Skip to main content

Detoxification of Actual Pretreated Corn Stover Hydrolysate Using Activated Carbon Powder

  • Chapter
Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

  • 3434 Accesses

Abstract

A technique for the removal of acetic acid from an actual pretreated corn stover hydrolysate was investigated. A powdered form of activated carbon previously shown to be effective in the removal of acetic acid from a synthetic hydrolysate was utilized. The method proved to be effective at lowering acetic acid levels while exhibiting minimal adsorption of the desired sugars from the hydrolysate, although at a lower efficiency in the actual hydrolysate than in the synthetic hydrolysate. Results are obtained for temperatures between 25 and 35°C and agitation rates between 150 and 350 rpm in shake flasks. Adsorption isotherm and kinetic rate data are presented. Temperature differences over this range did not have an effect on adsorption characteristics. Five stages of detoxification were necessary to lower acetic acid concentration to the maximum 2 g/L desired for fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77–79, 133–142.

    Article  Google Scholar 

  2. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Terrborg, C, Stanberg, K., Zacchi, G., and Nilvebrant, N. O. (1999), Enzyme Microb. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  3. Ranatunga, T. D., Jervis, J., Helm, R. E, McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.

    CAS  Google Scholar 

  4. Larsson, S., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  5. Lee, W. G., Lee, J. S., Shin, C. S., Park, S. C., Chang, H. N., and Chaik, Y. K. (1999), Appl. Biochem. Biotechnol. 77–79, 547–559.

    Article  PubMed  Google Scholar 

  6. Rivard, C. J., Engel, R. E., Hayard, T. K., Nagle, N. J., Hatzis, C., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57–58, 183–191.

    Article  Google Scholar 

  7. Jonsson, L. J., Palmqvist, E., Nilvebrant, N. O., and Hahn-Hagerdal, B. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.

    Article  CAS  Google Scholar 

  8. Morresi, A. C. and Cheremisinoff, P. N. (1978), in Carbon Adsorption Handbook, Cheremisinoff, P. N. and Ellerbusch, F., eds., Ann Arbor Science Publishers, Ann Arbor, MI, pp. 1–54.

    Google Scholar 

  9. Fein, E. E, Tallim S. R., and Lawford, G. R. (1984), Can. J. Microbiol. 30, 682–690.

    Article  CAS  Google Scholar 

  10. Frazer, F. R. and McCaskey, T. A. (1989), Biomass 18, 31–42.

    Article  CAS  Google Scholar 

  11. Roberto, I. C., Lacis, L. S., Barbosa, M. F. S., and de Mancilha, I. M. (1991), Process Biochem. 26, 15–21.

    Article  CAS  Google Scholar 

  12. Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1997), Enzyme Microb. Technol. 21, 18–24.

    Article  CAS  Google Scholar 

  13. Priddy S. A. and Hanley, T. R. (2003), Appl. Biochem. Biotechnol. 105–108, 353–364.

    Article  PubMed  Google Scholar 

  14. McKay, G. (1983), J. Chem. Technol. Biotechnol. 33A, 205–218.

    CAS  Google Scholar 

  15. Bird, R. B., Stewart, W. E., and Lighfoot, E. N. (1960), Transport Phenomena, John Wiley & Sons, New York.

    Google Scholar 

  16. Crank, J. (1956), The Mathematics of Diffusion, Oxford University Press, London.

    Google Scholar 

  17. Weber, W. J. (1985), in Adsorption Technology: A Step by Step Approach to Process Evaluation and Application Slejko, F. L., ed., Marcel Dekker, New York, pp. 1–35.

    Google Scholar 

  18. Priddy, S. A. (2002), PhD thesis, University of Louisville, Louisville, Kentucky.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Berson, R.E., Young, J.S., Kamer, S.N., Hanley, T.R. (2005). Detoxification of Actual Pretreated Corn Stover Hydrolysate Using Activated Carbon Powder. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_79

Download citation

Publish with us

Policies and ethics