Skip to main content

Strategies to Enhance the Enzymatic Hydrolysis of Pretreated Softwood with High Residual Lignin Content

  • Chapter
Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

Abstract

Pretreatment of Douglas-fir by steam explosion produces a substrate containing approx 43% lignin. Two strategies were investigated for reducing the effect of this residual lignin on enzymatic hydrolysis of cellulose: mild alkali extraction and protein addition. Extraction with cold 1% NaOH reduced the lignin content by only approx 7%, but cellulose to glucose conversion was enhanced by about 30%. Before alkali extraction, addition of exogenous protein resulted in a significant improvement in cellulose hydrolysis, but this protein effect was substantially diminished after alkali treatment. Lignin appears to reduce cellulose hydrolysis by two distinct mechanisms: by forming a physical barrier that prevents enzyme access and by non-productively binding cellulolytic enzymes. Cold alkali appears to selectively remove a fraction of lignin from steam-exploded Douglas-fir with high affinity for protein. Corresponding data for mixed softwood pretreated by organosolv extraction indicates that the relative importance of the two mechanisms by which residual lignin affects hydrolysis is different according to the pre- and post-treatment method used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galbe, M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.

    Article  PubMed  CAS  Google Scholar 

  2. Wu, M. M., Chang, K., Gregg, D. J., Boussaid, A., Beatson, R. P., and Saddler, J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 47–54.

    Article  Google Scholar 

  3. BW McCloy & Associates, I. (2003), Estimated production, consumption and surplus mill residues in British Columbia, a 2003 update. Prepared for Natural Resources Canada.

    Google Scholar 

  4. Clark, T. A. and Mackie, K. L. (1987), J. Wood Chem. Technol. 7, 373–403.

    Article  CAS  Google Scholar 

  5. Ramos, L. P., Breuil, C, and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34–35, 37–48.

    Google Scholar 

  6. Tengborg, C, Stenberg, K., Galbe, M., et al. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.

    Article  Google Scholar 

  7. Boussaid, A., Esteghlalian, A. R., Gregg, D. J., Lee, K. H. and Saddler, J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.

    Article  PubMed  Google Scholar 

  8. Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., and Saddler, J. N. (2002), Biotechnol. Bioeng. 77, 678–684.

    Article  PubMed  CAS  Google Scholar 

  9. Pan, X. J., Zhang, X., Gregg, D. J., and Saddler, J. N. (2004), Appl. Biochem. Biotechnol. 113–116, 1103–1114.

    Article  PubMed  Google Scholar 

  10. Pan, X. J., Arato, C, Gilkes, N. R., et al. (2004), Biotechnol.Bioeng. in press.

    Google Scholar 

  11. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    Article  CAS  Google Scholar 

  12. Wood, T. M. and Bhat, M. (1988), in Methods in Enzymology, Vol. 160, Biomass (Part A, Cellulose and Hemicellulose) (Colowick, S.P. and Kaplan, N.O., eds.). Academic Press, Inc., New York, pp. 87–112.

    Google Scholar 

  13. Dence, C. W. (1992), in Methods in Lignin Chemistry, Lin, S. Y. and Dence, C. W., eds., Springer-Verlag, Berlin, pp. 33–61.

    Google Scholar 

  14. Lai, Y.-Z. (1992), In: Methods in Lignin Chemistry, Lin, S. Y. and Dence, C. W., eds., Springer-Verlag, Berlin, pp. 423–434.

    Google Scholar 

  15. Montane, D., Farriol, X., Salvado, J., Jollez, P., and Chornet, E. (1998), J. Wood Chem. Technol. 18, 171–191.

    CAS  Google Scholar 

  16. Montane, D., Salvado, J., and Farriol, X. (1997), Holzforschung 51, 135–141.

    Article  CAS  Google Scholar 

  17. Zimbardi, R, Viggiano, D., Nanna, R, Demichele, M., Cuna, D., and Cardinale, G. (1999), Appl. Biochem. Biotechnol. 77–79, 117–125.

    Article  Google Scholar 

  18. Shevchenko, S. M., Beatson, R. P., and Saddler, J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 867–876.

    Article  PubMed  Google Scholar 

  19. Sewalt, V. J. H., Glasser, W. G., and Beauchemin, K. A. (1997), J. Agricul. Food Chem. 45, 1823–1828.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Pan, X., Xie, D., Gilkes, N., Gregg, D.J., Saddler, J.N. (2005). Strategies to Enhance the Enzymatic Hydrolysis of Pretreated Softwood with High Residual Lignin Content. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_90

Download citation

Publish with us

Policies and ethics