Skip to main content

Radionuclide Imaging of Thyroid Nodules

  • Chapter

Abstract

Thyroid scintigraphy has been used for many years to evaluate thyroid nodules. The clinical value of thyroid scintigraphy has been established based on the knowledge that (1) functioning nodules have not only increased radioiodine uptake relative to normal functioning thyroid tissue but also have a low probability of malignancy; and (2) thyroid cancers have no or very low (e.g., 1 in 100) radioiodine accumulation relative to normal thyroid tissue. This section presents an overview of thyroid scintigraphy in the evaluation of thyroid nodules (see Table 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Society of Nuclear Medicine Procedure Guideline for Thyroid Scintigraphy, version 2.0, approved February 7, 1999. Procedure Guidelines Manual, Society of Nuclear Medicine, 2003:29–32.

    Google Scholar 

  2. McKitrick WL, Park HM, Kosegi JE. Parallax error in pinhole thyroid scintigraphy: a critical consideration in the evaluation of substernal goiters. J Nucl Med 1985; 26:418–420.

    PubMed  CAS  Google Scholar 

  3. Borner W, Lautsch M, et al. Die diagnostiche bedeutung des “kalten Knotens” im schilddrusenszintigramm. Med Welt 1965; 17:892–897.

    Google Scholar 

  4. Ashcraft MW, Van Herle AJ. Management of thyroid nodules. II. Scanning techniques, thyroid suppressive therapy, and fine needle Laspiration. Head Neck Surg 1981; 3:296–322.

    Google Scholar 

  5. Sandler MP, Coleman RE, Patton JA, et al. Diagnostic Nuclear Medicine, 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2003.

    Google Scholar 

  6. Freitas JE, Gross MD, Ripley S, et al. Radionuclide diagnosis and therapy of thyroid cancer: current status report. Semin Nucl Med 1985; 15:106–131.

    Article  PubMed  CAS  Google Scholar 

  7. Appetecchia M, Ducci M. Hyperfunctioning differentiated thyroid carcinoma. J Endocrinol Invest 1998; 21:189–192.

    PubMed  CAS  Google Scholar 

  8. Mulnar GD, Childs DS, Wollner LB. Histologic evidence of malignancy in a thyroid gland bearing a “hot” nodule. J Clin Endocrinol Metab 1958; 18:1132–1134.

    Google Scholar 

  9. Becker FO, Economou PG, Schwartz TB. The occurrence of carcinoma in “hot” thyroid nodules: report of two cases. Ann Intern Med 1963; 58:877–882.

    PubMed  CAS  Google Scholar 

  10. Dische S. The radioscope scan applied to the detection of carcinoma in thyroid swellings. Cancer 1964; 17:473–495.

    Article  PubMed  CAS  Google Scholar 

  11. McLaughlin RP, Scholz DA, McConahey WM, et al. Metastatic thyroid carcinoma with hyperthyroidism: two cases with functioning metastatic follicular thyroid carcinoma. Mayo Clin Proc 1970; 45:328–335.

    PubMed  CAS  Google Scholar 

  12. Meier DA, Hamburger JI. An autonomously functioning thyroid nodule, cancer, and prior radiation. Arch Surg 1971; 103:759–761.

    PubMed  CAS  Google Scholar 

  13. Fujimoto YU, Oka A, Nagataki S. Occurrence of papillary carcinoma in hyperfunctioning thyroid nodule; report of a case. Endocrinol Jpn 1972; 19:371–374.

    PubMed  CAS  Google Scholar 

  14. Hamburger JI. Solitary autonomously functioning thyroid lesions. Am J Med 1975; 58:740–749.

    Article  PubMed  CAS  Google Scholar 

  15. Wolfstein RS. Enigma of the “hyperfunctioning” thyroid carcinoma resolved? J Nucl Med 1978; 19:441–442.

    PubMed  CAS  Google Scholar 

  16. Abdel-Razzak M, Christie JH. Thyroid carcinoma in an autonomously functioning nodule. J Nucl Med 1979; 20:1001–1002.

    PubMed  CAS  Google Scholar 

  17. Blitzer A, Son ML. Thyroid carcinoma in a patient with a coexisting functional adenoma. Otolaryngol Head Neck Surg 1979; 887:768–774.

    Google Scholar 

  18. Khan O, Ell PJ. Maclennan KA, et al. Thyroid carcinoma in a autonomously hyperfunctioning thyroid nodule. Postgrad Med J 1981; 57:172–175.

    Article  PubMed  CAS  Google Scholar 

  19. Ghose MK, Genuth SM, Abellera RM, et al. Functioning primary thyroid carcinoma and metastases producing hyperthyroidism. J Clin Endocrinol Metab 1971; 33:639–646.

    Article  Google Scholar 

  20. Sandler MP, Fellmeth B, Salhany KE, et al. Thyroid carcinoma masquerading as a solitary benign hyperfunctioning nodule. Clin Nucl Med 1988; 13:410–415.

    Article  PubMed  CAS  Google Scholar 

  21. Iwata M, Kasagi K, Hatabu H, et al. Causes of appearance of scintigraphic hot areas on thyroid scintigraphy analyzed with clinical features and comparative ultrasonographic findings. Ann Nuc Med 2002; 164:279–287.

    Google Scholar 

  22. Lupi A, Orsolon P, Cerisara D, et al. “Hot’ carcinoma of the thyroid. Case reports and comments on the literature.” Minerva Endocrinologica 2002; 27:53–57.

    PubMed  CAS  Google Scholar 

  23. Livada DP, Kotoulas OB, Bouropoulos V, et al. The coexistence of thyroid malignancy with autonomous hot nodules of the thyroid. Clin Nucl Med 1997; 2:350–351.

    Article  Google Scholar 

  24. Kahn O, Ell PJ, Maclennan KA, et al. Thyroid carcinoma in an autonomously hyperfunctioning thyroid nodule. Postgrad Med J 1981; 57:172–175.

    CAS  Google Scholar 

  25. Sato Y, Sakurai A, Miyamoto T, et al. Hyperfunctioning thyroid adenoma concomitant with papillary thyroid carcinoma, follicular thyroid adenoma and primary hyperparathyroidism. Endocr J 1998; 45:61–67.

    PubMed  CAS  Google Scholar 

  26. Rubenfeld S, Wheeler TM. Thyroid cancer presenting as a hot thyroid nodule: report of a case and review of the literature. Thyroidology 1988; 1:63–68.

    PubMed  Google Scholar 

  27. Kusic Z, Becker DV, Saenger EL, et al. Comparison of technetium-99m and iodine-123 imaging of thyroid nodules: correlation with pathologic findings. J Nucl Med 1990; 31:393–399.

    PubMed  CAS  Google Scholar 

  28. Ryo UY, Vaidya PV, Schneider AB, et al. Thyroid imaging agents: a comparison of I-123 and Tc-99m pertechnetate. Radiology 1983; 148:819–822.

    PubMed  CAS  Google Scholar 

  29. Erjavec M, Movrin T, Auersperg M, Golough R. Comparative accumulation of 99mTc and 131-I in thyroid nodules: case report. J Nucl Med 1977; 18:346–347.

    PubMed  CAS  Google Scholar 

  30. Turner JW, Spencer RP. Thyroid carcinoma presenting as a pertechnetate “hot” nodule, but without 131-I uptake: case report. J Nucl Med 1976; 17:22–23.

    PubMed  CAS  Google Scholar 

  31. Dos Remedios LV, Weber PM, Jasko IA. Thyroid scintiphotography in 1,000 patients: rational use of 99mTC and 131-I compounds. J Nucl Med 1971; 12:673–677.

    PubMed  Google Scholar 

  32. Wartofsky L. Thyroid nodules. In Van Nostrand D, Bloom G, Wartofsky L, editors. Thyroid Cancer: A Guide for Patients. Baltimore, MD: Keystone Press Inc., 2004, pp. 15–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Van Nostrand, D. (2006). Radionuclide Imaging of Thyroid Nodules. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics