Skip to main content

Effect of Media Composition and Growth Conditions on Production of β-Glucosidase by Aspergillus niger C-6

  • Chapter
Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

Abstract

The hydrolytic activity of fungal originated β-glucosidase is exploited in several biotechnological processes to increase the rate and extent of saccha-rification of several cellulosic materials by hydrolyzing the cellobiose which inhibits cellulases. In a previous presentation, we reported the screening and liquid fermentation with Aspergillus niger, strain C-6 for p-glucosidase production at shake flask cultures in a basal culture medium with mineral salts, corn syrup liquor, and different waste lignocellulosic materials as the sole carbon source obtaining the maximum enzymatic activity after 5–6 d of 8.5 IU/mL using native sugar cane bagasse. In this work we describe the evaluation of fermentation conditions: growth temperature, medium composition, and pH, also the agitation and aeration effects for β-glucosidase production under submerged culture using a culture media with corn syrup liquor (CSL) and native sugar cane bagasse pith as the sole carbon source in a laboratory fermenter. The maximum enzyme titer of 7.2 IU/mL was obtained within 3 d of fermentation. This indicates that β-glucosidase productivity by Aspergillus niger C-6 is function of culture conditions, principally temperature, pH, culture medium conditions, and the oxygen supply given in the bioreactor. Results obtained suggest that this strain is a potential microorganism that can reach a major level of enzyme production and also for enzyme characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stenberg, D. (1976), Appl. Environ. Microbiol. 31, 648–654.

    Google Scholar 

  2. Montenecourt, B. S. (1983), Trends Biotech. 1, 156.

    Article  CAS  Google Scholar 

  3. Berghem, L. E. R., Pettersson, L. G., and Axio-Frederiksson, U. B. (1975), Eur. J. Biochem. 53, 55.

    Article  CAS  Google Scholar 

  4. Ryu, D. D. Y. and Mandels, M. (1980), Enzyme Microb. Technol. 2, 91–102.

    Article  CAS  Google Scholar 

  5. Kang, S. W., Ko, E. H., Lee, J. S., and Kim, S. W. (1999), Biotechnol. Lett. 21, 647–650.

    Article  CAS  Google Scholar 

  6. Gunata, Z., Dugelay, I., Sapis, J. C, Baumes, R., and Bayonove, C. (1993), in Progress in Flavor Precursor Studies, Schreier P. and Winterwalter, P., eds., Carol Stream, IL, Allured Corporation, pp. 219–234.

    Google Scholar 

  7. Yamanaka, Y. and Wilke, C. R. (1976), AIChE 81st Ann. Meet. Abstr. Kansas City, M. O. April 11–14.

    Google Scholar 

  8. García-Kirchner, O., Esteban-Martínez, R. L., Segura-Granados, M., and Mu≠oz-Aguilar M. (2002), Poster Presentation. Program and Abstracts 24th Symposium on Biotechnology for Fuels and Chemicals. Gatlinburg, TNS USA.

    Google Scholar 

  9. Le Duy, A. and Zajik, J. E. (1973), Biotechnol. Bioeng 25, 805–810.

    Google Scholar 

  10. Stanbury, P. and Whitaker, A. (1986), in Principles of Fermentation Technology, Pergamon Press, Oxford, pp. 169–172.

    Google Scholar 

  11. Joglekar, A. V., Karanth, N. G., and Srinivasan, M. C. (1983), Enzyme Microb. Technol. 5, 25–29.

    Article  CAS  Google Scholar 

  12. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    PubMed  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, J., Farr, A. L., and Randal, R. J. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  14. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  15. Gokhale, D. V., Patil, S. G., and Bastawde, K. B. (1991), Appl. Biochem. Biotech. 30, 99–109.

    Article  CAS  Google Scholar 

  16. Stenberg, D., Vijayakumar, P., and Reese, E. T. (1977), Can. J. Microbiol. 23, 139–147.

    Article  Google Scholar 

  17. Yang, J. D. and Wang, N. S. (1992), Biotechnol. Bioeng. 140, 806–816.

    Article  Google Scholar 

  18. Mitard, A. and Riba, J. P. (1988), Biotechnol. Bioeng. 32, 835–840.

    Article  PubMed  CAS  Google Scholar 

  19. Mukataka, S., Kobayashi N., Sato, S., and Takahasi, J. (1988), Biotechnol. Bioeng. 32, 760–763.

    Article  CAS  PubMed  Google Scholar 

  20. Wase, D. A. J., McManamey, W. J., Raymahasay, S., and Vaid, A. D. (1992), Biotechnol. Bioeng. 140, 806–816.

    Google Scholar 

  21. Garcia-Kirchner, O., Segura-Granados, M., Suazo-Abarca S., and Esteban-Gutierrez, R. L. (2004), in press.

    Google Scholar 

  22. Robinson, P. D. (1984), Biotechnol. Lett. 6, 119–122.

    Article  Google Scholar 

  23. Rodriguez, H., Ponce, T., De La Torre, M., and Enriquez, A. (1991), Biotechnol. Lett. 13, 563–566.

    Article  CAS  Google Scholar 

  24. Duff, S. J. B., Cooper, D. G., and Fuller, M. (1987), Enzyme Microb. Technol. 9, 47–101.

    Article  CAS  Google Scholar 

  25. Allen, A. and Stenberg, D. (1980), Biotech. Bioengin. Symp. No 10, pp. 189–197.

    CAS  Google Scholar 

  26. Kerns, G., Dalchow, E., Klappach, G., and Meyer, D. (1986), Acta Biotechnol. 6, 355–359.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

García-Kirchner, O., Segura-Granados, M., Rodríguez-Pascual, P. (2005). Effect of Media Composition and Growth Conditions on Production of β-Glucosidase by Aspergillus niger C-6. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_30

Download citation

Publish with us

Policies and ethics