Mark J, Heldin CH, Westermark B. Aberrant expression of receptors for platelet-derived growth factor in an anaplastic thyroid carcinoma cell line. Proc Natl Acad Sci USA 1988; 85:9302–9306.

    Article  PubMed  CAS  Google Scholar 

  84. Di Renzo MF, Narsimhan RP, Olivero M, Bretti S, Giordano S, Medico E, et al. Expression of the met/HGF receptor in normal and neoplastic human tissues. Oncogene 1991; 6:1997–2003.

    PubMed  Google Scholar 

  85. Di Renzo MF, Olivero M, Ferro S, Prat M, Bongarzone I, Pilotti S, et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 1992; 7:2549–2553.

    PubMed  Google Scholar 

  86. Ruco LP, Ranalli T, Marzullo A, Bianco P, Prat M, Comoglio PM, Baroni CD. Expression of Met protein in thyroid tumours. J Pathol 1996; 180:266–270.

    Article  PubMed  CAS  Google Scholar 

  87. Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D. Activated ras and RET oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 1997; 14:2417–2423.

    Article  PubMed  CAS  Google Scholar 

  88. Brinkmann V, Foroutan H, Sachs M, Weidner KM, Birchmeier W. Hepatocyte growth factor/scatter factor induces a variety of tissuespecific morphogenic programs in epithelial cells. J Cell Biol 1995; 131:1573–1586.

    Article  PubMed  CAS  Google Scholar 

  89. Scarpino S, Stoppacciaro A, Colarossi C, Cancellario F, Marzullo A, Marchesi M, et al. Hepatocyte growth factor (HGF) stimulates tumour invasiveness in papillary carcinoma of the thyroid. J Pathol 1999; 189:570–575.

    Article  PubMed  CAS  Google Scholar 

  90. de Luca A, Arena N, Sena LM, Medico E. Met overexpression confers HGF-dependent invasive phenotype to human thyroid carcinoma cells in vitro. J Cell Physiol 1999; 180:365–371.

    Article  PubMed  Google Scholar 

  91. Ruco LP, Stoppacciaro A, Ballarini F, Prat M, Scarpino S. Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenetic role in tumourigenesis. J Pathol 2001; 194:4–8.

    Article  PubMed  CAS  Google Scholar 

  92. Belfiore A, Gangemi P, Costantino A, Russo G, Santonocito GM, Ippolito O, et al. Negative/low expression of the Met/hepatocyte growth factor receptor identifies papillary thyroid carcinomas with high risk of distant metastases. J Clin Endocrinol Metab 1997; 82:2322–2328.

    Article  PubMed  CAS  Google Scholar 

  93. Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328:170–172.

    Article  PubMed  CAS  Google Scholar 

  94. Bongarzone I, Pierotti MA, Monzini N, Mondellini P, Manenti G, Donghi R, et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 1989; 4:1457–1462.

    PubMed  CAS  Google Scholar 

  95. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the RET protooncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60:557–563.

    Article  PubMed  CAS  Google Scholar 

  96. Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 1992; 89:1517–1522.

    PubMed  CAS  Google Scholar 

  97. Ito T, Seyama T, Iwamoto KS, Mizuno T, Tronko ND, Komissarenko IV, et al. Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet 1994; 344:259.

    PubMed  CAS  Google Scholar 

  98. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene 1995; 11:2459–2467.

    PubMed  CAS  Google Scholar 

  99. Fugazzola L, Pilotti S, Pinchera A, Vorontsova TV, Mondellini P, Bongarzone I, Greco A, et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 1995; 55:5617–5620.

    PubMed  CAS  Google Scholar 

  100. Rabes HM, Klugbauer S. Radiation-induced thyroid carcinomas in children: high prevalence of RET rearrangement. Verh Dtsch Ges Pathol 1997; 81:139–144.

    PubMed  CAS  Google Scholar 

  101. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997; 57:1690–1694.

    PubMed  CAS  Google Scholar 

  102. Pisarchik AV, Ermak G, Fomicheva V, Kartel NA, Figge J. The ret/PTC1 rearrangement is a common feature of Chernobyl-associated papillary thyroid carcinomas from Belarus. Thyroid 1998; 8:133–139.

    PubMed  CAS  Google Scholar 

  103. Pisarchik AV, Ermak G, Demidchik EP, Mikhalevich LS, Kartel NA, Figge J. Low prevalence of the ret/PTC3r1 rearrangement in a series of papillary thyroid carcinomas presenting in Belarus ten years post-Chernobyl. Thyroid 1998; 8:1003–1008.

    PubMed  CAS  Google Scholar 

  104. Pisarchik AV, Yarmolinskii DG, Demidchik YE, Ermak GZ, Kartel NA, Figge J. ret/PTC1 and ret/PTC3r1 rearrangement in thyroid cancer cells, arising in residents of Belarus in the period after the accident at the Chernobyl nuclear power plant. Genetika 2000; 36:959–964.

    PubMed  CAS  Google Scholar 

  105. Smida J, Salassidis K, Hieber L, Zitzelsberger H, Kellerer AM, Demidchik EP, et al. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int J Cancer 1999; 80:32–38.

    Article  PubMed  CAS  Google Scholar 

  106. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, Klugbauer S. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 2000; 6:1093–1103.

    PubMed  CAS  Google Scholar 

  107. Rabes HM. Gene rearrangements in radiation-induced thyroid carcinogenesis. Med Pediatr Oncol 2001; 36:574–582.

    Article  PubMed  CAS  Google Scholar 

  108. Ito T, Seyama T, Iwamoto KS, Hayashi T, Mizuno T, Tsuyama N, et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res 1993; 53:2940–2943.

    PubMed  CAS  Google Scholar 

  109. Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, Suarez HG. High prevalence of activating ret protooncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 1997; 15:1263–1273.

    Article  PubMed  CAS  Google Scholar 

  110. Elisei R, Romei C, Soldatenko PP, Cosci B, Vorontsova T, Vivaldi A, et al. New breakpoints in both the H4 and RET genes create a variant of PTC-1 in a post-Chernobyl papillary thyroid carcinoma. Clin Endocrinol 2000; 53:131–136.

    Article  CAS  Google Scholar 

  111. Fugazzola L, Pierotti MA, Vigano E, Pacini F, Vorontsova TV, Bongarzone I. Molecular and biochemical analysis of RET/PTC4, a novel oncogenic rearrangement between RET and ELE1 genes, in a post-Chernobyl papillary thyroid cancer. Oncogene 1996; 13:1093–1097.

    PubMed  CAS  Google Scholar 

  112. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. A new form of RET rearrangement in thyroid carcinomas of children after the Chernobyl reactor accident. Oncogene 1996; 13:1099–1102.

    PubMed  CAS  Google Scholar 

  113. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 1998; 16:671–675.

    Article  PubMed  CAS  Google Scholar 

  114. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res 1998; 58:198–203.

    PubMed  CAS  Google Scholar 

  115. Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999; 18:4388–4393.

    Article  PubMed  CAS  Google Scholar 

  116. Salassidis K, Bruch J, Zitzelsberger H, Lengfelder E, Kellerer AM, Bauchinger M. Translocation t(10;14)(q11.2:q22.1) fusing the kinectin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res 2000; 60:2786–2789.

    PubMed  CAS  Google Scholar 

  117. Klugbauer S, Jauch A, Lengfelder E, Demidchik E, Rabes HM. A novel type of RET rearrangement (PTC8) in childhood papillary thyroid carcinomas and characterization of the involved gene (RFG8). Cancer Res 2000; 60:7028–7032.

    PubMed  CAS  Google Scholar 

  118. Corvi R, Berger N, Balczon R, Romeo G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 2000; 19:4236–4242.

    Article  PubMed  CAS  Google Scholar 

  119. Nakata T, Kitamura Y, Shimizu K, Tanaka S, Fujimori M, Yokoyama S, Ito K, Emi M. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer 1999; 25:97–103.

    Article  PubMed  CAS  Google Scholar 

  120. Giannini R, Salvatore G, Monaco C, Sferratore F, Pollina L, Pacini F, et al. Identification of a novel subtype of H4-RET rearrangement in a thyroid papillary carcinoma and lymph node metastasis. Int J Oncol 2000; 16:485–489.

    PubMed  CAS  Google Scholar 

  121. Santero M, Sabino N, Ishizaka Y, Ushijima T, Carlomagno F, Cerrato A, et al. Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours. Br J Cancer 1993; 68:460–464.

    Google Scholar 

  122. Chiappetta G, Toti P, Cetta F, Giuliano A, Pentimalli F, Amendola I, et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab 2002; 87:364–369.

    Article  PubMed  CAS  Google Scholar 

  123. Santoro M, Papotti M, Chiappetta G, Garcia-Rostan G, Volante M, Johnson C, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 2002; 87:370–379.

    Article  PubMed  CAS  Google Scholar 

  124. Donghi R, Sozzi G, Pierotti MA, Biunno I, Miozzo M, Fusco A, et al. The oncogene associated with human papillary thyroid carcinoma (PTC) is assigned to chromosome 10 q11-q12 in the same region as multiple endocrine neoplasia type 2a (MEN2A). Oncogene 1989; 4:521–523.

    PubMed  CAS  Google Scholar 

  125. Zou M, Shi Y, Farid NR. Low rate of RET proto-oncogene activation (PTC/RETTPC) in papillary thyroid carcinomas from Saudi Arabia. Cancer 1994; 73:176–180.

    Article  PubMed  CAS  Google Scholar 

  126. Sugg SL, Zheng L, Rosen IB, Freeman JL, Ezzat S, Asa SL. ret/PTC-dy1,-2, and-3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab 1996; 81:3360–3365.

    Article  PubMed  CAS  Google Scholar 

  127. Said S, Schlumberger M, Suarez HG. Oncogenes and anti-oncogenes in human epithelial thyroid tumors. J Endocrinol Invest 1994; 17:371–379.

    PubMed  CAS  Google Scholar 

  128. Delvincourt C, Patey M, Flament JB, Suarez HG, Larbre H, Jardillier JC, Delisle MJ. Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagne-Ardenne region. Clin Biochem 1996; 29:267–271.

    Article  PubMed  CAS  Google Scholar 

  129. Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M, et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9:509–516.

    PubMed  CAS  Google Scholar 

  130. Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P, et al. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 1994; 54:2979–2985.

    PubMed  CAS  Google Scholar 

  131. Ishizaka Y, Kobayashi S, Ushijima T, Hirohashi S, Sugimura T, Nagao M. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 1991; 6:1667–1672.

    PubMed  CAS  Google Scholar 

  132. Wajjwalku W, Nakamura S, Hasegawa Y, Miyazaki K, Satoh Y, Funahashi H, et al. Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 1992; 83:671–675.

    PubMed  CAS  Google Scholar 

  133. Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 1998; 83:4116–4122.

    Article  PubMed  CAS  Google Scholar 

  134. Motomura T, Nikiforov YE, Namba H, Ashizawa K, Nagataki S, Yamashita S, Fagin JA. ret rearrangements in Japanese pediatric and adult papillary thyroid cancers. Thyroid 1998; 8:485–489.

    PubMed  CAS  Google Scholar 

  135. Chung JH, Hahm JR, Min YK, Lee MS, Lee MK, Kim KW, et al. Detection of RET/PTC oncogene rearrangements in Korean papillary thyroid carcinomas. Thyroid 1999; 9:1237–1243.

    PubMed  CAS  Google Scholar 

  136. Kjellman P, Learoyd DL, Messina M, Weber G, Hoog A, Wallin G, et al. Expression of the RET proto-oncogene in papillary thyroid carcinoma and its correlation with clinical outcome. Br J Surg 2001; 88:557–563.

    Article  PubMed  CAS  Google Scholar 

  137. Mayr B, Potter E, Goretzki P, Ruschoff J, Dietmaier W, Hoang-Vu C, et al. Expression of Ret/PTC1,-2,-3,-delta3 and-4 in German papillary thyroid carcinoma. Br J Cancer 1998; 77:903–906.

    PubMed  CAS  Google Scholar 

  138. Lee CH, Hsu LS, Chi CW, Chen GD, Yang AH, Chen JY. High frequency of rearrangement of the RET protooncogene (RET/PTC) in Chinese papillary thyroid carcinomas. J Clin Endocrinol Metab 1998; 83:1629–1632.

    Article  PubMed  CAS  Google Scholar 

  139. Chua EL, Wu WM, Tran KT, McCarthy SW, Lauer CS, Dubourdieu D, et al. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab 2000; 85:2733–2739.

    Article  PubMed  CAS  Google Scholar 

  140. Finn SP, Smyth P, O’Leary J, Sweeney EC, Sheils O. Ret/PTC chimeric transcripts in an Irish cohort of sporadic papillary thyroid carcinoma. J Clin Endocrinol Metab 2003; 88:938–941.

    Article  PubMed  CAS  Google Scholar 

  141. Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 2000; 85:1170–1175.

    Article  PubMed  CAS  Google Scholar 

  142. Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, et al. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 1996; 81:2006–2009.

    Article  PubMed  CAS  Google Scholar 

  143. Park KY, Koh JM, Kim YI, Park HJ, Gong G, Hong SJ, Ahn IM. Prevalences of Gs alpha, ras, p53 mutations and RET/PTC rearrangement in differentiated thyroid tumours in a Korean population. Clin Endocrinol 1998; 49:317–323.

    Article  CAS  Google Scholar 

  144. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 2003; 120:71–77.

    Article  PubMed  CAS  Google Scholar 

  145. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003; 22:4578–4580.

    Article  PubMed  CAS  Google Scholar 

  146. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003; 63:1454–1457.

    PubMed  CAS  Google Scholar 

  147. Jhiang SM, Caruso DR, Gilmore E, Ishizaka Y, Tahira T, Nagao M, et al. Detection of the PTC/RETTPC oncogene in human thyroid cancers. Oncogene 1992; 7:1331–1337.

    PubMed  CAS  Google Scholar 

  148. Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho JY, et al. Targeted expression of the RET/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996; 137:375–378.

    Article  PubMed  CAS  Google Scholar 

  149. Santoro M, Chiappetta G, Cerrato A, et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 1996; 12:1821–1826.

    PubMed  CAS  Google Scholar 

  150. Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene 2000; 19:5729–5735.

    Article  PubMed  CAS  Google Scholar 

  151. Greco A, Pierotti MA, Bongarzone I, Pagliardini S, Lanzi C, Delia Porta G. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 1992; 7:237–242.

    PubMed  CAS  Google Scholar 

  152. Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA. RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol 2003; 195:168–186.

    Article  PubMed  CAS  Google Scholar 

  153. Pierotti MA. Chromosomal rearrangements in thyroid carcinomas: a recombination or death dilemma. Cancer Lett 2001; 166:1–7.

    Article  PubMed  CAS  Google Scholar 

  154. Russo D, Arturi F, Schlumberger M, Caillou B, Monier R, Filetti S, Suarez HG. Activating mutations of the TSH receptor in differentiated thyroid carcinomas. Oncogene 1995; 11:1907–1911.

    PubMed  CAS  Google Scholar 

  155. Camacho P, Gordon D, Chiefari E, Yong S, DeJong S, Pitale S, Russo D, Filetti S. A Phe 486 thyrotropin receptor mutation in an autonomously functioning follicular carcinoma that was causing hyperthyroidism. Thyroid 2000; 10:1009–1012.

    PubMed  CAS  Google Scholar 

  156. Fuhrer D, Tannapfel A, Sabri O, Lamesch P, Paschke R. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases. Endocr Relat Cancer 2003; 10:591–600.

    Article  PubMed  CAS  Google Scholar 

  157. Russo D, Wong MG, Costante G, Chiefari E, Treseler PA, Arturi F, et al. A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis. Thyroid 1999; 9:13–17.

    PubMed  CAS  Google Scholar 

  158. Spambalg D, Sharifi N, Elisei R, Gross JL, Medeiros-Neto G, Fagin JA. Structural studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation. J Clin Endocrinol Metab 1996; 81:3898–3901.

    Article  PubMed  CAS  Google Scholar 

  159. Esapa C, Foster S, Johnson S, Jameson JL, Kendall-Taylor P, Harris PE. G protein and thyrotropin receptor mutations in thyroid neoplasia. J Clin Endocrinol Metab 1997; 82:493–496.

    Article  PubMed  CAS  Google Scholar 

  160. Russo D, Tumino S, Arturi F, Vigneri P, Grasso G, Pontecorvi A, et al. Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously hyperfunctioning thyroid insular carcinoma. J Clin Endocrinol Metab 1997; 82:735–738.

    Article  PubMed  CAS  Google Scholar 

  161. Matsuo K, Friedman E, Gejman PV, Fagin JA. The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors: structural studies of the TSH-R and the alpha-subunit of Gs in human thyroid neoplasms. J Clin Endocrinol Metab 1993; 76:1446–1451.

    Article  PubMed  CAS  Google Scholar 

  162. Lemoine NR, Mayall ES, Wyllie FS, et al. Activated RAS oncogenes in human thyroid cancers. Cancer Res 1988; 48:4459–4463.

    PubMed  CAS  Google Scholar 

  163. Suarez HG, DuVillard JA, Caillou B, Schlumberger M, Tubiana M, Parmentier C, Monier R. Detection of activated RAS oncogenes in human thyroid carcinomas. Oncogene 1988; 2:403–406.

    PubMed  CAS  Google Scholar 

  164. Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D. High frequency of RAS oncogene activation in ll stages of human thyroid tumorigenesis. Oncogene 1989; 4:159–164.

    PubMed  CAS  Google Scholar 

  165. Stringer BM, Rowson JM, Parker MH, Seid JM, Hearn PR, Wynford-Thomas D, et al. Detection of the H-RAS oncogene in human thyroid anaplastic carcinomas. Experientia 1989; 45:372–376.

    Article  PubMed  CAS  Google Scholar 

  166. Wright PA, Lemoine NR, Mayall ES, Wyllie FS, Hughes D, Williams ED, Wynford-Thomas D. Papillary and follicular thyroid carcinomas show a different pattern of RAS oncogene mutation. Br J Cancer 1989; 60:576–577.

    PubMed  CAS  Google Scholar 

  167. Dockhorn-Dworniczak B, Caspari S, Schroder S, Bocker W, Dworniczak B. Demonstration of activated oncogenes of the RAS family in human thyroid tumors using the polymerase chain reaction. Verhandl Dtsch Ges Pathol 1990; 74:415–418.

    CAS  Google Scholar 

  168. Namba H, Gutman RA, Matsuo K, Alvarez A, Fagin JA. H-RAS protooncogene mutations in human thyroid neoplasms. J Clin Endocrinol Metab 1990; 71:223–229.

    Article  PubMed  CAS  Google Scholar 

  169. Namba H, Rubin SA, Fagin JA. Point mutations of RAS oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 1990; 4:1474–1479.

    PubMed  CAS  Google Scholar 

  170. Schark C, Fulton N, Jacoby RF, Westbrook CA, Straus FH, Kaplan EL. N-RAS 61 oncogene mutations in Hürthle cell tumors. Surgery 1990; 108:994–999.

    PubMed  CAS  Google Scholar 

  171. Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, et al. Presence of mutations in all three RAS genes in human thyroid tumors. Oncogene 1990; 5:565–570.

    PubMed  CAS  Google Scholar 

  172. Karga H, Lee JK, Vickery AL, Thor A, Gaz RD, Jameson JL. RAS oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab 1991; 73:832–836.

    Article  PubMed  CAS  Google Scholar 

  173. Shi Y, Zou M, Schmidt H, Juhasz F, Stensky V, Robb D, Farid NR. High rates of RAS codon 61 mutation in thyroid tumors in an iodidedeficient area. Cancer Res 1991; 51:2690–2693.

    PubMed  CAS  Google Scholar 

  174. Wright PA, Williams ED, Lemoine NR, Wynford-Thomas D. Radiation-associated and “spontaneous” human thyroid carcinomas show a different pattern of RAS oncogene mutation. Oncogene 1991; 6:471–473.

    PubMed  CAS  Google Scholar 

  175. Goretzki PE, Lyons J, Stacy-Phipps S, Rosenau W, Demeure M, Clark OH, et al. Mutational activation of RAS and gsp oncogenes in differentiated thyroid cancer and their biological implications. World J Surg 1992; 16:576–581.

    Article  PubMed  CAS  Google Scholar 

  176. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Katsuragi K, Kinoshita M, et al. RAS mutations in endocrine tumors: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Jpn J Cancer Res 1992; 83:1057–1062.

    PubMed  CAS  Google Scholar 

  177. Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL. N-RAS mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 1994; 116:1010–1016.

    PubMed  CAS  Google Scholar 

  178. Kaihara M, Taniyama M, Tadatomo J, Tobe T, Tomita M, Ito K, et al. Specific PCR amplification for N-RAS mutations in neoplastic thyroid diseases. Endocr J 1994; 41:301–308.

    PubMed  CAS  Google Scholar 

  179. Manenti G, Pilotti S, Re FC, Della Porta G, Pierotti MA. Selective activation of RAS oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer 1994; 30A:987–993.

    Article  PubMed  CAS  Google Scholar 

  180. Challeton C, Bounacer A, Du Villard JA, Caillou B, De Vathaire F, Monier R, et al. Pattern of RAS and gsp oncogene mutations in radiation-associated human thyroid tumors. Oncogene 1995; 11:601–603.

    PubMed  CAS  Google Scholar 

  181. Horie H, Yokogoshi Y, Tsuyuguchi M, Saito S. Point mutations of RAS and Gs? subunit genes in thyroid tumors. Jpn J Cancer Res 1995; 86:737–742.

    PubMed  CAS  Google Scholar 

  182. Oyama T, Suzuki T, Hara F, lino Y, Ishida T, Sakamoto A, Nakajima T. N-RAS mutation of thyroid tumor with special reference to the follicular type. Pathol Int 1995; 45:45–50.

    PubMed  CAS  Google Scholar 

  183. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol 1999; 50:529–535.

    Article  CAS  Google Scholar 

  184. Naito H, Pairojkul C, Kitahori Y, Yane K, Miyahara H, Konishi N, et al. Different ras gene mutational frequencies in thyroid papillary carcinomas in Japan and Thailand. Cancer Lett 1998; 131:171–175.

    Article  PubMed  CAS  Google Scholar 

  185. Ezzat S, Zheng L, Kolenda J, Safarian A, Freeman JL, Asa SL. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 1996; 6:409–416.

    PubMed  CAS  Google Scholar 

  186. Bouras M, Bertholon J, Dutrieux-Berger N, Parvaz P, Paulin C, Revol A. Variability of Ha-ras (codon 12) proto-oncogene mutations in diverse thyroid cancers. Eur J Endocrinol 1998; 139:209–216.

    Article  PubMed  CAS  Google Scholar 

  187. De Micco C. ras mutations in follicular variant of papillary thyroid carcinoma. Am J Clin Pathol 2003; 120:803.

    PubMed  Google Scholar 

  188. Salvatore D, Celetti A, Fabien N, Paulin C, Martelli ML, Battaglia C, et al. Low frequency of p53 mutations in human thyroid tumours; p53 and Ras mutation in two out of fifty-six thyroid tumours. Eur J Endocrinol 1996; 134:177–183.

    PubMed  CAS  Google Scholar 

  189. Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 2003; 21:3226–3235.

    Article  PubMed  CAS  Google Scholar 

  190. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003; 88:2745–2752.

    Article  PubMed  CAS  Google Scholar 

  191. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW II, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003; 88:2318–2326.

    Article  PubMed  CAS  Google Scholar 

  192. Pilotti S, Collini P, Mariani L, Placucci M, Bongarzone I, Vigneri P, et al. Insular carcinoma: a distinct de novo entity among follicular carcinomas of the thyroid gland. Am J Surg Pathol 1997; 21:1466–1473.

    Article  PubMed  CAS  Google Scholar 

  193. Krohn K, Reske A, Ackermann F, Muller A, Paschke R. Ras mutations are rare in solitary cold and toxic thyroid nodules. Clin Endocrinol 2001; 55:241–248.

    Article  CAS  Google Scholar 

  194. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest 1999; 79:547–555.

    PubMed  CAS  Google Scholar 

  195. Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 2000; 10:19–23.

    PubMed  CAS  Google Scholar 

  196. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 2003; 22:6455–6457.

    Article  PubMed  CAS  Google Scholar 

  197. Suarez HG, du Villard JA, Caillou B, Schlumberger M, Parmentier C, Monier R. gsp mutations in human thyroid tumors. Oncogene 1991; 6:677–679.

    PubMed  CAS  Google Scholar 

  198. O’Sullivan C, Barton CM, Staddon SL, Brown CL, Lemoine NR. Activating point mutations of the gsp oncogene in human thyroid adenomas. Mol Carcinog 1991; 4:345–349.

    Article  PubMed  CAS  Google Scholar 

  199. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature 2002 Jun 27; 417:949–954.

    Article  PubMed  CAS  Google Scholar 

  200. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003; 88:4393–4397.

    Article  PubMed  CAS  Google Scholar 

  201. Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 2003; 63:4561–4567.

    PubMed  CAS  Google Scholar 

  202. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003; 88:5399–5404.

    Article  PubMed  CAS  Google Scholar 

  203. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003; 95:625–627.

    Article  PubMed  CAS  Google Scholar 

  204. Terrier P, Sheng ZM, Schlumberger M, Tubiana M, Caillou B, Travagli JP, et al. Structure and expression of c-myc and c-fos protooncogenes in thyroid carcinomas. Br J Cancer 1988; 57:43–47.

    PubMed  CAS  Google Scholar 

  205. Cerutti J, Trapasso F, Battaglia C, Zhang L, Martelli ML, Visconti R, et al. Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin Cancer Res 1996; 2:119–126.

    PubMed  CAS  Google Scholar 

  206. Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi T, Hayashi Y, et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res 1992; 52:1369–1371.

    PubMed  CAS  Google Scholar 

  207. Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi Y, Dohi K, et al. Genetic alterations in thyroid tumor progression: association with p53 gene mutations. Jpn J Cancer Res 1993; 84:526–531.

    PubMed  CAS  Google Scholar 

  208. Asakawa H, Kobayashi T. Multistep carcinogenesis in anaplastic thyroid carcinoma: a case report. Pathology 2002; 34:94–97.

    Article  PubMed  Google Scholar 

  209. Nakamura T, Yana I, Kobayashi T, Shin E, Karakawa K, Fujita S, et al. p53 gene mutations associated with anaplastic transformation of human thyroid carcinomas. Jpn J Cancer Res 1992; 83:1293–1298.

    PubMed  CAS  Google Scholar 

  210. Donghi R, Longoni A, Pilotti S, Michieli P, Delia Porta G, Pierotti MA. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 1993; 91:1753–1760.

    PubMed  CAS  Google Scholar 

  211. Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993; 91:179–184.

    PubMed  CAS  Google Scholar 

  212. Zou M, Shi Y, Farid NR. P53 mutations in all stages of thyroid carcinomas. J Clin Endocrinol Metab 1993; 77:1054–1058.

    Article  PubMed  CAS  Google Scholar 

  213. Dobashi Y, Sugimura H, Sakamoto A, Mernyei M, Mori M, Oyama T, Machinami R. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol 1994; 3:9–14.

    PubMed  CAS  Google Scholar 

  214. Takeuchi Y, Daa T, Kashima K, Yokoyama S, Nakayama I, Noguchi S. Mutations of p53 in thyroid carcinoma with an insular component. Thyroid 1999; 9:377–381.

    PubMed  CAS  Google Scholar 

  215. Shahedian B, Shi Y, Zou M, Farid NR. Thyroid carcinoma is characterized by genomic instability: evidence from p53 mutations. Mol Genet Metab 2001; 72:155–163.

    Article  PubMed  CAS  Google Scholar 

  216. Gerasimov G, Bronstein M, Troshina K, Alexandrova G, Dedov I, Jennings T, et al. Nuclear p53 immunoreactivity in papillary thyroid cancers is associated with two established indicators of poor prognosis. Exp Mol Pathol 1995; 62:52–62.

    Article  PubMed  CAS  Google Scholar 

  217. Ho YS, Tseng SC, Chin TY, Hsieh LL, Lin JD. p53 gene mutation in thyroid carcinoma. Cancer Lett 1996; 103:57–63.

    Article  PubMed  CAS  Google Scholar 

  218. Zou M, Shi Y, Al-Sedairy S, Hussain SS, Farid NR. The expression of the MDM2 gene, a p53 binding protein, in thyroid carcinogenesis. Cancer 1995; 76:314–318.

    Article  PubMed  CAS  Google Scholar 

  219. Jennings T, Bratslavsky G, Gerasimov G, Troshina K, Bronstein M, Dedov I, et al. Nuclear accumulation of MDM2 protein in welldifferentiated papillary thyroid carcinomas. Exp Mol Pathol 1995; 62:199–206.

    Article  PubMed  CAS  Google Scholar 

  220. Horie S, Maeta H, Endo K, Ueta T, Takashima K, Terada T. Overexpression of p53 protein and MDM2 in papillary carcinomas of the thyroid: Correlations with clinicopathologic features. Pathol Int 2001; 51:11–15.

    Article  PubMed  CAS  Google Scholar 

  221. Basolo F, Caligo MA, Pinchera A, Fedeli F, Baldanzi A, Miccoli P, et al. Cyclin D1 overexpression in thyroid carcinomas: relation with clinico-pathological parameters, retinoblastoma gene product, and Ki67 labeling index. Thyroid 2000; 10:741–746.

    PubMed  CAS  Google Scholar 

  222. Khoo ML, Beasley NJ, Ezzat S, Freeman JL, Asa SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab 2002; 87:1814–1818.

    Article  PubMed  CAS  Google Scholar 

  223. Khoo ML, Ezzat S, Freeman JL, Asa SL. Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification. J Clin Endocrinol Metab 2002; 87:1810–1813.

    Article  PubMed  CAS  Google Scholar 

  224. Lazzereschi D, Sambuco L, Carnovale Scalzo C, Ranieri A, Mincione G, Nardi F, Colletta G. Cyclin D1 and Cyclin E expression in malignant thyroid cells and in human thyroid carcinomas. Int J Cancer 1998; 76:806–811.

    Article  PubMed  CAS  Google Scholar 

  225. Goto A, Sakamoto A, Machinami R. An immunohistochemical analysis of cyclin D1, p53, and p21waf1/cip1 proteins in tumors originating from the follicular epithelium of the thyroid gland. Pathol Res Pract 2001; 197:217–222.

    Article  PubMed  CAS  Google Scholar 

  226. Muro-Cacho CA, Holt T, Klotch D, Mora L, Livingston S, Futran N. Cyclin D1 expression as a prognostic parameter in papillary carcinoma of the thyroid. Otolaryngol Head Neck Surg 1999; 120:200–207.

    Article  PubMed  CAS  Google Scholar 

  227. Zou M, Shi Y, Farid NR, Al-Sedairy ST. Inverse association between cyclin D1 overexpression and retinoblastoma gene mutation in thyroid carcinomas. Endocrine 1998; 8:61–64.

    Article  PubMed  CAS  Google Scholar 

  228. Wang S, Wuu J, Savas L, Patwardhan N, Khan A. The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Hum Pathol 1998; 29:1304–1309.

    Article  PubMed  CAS  Google Scholar 

  229. Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod Pathol 2000; 13:882–887.

    Article  PubMed  CAS  Google Scholar 

  230. Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 1999; 96:3951–3956.

    Article  PubMed  CAS  Google Scholar 

  231. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 2000; 289:1357–1360.

    Article  PubMed  CAS  Google Scholar 

  232. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 2002; 26:1016–1023.

    Article  PubMed  Google Scholar 

  233. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, Leite V. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002; 87:3947–3952.

    Article  PubMed  CAS  Google Scholar 

  234. Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/ peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 2003; 88:4440–4445.

    Article  PubMed  CAS  Google Scholar 

  235. Gunthert U. CD44: a multitude of isoforms with diverse functions. Curr Top Microbiol Immunol 1993; 184:47–63.

    PubMed  CAS  Google Scholar 

  236. Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extracellular matrix. Adv Immunol 1993; 54:271–335.

    Article  PubMed  CAS  Google Scholar 

  237. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  238. Hofmann M, Rudy W, Zoller M, Tolg C, Ponta H, Herrlich P, Gunthert U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor lines. Cancer Res 1991; 51:5292–5297.

    PubMed  CAS  Google Scholar 

  239. Rudy W, Hofmann M, Schwartz-Albiez R, Zoller M, Heider KH, Ponta H, Herrlich P. Two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res 1993; 53:1262–1268.

    PubMed  CAS  Google Scholar 

  240. Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL, et al. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res 1994; 54:4539–4546.

    PubMed  CAS  Google Scholar 

  241. Mackay CR, Terpe HJ, Stauder R, Marston WL, Stark H, Gunthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol 1994; 124:71–82.

    Article  PubMed  CAS  Google Scholar 

  242. Figge J, del Rosario AD, Gerasimov G, Dedov I, Bronstein M, Troshina K, et al. Preferential expression of the cell adhesion molecule CD44 in papillary thyroid carcinoma. Exp Mol Pathol 1994; 61:203–211.

    Article  PubMed  CAS  Google Scholar 

  243. Ermak G, Gerasimov G, Troshina K, Jennings T, Robinson L, Ross JS, Figge J. Deregulated alternative splicing of CD44 messenger RNA transcripts in neoplastic and nonneoplastic lesions of the human thyroid. Cancer Res 1995; 55:4594–4598.

    PubMed  CAS  Google Scholar 

  244. Ermak G, Jennings T, Robinson L, Ross JS, Figge J. Restricted patterns of CD44 variant exon expression in human papillary thyroid carcinoma. Cancer Res 1996; 56:1037–1042.

    PubMed  CAS  Google Scholar 

  245. Fagman H, Grande M, Edsbagge J, Semb H, Nilsson M. Expression of classical cadherins in thyroid development: maintenance of an epithelial phenotype throughout organogenesis. Endocrinology 2003; 144:3618–3624.

    Article  PubMed  CAS  Google Scholar 

  246. Chen W, Obrink B. Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Biol 1991; 114:319–327.

    Article  PubMed  CAS  Google Scholar 

  247. Vleminckx K, Vakaet L, Mareel M, Fiers W, Van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991; 66:107–119.

    Article  PubMed  CAS  Google Scholar 

  248. Brabant G, Hoang-Vu C, Cetin Y, Dralle H, Scheumann G, Molne J, et al. E-cadherin: a differentiation marker in thyroid malignancies. Cancer Res 1993; 53:4987–4993.

    PubMed  CAS  Google Scholar 

  249. Plail RO, Bussey HJ, Glazer G, Thompson JP. Adenomatous polyposis: an association with carcinoma of the thyroid. Br J Surg 1987; 74:377–380.

    Article  PubMed  CAS  Google Scholar 

  250. Lote K, Andersen K, Nordal E, Brennhovd IO. Familial occurrence of papillary thyroid carcinoma. Cancer 1980; 46:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  251. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16:64–67.

    Article  PubMed  CAS  Google Scholar 

  252. Garniel MR, Mule JE, Alexander LL, Beninghoff DL. Association of thyroid carcioma with Gardner’s syndrome in siblings. N Engl J Med 1968; 278:1056–1058.

    Article  Google Scholar 

  253. Malchoff CD, Malchoff DM. The genetics of hereditary nonmedullary thyroid carcinoma. J Clin Endocrinol Metab 2002; 87:2455–2459.

    Article  PubMed  CAS  Google Scholar 

  254. Mulligan LM, Ponder BAJ. Genetic basis of endocrine disease: multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 1995; 80:1989–1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Figge, J.J., Kartel, N.A., Yarmolinsky, D., Ermak, G. (2006). Molecular Pathogenesis of Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics