Skip to main content

Part of the book series: ABAB Symposium ((ABAB))

  • 3436 Accesses

Abstract

Foam fractionation cannot be used to recover cellulase from an aerated water solution effectively because cellulase by itself can produce only a small amount of foam. The addition of a surfactant can, however, increase the foamate volume and enhance the concentration of cellulase. We studied three detergents individually added to a 200 mg/L cellulase solution to promote foaming. These detergents were anionic, cationic, and nonionic surfactants, respectively. Although contributing to foam production, it was observed that nonionic surfactant (Pluronic F-68) barely concentrated cellulase, leaving the enrichment ratio unchanged, near 1. With anionic surfactant, sodium dedecyl sulfate, and cationic surfactant, cetyltrimethylammonium bromide (CTAB), the enrichment ratio became much larger, but cellulase denaturation occurred, reducing the activity of the enzyme. When CTAB was used to help foam cellulase, β-cyclodextrin was subsequently added to the foamate to help restore the enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Johansson, G. and Reczey, K. (1998), J. Chromatogr B 711(1–2), 161–172.

    CAS  Google Scholar 

  2. London, M., Cohen, M., and Hudson, P. B. (1954), Biochim. Biophys. Acta 13, 111–120.

    Article  PubMed  CAS  Google Scholar 

  3. Schnepf, R. W. and Gaden, E. L. (1959), J. Biochem. Microbiol. Technol. Eng. 1(1), 1–8.

    Article  CAS  Google Scholar 

  4. Suzuki, A., Yasuhara, K., Seki, H., and Maruyama, H. (2002), J. Colloid Interface Sci. 253(2), 402–408.

    Article  PubMed  CAS  Google Scholar 

  5. Clarkson, J. R., Cui, Z. E, and Darton, R. C. (1999), J. Colloid Interface Sci. 215(2), 323–332.

    Article  PubMed  CAS  Google Scholar 

  6. Clarkson, J. R., Cui, Z. E, and Darton, R. C. (1999), J. Colloid Interface Sci. 215(2), 333–338.

    Article  PubMed  CAS  Google Scholar 

  7. Chi, E.Y., Krishnan, S., Randolph, T. W., and Carpenter, J. F. (2003), Pharma. Res. 20(9), 1325–1336.

    Article  CAS  Google Scholar 

  8. Randolph, T. W., and Jones, L. S. (2002), in Rational Design of Stable Protein Formulations, J. E Carpenter and M. L. Manning, eds., Kluwer Academic/Plenum, New York, pp. 159–175.

    Google Scholar 

  9. Middelberg, A. R. (2002), Trends Biotechnol. 20(10), 437–443.

    Article  PubMed  CAS  Google Scholar 

  10. Clark, E. D. B. (2001), Curr.Opin. Biotechnol. 12(2), 202–207.

    Article  PubMed  CAS  Google Scholar 

  11. Voet, D., Voet, J. G., and Pratt, C. W. (1999), Fundamentals of Biochemistry. John Wiley & Sons, New York, pp. 154–157.

    Google Scholar 

  12. Rozema, D. and Gellman, S. H. (1995), J. Am. Chem. Soc. 117(8), 2373–2374.

    Article  CAS  Google Scholar 

  13. Machida, S., Ogawa, S., Shi., X. H., Takaha, T., Fujii, K, and Hayashi, K., (2000), FEBS Lett. 486(2), 131–135.

    Article  PubMed  CAS  Google Scholar 

  14. Rozema, D. and Gellman, S. H. (1996), Biochemistry 35(49), 15,760–15,771.

    Article  PubMed  CAS  Google Scholar 

  15. Sundari, C.S., Raman, B., and Balasubramanian, D. (1999), FEBS Lett. 443(2), 215–219.

    Article  CAS  Google Scholar 

  16. Kuboi, R., Mawatari, T., and Yoshimoto, M. (2000), J. Biosci. Bioeng. 90(1), 14–19.

    PubMed  CAS  Google Scholar 

  17. Dong, X. Y, Shi, J. H., and Sun, Y. (2002), Biotechnol. Prog. 18(3), 663–665.

    Article  PubMed  CAS  Google Scholar 

  18. Daugherty, D. L., Rozema, D., Hanson, P. E., and Gellman, S. H. (1998), J. Biol. Chem. 273(51), 33,961–33,971.

    Article  PubMed  CAS  Google Scholar 

  19. Couthon, F., Clottes, E., and Vial, C. (1996), Biochem. Biophys. Res. Comm. 227(3), 854–860.

    Article  PubMed  CAS  Google Scholar 

  20. Nath, D. and Roa, M. (2001), Eur. J. Biochem. 268, 5471–5478.

    Article  PubMed  CAS  Google Scholar 

  21. Kim, C. S. and Lee, E. K. (2000), Process Biochem. 36(1–2), 111–117.

    Article  CAS  Google Scholar 

  22. Mandels, M., Anderotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    PubMed  CAS  Google Scholar 

  23. Almin, K. and Eriksson, K. (1968), Arch. Biochem. Biophys. 124(129).

    Google Scholar 

  24. Loha, V., Prokop, A., Du, L. P., and Tanner, R. D. (1999), Appl. Biochem. Biotechnol. 77–9, 701–712.

    Article  Google Scholar 

  25. Brown, A.K., Kaul, A., and Varley, J. (1999), Biotechnol. Bioeng. 62(3), 278–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Burapatana, V., Prokop, A., Tanner, R.D. (2005). Enhancing Cellulase Foam Fractionation with Addition of Surfactant. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_46

Download citation

Publish with us

Policies and ethics