Skip to main content

Lactic Acid Production from Cheese Whey by Immobilized Bacteria

  • Chapter
Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

  • 3457 Accesses

Abstract

The performance of immobilized Bifidobacterium longum in sodium alginate beads and on a spiral-sheet bioreactor for the production of lactic acid from cheese whey was evaluated. Lactose utilization and lactic acid yield of B. longum were compared with those of Lactobacillus helveticus. B. longum immobilized in sodium alginate beads showed better performance in lactose utilization and lactic acid yield than L. helveticus. In the spiral-sheet bioreactor, a lactose conversion ratio of 79% and lactic acid yield of 0.84 g of lactic arid/g of lactose utilized were obtained during the first run with the immobilized L. helveticus. A lactose conversion ratio of 69% and lactic acid yield of 0.51 g of lactic acid/g of lactose utilized were obtained during the first run with immobilized B. longum in the spiral-sheet bioreactor. In producing lactic acid L. helveticus performed better when using the Spiral Sheet Bioreactor and B. longum showed better performance with gel bead immobilization. Because B. longum is a very promising new bacterium for lactic acid production from cheese whey, its optimum fermentation conditions such as pH and metabolic pathway need to be studied further. The ultrafiltration tests have shown that 94% of the cell and cheese whey proteins were retained by membranes with a mol wt cutoff of 5 and 20 KDa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siso, M. I. G. (1996), Bioresour. Technol. 57, 1–11.

    Article  Google Scholar 

  2. Shahbazi, A., Salameh, M., and Ibrahim, A., (2005), Milchwissenschaft. 60, in press.

    Google Scholar 

  3. Tango, M. S. A. and Ghaly, A. E. (2002), Appl. Microbiol. Biotechnol. 58, 712–720.

    Article  PubMed  CAS  Google Scholar 

  4. Roy, D., Goulet, J., and LeDuy, A. (1986), Appl. Microbiol. Biotechnol. 24, 206–213.

    Article  CAS  Google Scholar 

  5. Bruno-Barcena, J. M., Ragout, A. L., Cordoba, P. R., and Sineriz, F. (1999), Appl. Microbiol. Biotechnol. 51, 316–324.

    Article  PubMed  CAS  Google Scholar 

  6. Roukas, T. and Kotzekidou, P. (1998), Enzyme Microbiol. Technol. 22, 199–204.

    Article  CAS  Google Scholar 

  7. Gomes, A. M. P. and Malcata, F. X. (1999), Trends Food Sci. Technol. 10, 139–157.

    Article  CAS  Google Scholar 

  8. Doleyres, Y, Paquin, C, LeRoy, M., and Lacroix, C. (2002), Appl. Microbiol. Biotechnol. 60, 168–173.

    Article  PubMed  CAS  Google Scholar 

  9. Song, S. H., Kim, T. B., Oh, H. I., and Oh, D. K. (2003), World J. Microbiol. Biotechnol. 19, 721–731.

    Article  Google Scholar 

  10. Senthuran, A., Senthuran, V., Mattiasson, B., and Kaul, R. (1996), Biotechnol. Bioeng. 55(6), 841–853.

    Article  Google Scholar 

  11. Mostafa, N. A. (1995), Energy Corners. Mgmt. 37(3), 253–260.

    Article  Google Scholar 

  12. Senthuran, A., Senthuran, V., Hatti-Kaul, R., and Mattiasson, B. (1999), J. Biotechnol. 73, 61–70.

    Article  PubMed  CAS  Google Scholar 

  13. Guoqiang, D., Kaul, R., and Mattiasson, B. (1992), Appl. Microbiol. Biotechnol. 36, 309–314.

    Google Scholar 

  14. Corton, E., Piuri, M., Battaglini, F and Ruzal, S. M. (2000), Biotechnol. Prog. 16(1), 59–63.

    Article  PubMed  CAS  Google Scholar 

  15. Persson, A., Jonsson, A., and Zacchi, G. (2001), Biotechnol. Bioeng. 72(3), 269–277.

    Article  PubMed  CAS  Google Scholar 

  16. Mehaia, M. A. and Cheryan, M. (1986), Enzyme Microbiol. Technol. 8, 289–292.

    Article  CAS  Google Scholar 

  17. Jeantet, R., Maubois, J. L., and Boyaval, P. (1996), Enzyme Microbiol. Technol. 19, 614–619.

    Article  CAS  Google Scholar 

  18. Hjorleifsdottir, S., Hoist, O., and Mattiasson, B. (1991), Bioprocess. Eng. 6, 29–34.

    Article  Google Scholar 

  19. Foss Tecator. (1999). Application Note. The Determination of Nitrogen According to Kjeldahl using Block Digestion and Steam Distillation. 2400/24600 Kjctcc® Auto Sampler System User Manual 10009165. Revl.l.

    Google Scholar 

  20. AOAC. (1995), Official Methods of Analysis of AOAC International, 17th ed. S587.A3: AOAC Official Method 991. 22. Arlington, VA: AOAC International.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Shahbazi, A., Mims, M.R., Li, Y., Shirley, V., Ibrahim, S.A., Morris, A. (2005). Lactic Acid Production from Cheese Whey by Immobilized Bacteria. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_45

Download citation

Publish with us

Policies and ethics