Skip to main content

Obesity, Diabetes, and Hypertension

  • Chapter
Obesity and Diabetes

Abstract

Obesity, the so-called killer of the 21st century, is a serious and pervading health problem in the industrialized world and developing countries. Its prevalence is on the rise, and its cost to health systems is astounding. The risk of death from all causes rises as body mass index (BMI) increases for both men and women in all age groups (1). For example, a 20-yr-old Caucasian male with a BMI greater than 45 kg/m2 is estimated to lose 13 yr of his life owing to obesity—a 17% reduction in life expectancy assuming a life expectancy of 78 yr (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CS. Body mass index and mortality in a prospective cohort of US adults. N Engl J Med 1999;341:1097–1105.

    Article  PubMed  CAS  Google Scholar 

  2. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA 2003;289(2):187–193.

    Article  PubMed  Google Scholar 

  3. National Center for Health Statistics. Healthy People 2010, Diabetes Progress Review. http://www.cdc.gov/nchs/hphome.htm. December 18, 2002.

  4. Hogan P, Dall T, Nikolov P, American Diabetes Association. Economic costs of diabetes in the US in 2002. Diabetes Care 2003;26:917–932.

    Article  PubMed  Google Scholar 

  5. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 Report. JAMA 2003;289(19):2560–2572.

    Article  PubMed  CAS  Google Scholar 

  6. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure: findings in hypertension screening of 1 million Americans. JAMA 1978;240:1607–1610.

    Article  PubMed  CAS  Google Scholar 

  7. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA 1999;282(16):1523–1529.

    Article  PubMed  CAS  Google Scholar 

  8. Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004;350:2362–2374.

    Article  PubMed  CAS  Google Scholar 

  9. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet 2001;358:1682–1686.

    Article  PubMed  CAS  Google Scholar 

  10. Engeli S, Sharma AM. Emerging concepts in the pathophysiology and treatment of obesity-associated hypertension. Curr Opin Cardiol 2002;17:355–359.

    Article  PubMed  Google Scholar 

  11. Davy KP, Hall JE. Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol 2004;286:R803–R813.

    PubMed  CAS  Google Scholar 

  12. Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann Intern Med 2004;140(12):992–1000.

    PubMed  Google Scholar 

  13. Doll S, Paccaud F, Bovet P, et al. Body mass index, abdominal adiposity and blood pressure: consistency of their association across developing and developed countries. Int J Obes 2002;26:48–57.

    Article  CAS  Google Scholar 

  14. Felber JP, Golay A. Pathways from obesity to diabetes. Int J Obes 2002;26(Suppl 2):S39–S45.

    Article  CAS  Google Scholar 

  15. Sowers JR, Haffner S. Treatment of cardiovascular and renal risk factors in the diabetic hypertensive. Hypertension 2002;40:781–788.

    Article  PubMed  CAS  Google Scholar 

  16. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus: Atherosclerosis Risk in Communities Study. N Engl J Med 2000;342:905–912.

    Article  PubMed  CAS  Google Scholar 

  17. Alexander CM, Landsman PB, Teutsch SM, Haffner SM. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003;52:1210–1214.

    Article  PubMed  CAS  Google Scholar 

  18. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001;285:2486–2497.

    Article  Google Scholar 

  19. Henry P, Thomas F, Benetos A, Guize L. Impaired fasting glucose, blood pressure and cardiovascular disease mortality. Hypertension 2002;40(4):458–463.

    Article  PubMed  CAS  Google Scholar 

  20. Seals DR, Bell C. Chronic sympathetic activation. Diabetes 2004;53(2):276–284.

    Article  PubMed  CAS  Google Scholar 

  21. Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertension 1995;25:560–563.

    PubMed  CAS  Google Scholar 

  22. Lohmeier TE, Warren S, Cunningham JT. Sustained activation of the central baroreceptor pathway in obesity hypertension. Hypertension 2003;42:96–102.

    Article  PubMed  CAS  Google Scholar 

  23. Grassi G, Seravalle G, Dell’Oro R, Turri C, Bolla GB, Mancia G. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 2000;36:538–542.

    PubMed  CAS  Google Scholar 

  24. Kuo JJ, Da Silva AA, Tallam AS, Hall JE. Role of adrenergic activity in pressor responses to chronic melanocortin receptor activation. Hypertension 2004;43(Pt 2):370–375.

    Article  PubMed  CAS  Google Scholar 

  25. Correia MLG, Morgan DA, Mitchell JL, Sivitz WI, Mark AL, Haynes WG. Role of corticotrophin-releasing factor in effects of leptin on sympathetic nerve activity and arterial pressure. Hypertension 2001;38:384–388.

    PubMed  CAS  Google Scholar 

  26. DiBona GF. The sympathetic nervous system and hypertension: recent developments. Hypertension 2004;43:147.

    Article  PubMed  CAS  Google Scholar 

  27. Sowers JR, Epstein M. Diabetes mellitus and associated hypertension, vascular disease and nephropathy. Hypertension 1995;26:869–879.

    PubMed  CAS  Google Scholar 

  28. Caramori ML, Mauer M. Diabetes and nephropathy. Curr Opin Nephrol Hypertens 2003;12:273–282.

    Article  PubMed  CAS  Google Scholar 

  29. Hall JE, Brands MW, Henegar Jr. Mechanisms of hypertension and kidney disease in obesity. Ann NY Acad Sci 1999;892:91–107.

    Article  PubMed  CAS  Google Scholar 

  30. El-Atat F, Aneja A, Mcfarlane S, Sowers J. Obesity and hypertension. Endocrinol Metab Clin North Am 2003;32:823–854.

    Article  PubMed  CAS  Google Scholar 

  31. Montani JP, Antic V, Yang Z, Abdul D. Pathways from obesity to hypertension: from the perspective of a vicious triangle. Int J Obes 2002;26(Suppl 2):S28–S38.

    Article  CAS  Google Scholar 

  32. Klahr S, Morrissey JJ. Angiotensin II and gene expression in the kidney. Am J Kidney Dis 1998;31:171–176.

    PubMed  CAS  Google Scholar 

  33. Klahr S, Morrissey JJ. The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int 2000;57(Suppl 75):S7–S14.

    Article  Google Scholar 

  34. Sowers JR. Hypertension, angiotensin II, and oxidative stress. N Engl J Med 2002;346:1999–2001.

    Article  PubMed  Google Scholar 

  35. Brasier AR, Li J. Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension 1996;27:465–475.

    PubMed  CAS  Google Scholar 

  36. McFarlane SI, Sowers JR. Aldosterone function in diabetes mellitus: effects on cardiovascular and renal disease. J Clin Endocrinol Metab 2003;88:516–523.

    Article  PubMed  CAS  Google Scholar 

  37. Remuzzi G, Schieppati A, Ruggenenti P. Nephropathy in patients with type 2 diabetes. N Engl J Med 2002;346:1145–1151.

    Article  PubMed  Google Scholar 

  38. Rocha R, Chander PN, Zuckerman A, Stier CT Jr. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 2002;33:232–237.

    Google Scholar 

  39. Abdel-Wahab N, Weston BS, Roberts T, Masson RM. Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J Am Soc Nephrol 2002;13:2437–2445.

    Article  PubMed  Google Scholar 

  40. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol 2000;130:963–974.

    Article  PubMed  Google Scholar 

  41. Vlassara H. Recent progress on the biologic and clinical significance of advanced glycosylation end products. J Lab Clin Med 1994;124:19–30.

    PubMed  CAS  Google Scholar 

  42. McFarlane SI, Winer N, Sowers JR. Role of the natriuretic peptide system in cardiorenal protection. Arch Intern Med 2003;163(22):2696–2704.

    Article  PubMed  CAS  Google Scholar 

  43. Sarzani R, Dess-Fulgheri P, Paci MV, Espinosa E, Rappelli A. Expression of natriuretic peptide receptors in human adipose and other tissues. J Endocrinol Invest 1996;19:581–585.

    PubMed  CAS  Google Scholar 

  44. Sarzani R, Paci MV, Dess-Fulgheri P, Espinosa E, Rappelli A. Comparative analysis of atrial natriuretic peptide receptor expression in rat tissues. J Hypertens 1993;11(Suppl 5):S214–S216.

    CAS  Google Scholar 

  45. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004;109:594–600.

    Article  PubMed  CAS  Google Scholar 

  46. Dessi-Fulgheri P, Sarzani R, Tamburrini P, et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 1997;15:1695–1699.

    Article  PubMed  CAS  Google Scholar 

  47. Yano Y, Katsuki A, Gabazza AC, et al. Plasma brain natriuretic peptide levels in normotensive noninsulin-dependent diabetic patients with microalbuminuria. J Clin Endocrinol Metab 1999;84:2353–2356.

    Article  PubMed  CAS  Google Scholar 

  48. Chattington PD, Anderson JV, Rees LH, Leese GP, Peters JR, Vora JP. Atrial natriuretic peptide in type 2 diabetes mellitus: response to a physiological mixed meal and relationship to renal function. Diabet Med 1998;15:375–379.

    Article  PubMed  CAS  Google Scholar 

  49. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173–194.

    Article  PubMed  CAS  Google Scholar 

  50. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991;87:2246–2252.

    PubMed  CAS  Google Scholar 

  51. Sowers JR. Insulin resistance and hypertension. Mol Cell Endocrinol 1990;74:C87–C89.

    Article  PubMed  CAS  Google Scholar 

  52. Ferrannini E, Natali A, Capaldo B, Lehtovirta M, Jacob S, Yki-Järvinen H, for the European Group for the Study of Insulin Resistance (EGIR). Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. Hypertension 1997;30:1144–1149.

    PubMed  CAS  Google Scholar 

  53. Heise T, Magnusson K, Heinemann L, Sawicki PT. Insulin resistance and the effect of insulin on blood pressure in essential hypertension. Hypertension 1998;32(2):243–248.

    PubMed  CAS  Google Scholar 

  54. Terzolo M, Pia A, Al A, et al. Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab 2002;87:998–1003.

    Article  PubMed  CAS  Google Scholar 

  55. Tauchmanovà L, Rossi R, Biondi B, et al. Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab 2002;87:4872–4878.

    Article  PubMed  CAS  Google Scholar 

  56. Rosmond R, Chagnon YC, Holm G, et al. A glucocorticoid receptor gene marker is associated with abdominal obesity, leptin, and dysregulation of the hypothalamic-pituitary-adrenal axis. Obes Res 2000;8:211–218.

    PubMed  CAS  Google Scholar 

  57. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294:2166–2170.

    Article  PubMed  CAS  Google Scholar 

  58. Masuzaki H, Yamamoto H, Kenyon CJ, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 2003;112(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  59. Morton NM, Paterson JM, Masuzaki H, et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11β-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 2004;53:931–938.

    Article  PubMed  CAS  Google Scholar 

  60. Seres J, Bornstein SR, Seres P, et al. Corticotropin-releasing hormone system in human adipose tissue. J Clin Endocrinol Metab 2004;89(2):965–970.

    Article  PubMed  CAS  Google Scholar 

  61. Friedberg M, Zoumakis E, Hiroi N, Bader T, Chrousos GP, Hochberg Z. Modulation of 11 β-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J Clin Endocrinol Metab 2003;88:385–393.

    Article  PubMed  CAS  Google Scholar 

  62. Weisberg SP, McCann D, Desnai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–1808.

    Article  PubMed  CAS  Google Scholar 

  63. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003;24(3):278–301.

    Article  PubMed  CAS  Google Scholar 

  64. Festa A, D’Agostino R Jr, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000;102:42–47.

    PubMed  CAS  Google Scholar 

  65. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997;100:270–278.

    PubMed  CAS  Google Scholar 

  66. Aizawa-Abe M, Ogawa Y, Masuzaki H, et al. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest 2000;1059:1243–1252.

    Google Scholar 

  67. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001;409:307–312.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang JL, Qin YW, Zheng X, Qiu JL, Zou DJ. Serum resistin level in essential hypertension patients with different glucose tolerance. Diabet Med 2003;20(10):828–831.

    Article  PubMed  CAS  Google Scholar 

  69. Furuhashi M, Ura N, Higashiura K, Murakami H, Shimamoto K. Circulating resistin levels in essential hypertension. Clin Endocrinol 2003;59(4):507–510.

    Article  CAS  Google Scholar 

  70. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595–1599.

    PubMed  CAS  Google Scholar 

  71. Ouchi N, Ohishi M, Kihara S, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003;42:231–234.

    Article  PubMed  CAS  Google Scholar 

  72. Tan KCB, Xu A, Chow WS, et al. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J Clin Endocrinol Metab 2004;89:765–769.

    Article  PubMed  CAS  Google Scholar 

  73. Fernandez-Real JM, Castro A, Vazquez G, et al. Adiponectin is associated with vascular function independent of insulin sensitivity. Diabetes Care 2004;27(3):739–745.

    Article  PubMed  CAS  Google Scholar 

  74. Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 2000;32:47–50.

    Article  PubMed  CAS  Google Scholar 

  75. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003;278:45,021–45,026.

    Article  PubMed  CAS  Google Scholar 

  76. Mallamaci F, Zoccali C, Cuzzola F, et al. Adiponectin in essential hypertension. J Nephrol 2002;15:507–511.

    PubMed  CAS  Google Scholar 

  77. Adamczak M, Wiecedilcek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens 2003;16:72–75.

    Article  PubMed  CAS  Google Scholar 

  78. Furuhashi M, Ura N, Hishiura K, et al. Blockade of renin-angiotensin system increases adiponectin concentration in patients with essential hypertension. Hypertension 2003;42:76–81.

    Article  PubMed  CAS  Google Scholar 

  79. Iwashima Y, Katsuya T, Ishikawa K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004;43:1318–1323.

    Article  PubMed  CAS  Google Scholar 

  80. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003;107:398–404.

    Article  PubMed  CAS  Google Scholar 

  81. Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997;46:860–867.

    Article  PubMed  CAS  Google Scholar 

  82. Festa A, D’Agostino R, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: The Insulin Resistance Atherosclerosis Study. Diabetes 2002;51:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  83. Kerins DM, Hao I, Vaughan DE: Angiotensin induction of PAI-1 expression in endothelial cells is mediated by hexapeptide angiotensin IV. J Clin Invest 1995;96:2515–2520.

    PubMed  CAS  Google Scholar 

  84. Nakamura S, Nakamura I, Ma L-J, Vaughan DE, Fogo AB: Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 2000;58:251–259.

    Article  PubMed  CAS  Google Scholar 

  85. Ailhaud G, Fukamizu A, Massiera F, Negrel R, Saint-Marc P, Teboul M. Angiotensinogen, angiotensin II and adipose tissue development. Int J Obes Relat Metab Disord 2000;24(Suppl 4):S33–S35.

    PubMed  CAS  Google Scholar 

  86. MA LJ, Mao SL, Taylor KL, et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor I. Diabetes 2004;53:336–346.

    Article  PubMed  CAS  Google Scholar 

  87. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259(5091):87–91.

    Article  PubMed  CAS  Google Scholar 

  88. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue: regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995;95(5):2111–2119.

    PubMed  CAS  Google Scholar 

  89. Winkler G, Lakatos P, Salamon F, Nagy Z, Speer G, Kovacs M. Elevated serum TNF-a level as a link between endothelial dysfunction and insulin resistance in normotensive obese patients. Diabet Med 1999;16:207–211.

    Article  PubMed  CAS  Google Scholar 

  90. Ferreri NR, Zhao Y, Takizawa H, McGiff JC. Tumor necrosis factor-α-angiotensin interactions and regulation of blood pressure. J Hypertens 1997;15:1481–1484.

    Article  PubMed  CAS  Google Scholar 

  91. Pausova Z, Deslauriers B, Gaudet D, et al. Role of tumor necrosis factor-α gene locus in obesity and obesity-associated hypertension in French Canadians. Hypertension 2000;36:14–19.

    PubMed  CAS  Google Scholar 

  92. Fernandez-Real JM, Laínez B, Vendrell J, et al. Shedding of tumor necrosis factor-α receptors, blood pressure and insulin sensitivity in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2002;282:E952–E959.

    PubMed  CAS  Google Scholar 

  93. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998;83:847–850.

    Article  PubMed  CAS  Google Scholar 

  94. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J Clin Endocrinol Metab 1997;82:4196–4200.

    Article  PubMed  CAS  Google Scholar 

  95. Straub RH, Hense HW, Andus J, Schölmerich J, Riegger AJ, Schunkert H. Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: a population-based study. J Clin Endocrinol Metab 2000;85:1340–1344.

    Article  PubMed  CAS  Google Scholar 

  96. Fernandez-Real JM, Vayreda M, Richart C, Gutierrez C, Broch M, Vendrell J, Ricart W. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab 2001;86(3):1154–1159.

    Article  PubMed  CAS  Google Scholar 

  97. Humphries SE, Luong LA, Ogg MS, Hawe E, Miller GJ. The interleukin-6-174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J 2001;22:2243–2252.

    Article  PubMed  CAS  Google Scholar 

  98. Pola R, Flex A, Gaetani E, Pola P, Bernabei R. The −174 G/C polymorphism of the interleukin-6 gene promoter and essential hypertension in an elderly Italian population. J Hum Hypertens 2002;16:637–640.

    Article  PubMed  CAS  Google Scholar 

  99. Philip-Couderc P, Smih F, Pelat M, et al. Cardiac transcriptome analysis in obesity-related hypertension. Hypertension 2003;41:414–421.

    Article  PubMed  CAS  Google Scholar 

  100. Carroll JF, Summers RL, Dzielak DJ, Cockrell K, Montani JP, Mizelle HL. Diastolic compliance is reduced in obese rabbits. Hypertension 1999;33:811–815.

    PubMed  CAS  Google Scholar 

  101. Kortelainen ML, Sarkioja T. Coronary atherosclerosis and myocardial hypertrophy in relation to body fat distribution in healthy women: an autopsy study on 33 violent deaths. Int J Obes 1997;21:43–49.

    Article  CAS  Google Scholar 

  102. Hense HW, Gneiting B, Muscholl M, et al. The associations of body size and body composition with left ventricular mass: impacts for indexation in adults. J Am Coll Cardiol 1998;32:451–457.

    Article  PubMed  CAS  Google Scholar 

  103. Kuch B, Hense HW, Gneiting B, et al. Body composition and prevalence of left ventricular hypertrophy. Circulation 2000;102:405–410.

    PubMed  CAS  Google Scholar 

  104. Alpert MA, Terry BE, Mulekar M, et al. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol 1997;80:736–740.

    Article  PubMed  CAS  Google Scholar 

  105. De Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP, on behalf of the MAVI Investigators. Prognosis of inappropriate left ventricular mass in hypertension: The MAVI Study. Hypertension 2002;40:470–476.

    Article  PubMed  Google Scholar 

  106. Verwaerde P, Senard JM, Galinier M, et al. Changes in short-term variability of blood pressure and heart rate during the development of obesity-associated hypertension in high-fat fed dogs. J Hypertens 1999;17:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  107. Kikuya M, Hozawa A, Ohokubo T, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension 2000;36:901–906.

    PubMed  CAS  Google Scholar 

  108. Sutton-Tyrrell K, Newman A, Simonsick EM, et al, for the Health ABC Investigators. Aortic stiffness is associated with visceral adiposity in older adults enrolled in the study of health, aging, and body composition. Hypertension 2001;38:429–433.

    PubMed  CAS  Google Scholar 

  109. Mather KJ, Mirzamohammadi B, Lteif A, Steinberg HO, Baron AD. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes 2002;51:3517–3523.

    Article  PubMed  CAS  Google Scholar 

  110. Rich S, McLaughlin VV. Endothelin receptor blockers in cardiovascular disease. Circulation 2003;108:2184–2190.

    Article  PubMed  CAS  Google Scholar 

  111. Haynes WG, Strachan FE, Webb DJ. Endothelin ETA and ETB receptors mediate vasoconstriction of human resistance and capacitance vessels in vivo. Circulation 1995;92:357–363.

    PubMed  CAS  Google Scholar 

  112. Cardillo C, Campia U, Iantorno M, Panza JA. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension 2004;43:36–40.

    Article  PubMed  CAS  Google Scholar 

  113. Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes 2002;26:754–764.

    Article  CAS  Google Scholar 

  114. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest 1996;97:2601–2610.

    PubMed  CAS  Google Scholar 

  115. Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 1999;48(9):1856–1862.

    Article  PubMed  CAS  Google Scholar 

  116. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001;104:545–556.

    Article  PubMed  CAS  Google Scholar 

  117. Mark AL, Correia M, Morgan DA, Shaffer RA, Haynes WG. Obesity-induced hypertension new concepts from the emerging biology of obesity. Hypertension 1999;33(Pt II):537–541.

    PubMed  CAS  Google Scholar 

  118. Izawa H, Yamada Y, Okada T, Tanaka M, Hirayama H, Yokota M. Prediction of genetic risk for hypertension. Hypertension 2003;41:1035–1040.

    Article  PubMed  CAS  Google Scholar 

  119. Sjostrom CD, Lissner L, Wedel H, Sjostrom L. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obes Res 1999;7:477–484.

    PubMed  CAS  Google Scholar 

  120. NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Overweight and Obesity in adults. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res 1998;6(Suppl 2):51S–210S.

    Google Scholar 

  121. Wassertheil-Smoller S, Blaufox D, Oberman AS, Langford HG, Davis BR, Wylie-Rosett J. The Trial of Antihypertensive Interventions and Management (TAIM) Study: adequate weight loss, alone and combined with drug therapy in the treatment of mild hypertension. Arch Intern Med 1992;152:131–136.

    Article  PubMed  CAS  Google Scholar 

  122. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension 2000;35:544–549.

    PubMed  CAS  Google Scholar 

  123. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people With high-normal blood pressure: the Trials of Hypertension Prevention, Phase II. Arch Intern Med 1997;157(6):657–667.

    Article  Google Scholar 

  124. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 2002;136:493–503.

    PubMed  Google Scholar 

  125. Hu G, Barengo NC, Tuomilehto J, Lakka TA, Nissinen A, Jousilahti P. Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 2004;43:25–30.

    Article  PubMed  CAS  Google Scholar 

  126. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343–1350.

    Article  PubMed  CAS  Google Scholar 

  127. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med 2001;344:3–10.

    Article  PubMed  CAS  Google Scholar 

  128. Akita S, Sacks FM, Svetkey LP, Conlin PR, Kimura G for the DASH-Sodium Trial Collaborative Research Group. Effects of the dietary approaches to stop hypertension (DASH) diet on the pressure-natriuresis relationship. Hypertension 2003;42:8–13.

    Article  PubMed  CAS  Google Scholar 

  129. Stevens VJ, Obarzanek E, Cook NR, et al. Long-term weight loss and changes in blood pressure: results of the the Trials of Hypertension Prevention, phase II. Ann Intern Med 2001;134:1–11.

    PubMed  CAS  Google Scholar 

  130. Seals DR, Tanaka H, Clevenger CM, et al. Blood pressure reductions with exercise and sodium restriction in postmenopausal women with elevated systolic pressure: role of arterial stiffness. J Am Coll Cardiol 2002;38:506–513.

    Article  Google Scholar 

  131. Reisin E, Weir MR, Falkner B, Hutchinson HG, Anzalone DA, Tuch ML. Lisinopril versus hydrochlorthiazide in obese hypertensive patients: a multicenter placebo-controlled trial. Treatment in Obese Patients with Hypertension (TROPHY) Study Group. Hypertension 1997;30:140–145.

    PubMed  CAS  Google Scholar 

  132. Grassi G, Seravalle G, Dell’Oro R, et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals; results of the CROSS study. J Hypertens 2003;21:1761–1769.

    Article  PubMed  CAS  Google Scholar 

  133. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002;288(23):2981–2997.

    Article  Google Scholar 

  134. UKPDS 38 UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. BMJ 1998;317:703–713.

    Google Scholar 

  135. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood pressure lowering and lowdose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. Lancet 1998;351:1755–1762.

    Article  PubMed  CAS  Google Scholar 

  136. David CJ, Pressel SL, Cutler JA, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. JAMA 1996;276(23):1886–1892.

    Article  Google Scholar 

  137. Mykkanen L, Kuusisto J, Pyorala K, Laakso M, Haffner SM. Increased risk of non-insulin-dependent diabetes mellitus in elderly hypertensive subjects. J Hypertens 1994;12:1425–1432.

    PubMed  CAS  Google Scholar 

  138. Fletcher AE. Adverse treatment effects in the trial of the European Working Party on High Blood Pressure in the Elderly. Am J Med 1991;90:42S–44S.

    Article  PubMed  CAS  Google Scholar 

  139. Neaton JD, Grimm RH Jr, Prineas RJ, Stamler J, Grandits GA, Elmer PJ. Treatment of mild hypertension study: final results. JAMA 1993;270:713–724.

    Article  PubMed  CAS  Google Scholar 

  140. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus: Atherosclerosis Risk in Communities Study. N Engl J Med 2000;342(13):905–912.

    Article  PubMed  CAS  Google Scholar 

  141. Sowers JR, Bakris GL. Antihypertensive therapy and the risk of type 2 diabetes mellitus. N Engl J Med 2000;342(13):969, 970.

    Article  PubMed  CAS  Google Scholar 

  142. Verdecchia P, Borgioni C, Angeli F, et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension 2004;43:963–969.

    Article  PubMed  CAS  Google Scholar 

  143. Bakris GL, Sowers JR. When does new onset diabetes resulting from antihypertensive therapy increase cardiovascular risk. Hypertension 2004;43:941, 942.

    Article  PubMed  CAS  Google Scholar 

  144. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342:145–153.

    Article  PubMed  CAS  Google Scholar 

  145. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy [published erratum appears in Lancet 2000;356:860]. Lancet 2000;355:253–259.

    Article  Google Scholar 

  146. Brenner BM, Cooper ME, De Zeeuw D, et al., the RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–869.

    Article  PubMed  CAS  Google Scholar 

  147. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P, the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870–878.

    Article  PubMed  CAS  Google Scholar 

  148. Lindholm LH, Ibsen H, Dahlof B, et al. for the LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359(9311):1004–1010.

    Article  PubMed  CAS  Google Scholar 

  149. Lithell H, Hansson L, Skoog I, et al; SCOPE Study Group. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 2003;21(5):875–886.

    Article  PubMed  CAS  Google Scholar 

  150. Pfeffer MA, Swedberg K, Granger CB, et al. CHARM Investigators and Committees. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 2003;362(9386):759–766.

    Article  PubMed  CAS  Google Scholar 

  151. Julius S, Kjeldsen SE, Weber M, et al. for the VALUE trial group. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 2004;363:2022–2031.

    Article  PubMed  CAS  Google Scholar 

  152. Zanella MT, Kohlmann O Jr, Ribeiro AB. Treatment of obesity hypertension and diabetes syndrome. Hypertension 2001;38(Pt 2):705–708.

    PubMed  CAS  Google Scholar 

  153. Tuomilehto J, Rastenyte R, Birkenhager WH, et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. N Engl J Med 1999;340:677–684.

    Article  PubMed  CAS  Google Scholar 

  154. Jacob S, Balletshofer B, Henriksen EJ, et al. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers. Blood Press 1999;8:261–268.

    Article  PubMed  CAS  Google Scholar 

  155. Giugliano D, De Rosa N, Di Maro G, et al. Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care 1993;16:1387–1390.

    Article  PubMed  CAS  Google Scholar 

  156. Buchanan TA, Meehan WP Jeng YY, yang D, Chan TM, Nadler JL. Blood pressure lowering by pioglitazone: evidence for a direct vascular effect. J Clin Invest 1995;96:354–360.

    Article  PubMed  CAS  Google Scholar 

  157. Giugliano D, Quatraro A, Consoli G, et al. Metformin for obese, insulin-treated diabetic patients: improvement in glycaemic control and reduction of metabolic risk factors. Eur J Clin Pharmacol 1993;44:107–112.

    Article  PubMed  CAS  Google Scholar 

  158. Peuler JD, Miller JA, Bourghli M, Zammam HY, Soltis EE, Sowers JR. Disparate effects of antidiabetic drugs on arterial contraction. Metabolism 1997;46:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  159. Muntzel MS, Hamidou I, Barrett S. Metformin attenuates salt-induced hypertension in spontaneously hypertensive rats. Hypertension 1999;33(5):1135–1140.

    PubMed  CAS  Google Scholar 

  160. Chiasson J, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, for the STOP-NIDDM Trial Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002;359(9323):2072–2077.

    Article  PubMed  CAS  Google Scholar 

  161. Dobrian AD, Schriver SD, Khraibi AA, Prewitt RL. Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension 2004;43:48–56.

    Article  PubMed  CAS  Google Scholar 

  162. Trivedi M, Marwaha A, Lokhandwala M. Rosiglitazone restores G-protein coupling, recruitment, and function of renal dopamine D1A receptor in obese zucker rats. Hypertension 2004;43(Pt 2):376–382.

    Article  PubMed  CAS  Google Scholar 

  163. Reginato MJ, Lazar MA. Mechanisms by which thiazolidinediones enhance insulin action. Trends Endocrinol Metab 1999;10:9–13.

    Article  PubMed  CAS  Google Scholar 

  164. Berger JP, Petro AE, Macnaul KL, et al. Distinct properties and advantages of a novel peroxisome proliferator-activated proteinγ selective modulator. Mol Endocrinol 2003;17(4):662–676.

    Article  PubMed  CAS  Google Scholar 

  165. Pischon T, Sharma AM. Recent developments in the treatment of obesity-related hypertension. Curr Opin Nephrol Hypertens 2002;11(5):497–502.

    Article  PubMed  Google Scholar 

  166. McMahon FG, Weinstein SP, Rowe E, et al. Sibutramine is safe and effective for weight loss in obese patients whose hypertension is well controlled with angiotensin-converting enzyme inhibitors. J Hum Hypertens 2002;16:5–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tan, A.S., Brietzke, S.A., Gardner, D.W., Sowers, J.R. (2006). Obesity, Diabetes, and Hypertension. In: Mantzoros, C.S. (eds) Obesity and Diabetes. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59259-985-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-985-1_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-538-5

  • Online ISBN: 978-1-59259-985-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics