Skip to main content

Part of the book series: Nutrition and Health ((NH))

  • 1489 Accesses

Abstract

Zinc plays an essential role in growth, neurodevelopment, immunity, reproduction, and a wide range of physiological processes, including metabolism of nucleic acids, protein, and lipids, synthesis of hormones, and apoptosis. Zinc deficiency is common in developing countries worldwide (1), and zinc supplementation studies suggest that zinc deficiency may be widespread in North America among infants, children, and pregnant women (2). Acrodermatitis enteropathica, an inborn error of zinc metabolism, is characterized by compromised immunity and skin and ocular findings. Zinc deficiency can also occur in Crohn disease and among individuals receiving total parenteral nutrition without sufficient zinc. The retina and choroid contain the highest concentrations of zinc of any tissue in the human body. Zinc plays an important role in eye health, and recent investigations have demonstrated a causal link between zinc status and age-related macular degeneration. The role of zinc in age-related maculopathy and age-related macular degeneration are presented in greater detail in Chapter 4, under Subheading 5.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shrimpton R. Zinc deficiency B is it widespread but under-recognized? In: Subcommittee on Nutrition News, vol 9. Geneva, United Nations Administrative Committee on Coordination: 1993; pp. 24–27.

    Google Scholar 

  2. Hambidge M. Human zinc deficiency. J Nutr 2000;130:1344S–1349S.

    CAS  Google Scholar 

  3. Trousseau A, Pidoux H. Traité de Thérapeutique et de Matière Médicale. Quatrième Édition. Paris, Béchet Jeune: 1851.

    Google Scholar 

  4. Braun A. Philos. Mag 1854;4th series 8:156.

    Google Scholar 

  5. Raulin J. Études chimiques sur la végétation. Thèses presentées à la Faculte des Sciences de Paris. Paris, Masson et fils: 1870.

    Google Scholar 

  6. Raoult F, Breton H. Sur la présence ordinaire du cuivre et du zinc dans le corps de l’homme. Comptes rendus hebdomadaires des séances de l’Académie de Sciences 1877;85:40–42.

    Google Scholar 

  7. Lechartier G, Bellamy F. Sur la présence du zinc dans le corps des animaux et dans les végétaux. Comptes rendus hebdomadaires des séances de l’Académie de Sciences 1877;84:687–690.

    Google Scholar 

  8. Lutz RE. The normal occurrence of zinc in biologic materials: a review of the literature, and a study of the normal distribution of zinc in the rat, cat, and man. J Ind Hyg 1926;8:177–207.

    CAS  Google Scholar 

  9. Birckner V. The zinc content of some food products. J Biol Chem 1919;38:191–203.

    CAS  Google Scholar 

  10. Bertrand G, Benzon B. Sur l’importance du zinc dans l’alimentation des animaux. Expériences sur la souris. Comptes rendus hebdomadaires des séances de l’Académie de Sciences 1922;175:289–292.

    CAS  Google Scholar 

  11. McHargue JS. Further evidence that small quantities of copper, manganese and zinc are factors in the metabolism of animals. Am J Physiol 1926;77:245–255.

    CAS  Google Scholar 

  12. Hubbell RB, Mendel LB. Zinc and normal nutrition. J Biol Chem 1927;75:567–586.

    CAS  Google Scholar 

  13. Bertrand G, Benzon B. Recherches sur l’importance du zinc dans l’alimentation des animaux. Expériences sur la souris. Bull Soc Chim Biol 1935;6:203–216.

    Google Scholar 

  14. Todd WR, Elvehjem CA, Hart EB. Zinc in the nutrition of the rat. Am J Physiol 1934;107:146–156.

    CAS  Google Scholar 

  15. Stirn FE, Elvehjem CA, Hart EB. The indispensability of zinc in the nutrition of the rat. J Biol Chem 1935; 109:347–359.

    CAS  Google Scholar 

  16. Hove E, Elvehjem CA, Hart EB. The physiology of zinc in the nutrition of the rat. Am J Physiol 1937; 119:768–775.

    CAS  Google Scholar 

  17. Hove E, Elvehjem CA, Hart EB. Further studies on zinc deficiency in rats. Am J Physiol 1938;124: 750–758.

    CAS  Google Scholar 

  18. Follis RH, Day HG, McCollum EV. Histological studies of the tissues of rats fed a diet extremely low in zinc. J Nutr 1941;22:223–237.

    CAS  Google Scholar 

  19. Keilin D, Mann T. Carbonic anhydrase. Nature 1939;144:442–443.

    CAS  Google Scholar 

  20. Cloetens R. Reversible Abspaltung des zweiten Metalles der alkalischen Phosphatase. II. Biochem Z 1941;308:37.

    CAS  Google Scholar 

  21. Mathews AP. Vitamins, Minerals and Hormones. Baltimore, William Wood and Company, 1937.

    Google Scholar 

  22. Daniel EP. Trace elements. In: United States Department of Agriculture. Food and Life. Yearbook of Agriculture 1939. Washington, D.C., U. S. Government Printing Office: 1939; pp. 213–220.

    Google Scholar 

  23. Shohl AT. Mineral Metabolism. New York, Reinhold Publishing Corporation, 1939.

    Google Scholar 

  24. Darby WJ. Trace elements in human nutrition. In: Herriott RM (ed). Symposium on Nutrition. The Physiological Role of Certain Vitamins and Trace Elements. Baltimore, Johns Hopkins Press: 1953; pp. 229–261.

    Google Scholar 

  25. Youmans JB. Nutritional Deficiencies: Diagnosis and Treatment. Philadelphia, J. B. Lippincott, 1943.

    Google Scholar 

  26. Eggleton WGE. The zinc content of epidermal structures in beriberi. Biochem J 1939;33:403–406.

    CAS  Google Scholar 

  27. Eggleton WGE. The zinc and copper content of blood in beriberi in conditions associated with protein deficiency and in diabetes mellitus. Chinese J Physiol 1940;15:33–44.

    CAS  Google Scholar 

  28. Drinker ER, Fehnel JE, March M. Normal excretion of zinc in the urine and feces of man. J Biol Chem 1927;72:375–383.

    CAS  Google Scholar 

  29. McCance RA, Widdowson EM. The absorption and excretion of zinc. Biochem J 1942;36:692–696.

    CAS  Google Scholar 

  30. Tribble HM, Scoular FI. Zinc metabolism of young college women on self-selected diets. J Nutr 1954; 52:209–216.

    CAS  Google Scholar 

  31. Tucker HF, Salmon WD. Parakeratosis or zinc deficiency disease in the pig. Proc Soc Exp Biol Med 1955;88:613–616.

    CAS  Google Scholar 

  32. Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism, and geophagia. Am J Med 1961;31:532–546.

    CAS  Google Scholar 

  33. Prasad AS, Miale A, Farid Z, Schulert AR, Sandstead HH. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism, and dwarfism. J Lab Clin Med 1963;61:537–549.

    CAS  Google Scholar 

  34. Sandstead HH, Prasad AS, Schulert AR, Farid Z, Miale A Jr, Bassily S, Darby WJ. Human zinc deficiency, endocrine manifestations, and response to treatment. Am J Clin Nutr 1967;20:422–442.

    CAS  Google Scholar 

  35. Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat RM, Reinhold JG. Zinc deficiency in man. The Shiraz experiment. Am J Med 1972;53:277–284.

    CAS  Google Scholar 

  36. Prasad AS. Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 1991;53:403–412.

    CAS  Google Scholar 

  37. King JC, Cousins RJ. Zinc. In: Shils ME, Shike M, Ross AC, Cabellero B, Cousins R. Modern Nutrition in Health and Disease. Tenth Edition. Philadelphia, Lippincott Williams & Wilkins: 2006; pp. 271–285.

    Google Scholar 

  38. Pennington JAT. Bowes & Church’s Food Values of Portions Commonly Used. Philadelphia, Lippincott Williams & Wilkins, 1998.

    Google Scholar 

  39. O’Dell BL, Savage JE. Effect of phytate on zinc availability. Proc Soc Exp Biol Med 1960;103:304–309.

    CAS  Google Scholar 

  40. Turnlund JR, King JC, Keyes WR, Gong B, Michel MC. A stable isotope study of zinc absorption in young men: effects of phytate and α-cellulose. Am J Clin Nutr 1984;40:1071–1077.

    CAS  Google Scholar 

  41. Solomons NW, Jacob RA, Pineda O, Viteri FE. Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. J Lab Clin Med 1979;94:335–343.

    CAS  Google Scholar 

  42. Mills CF. Dietary interactions involving trace elements. Ann Rev Nutr 1985;5:173–193.

    CAS  Google Scholar 

  43. Lönnderdal B, Cederblad Å, Davidsson L, Sandström B. The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am J Clin Nutr 1984;40:1064–1070.

    Google Scholar 

  44. Sandström B, Cederblad Å, Lönnderdal B. Zinc absorption from human milk, cow’s milk, and infant formulas. Am J Dis Child 1983;137:726–729.

    Google Scholar 

  45. Gibson RS, Yeudall F, Drost N, Mtitimuni B, Cullinan T. Dietary interventions to prevent zinc deficiency. Am J Clin Nutr 1998;68(suppl):484S–487S.

    CAS  Google Scholar 

  46. Weigand E. Absorption of trace elements: zinc. Int J Vitam Nutr Res 1983;25(suppl):67–81.

    CAS  Google Scholar 

  47. Steel L, Cousins RJ. Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am J Physiol 1985;248:G46–G53.

    CAS  Google Scholar 

  48. Raffaniello RD, Wapnir RA. Zinc uptake by isolated rat enterocytes: effect of low molecular weight ligands. Proc Soc Exp Biol Med 1989;192:219–224.

    CAS  Google Scholar 

  49. Jackson MJ, Giugliano R, Giugliano LG, Oliveira EF, Shrimpton R, Swainbank IG. Stable isotope metabolic studies of zinc nutrition in slum-dwelling lactating women in the Amazon valley. Br J Nutr 1988;59:193–203.

    CAS  Google Scholar 

  50. Hempe JM, Cousins RJ. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc Natl Acad Sci USA 1991;88:9671–9674.

    CAS  Google Scholar 

  51. Cousins RJ, Lee-Ambrose LM. Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J Nutr 1992;122:56–64.

    CAS  Google Scholar 

  52. Smith KT, Failla ML, Cousins RJ. Identification of albumin as the plasma carrier for zinc absorption by perfused rat intestine. Biochem J 1979;184:627–633.

    CAS  Google Scholar 

  53. Scott BJ, Bradwell AR. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 1983;29:629–633.

    CAS  Google Scholar 

  54. Mills CF (ed). Zinc in Human Biology. New York, Springer Verlag, 1988.

    Google Scholar 

  55. Cousins RJ. Zinc. In: Filer JL, Ziegler E (eds). Present Knowledge in Nutrition, 7th edition. Washington, International Life Sciences Institute Press: 1996; pp. 293–306.

    Google Scholar 

  56. Galin MA, Nano HD, Hall T. Ocular zinc concentration. Invest Ophthalmol 1962;1:142–147.

    CAS  Google Scholar 

  57. Krebs NF, Reidinger CJ, Hartley S, Robertson AD, Hambidge KM. Zinc supplementation during lactation: effects on maternal status and milk concentrations. Am J Clin Nutr 1995;61:1030–1036.

    CAS  Google Scholar 

  58. Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 1994;102(suppl 2):5–46.

    CAS  Google Scholar 

  59. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990;29:5647–5659.

    CAS  Google Scholar 

  60. McCall KA, Huang CC, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr 2000; 130:1437S–1446S.

    CAS  Google Scholar 

  61. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science 1996; 271:1081–1085.

    CAS  Google Scholar 

  62. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 2000;130:1471S–1483S.

    CAS  Google Scholar 

  63. Bettger WJ, O’Dell BL. Minireview: a critical physiological role of zinc in the structure and function of biomembranes. Life Sci 1981;28:1425–1438.

    CAS  Google Scholar 

  64. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 1998;68(suppl):447S–463S.

    CAS  Google Scholar 

  65. Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radic Biol Med 1993;14:325–337.

    CAS  Google Scholar 

  66. Marklund SL, Westman NG, Lundgren E, Roos G. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 1982;42:1955–1961.

    CAS  Google Scholar 

  67. Ugarte M, Osborne NN. Zinc in the retina. Prog Neurobiol 2001;64:219–249.

    CAS  Google Scholar 

  68. Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z. Zinc and the eye. J Am Coll Nutr 2001;20: 106–118.

    CAS  Google Scholar 

  69. Fabe JS, Grahn BH, Paterson PG. Zinc concentration of selected ocular tissues in zinc-deficient rats. Biol Trace Elem Res 2000;75:43–52.

    CAS  Google Scholar 

  70. Bettger WJ, O’Dell BL. Physiological roles of zinc in the plasma membrane of mammalian cells. J Nutr Biochem 1993;4:194–207.

    CAS  Google Scholar 

  71. Shuster TA, Martin F, Nagy AK. Zinc causes an apparent increase in rhodopsin phosphorylation. Curr Eye Res 1996;15:1019–1024.

    CAS  Google Scholar 

  72. Dorea JG, Olson JA. The rate of rhodopsin regeneration in the bleached eyes of zinc-deficient rats in the dark. J Nutr 1986;116:121–127.

    CAS  Google Scholar 

  73. Ugarte M, Osborne NN. The localization of free zinc varies in rat photoreceptors during light and dark adaptation. Exp Eye Res 1999;69:459–461.

    CAS  Google Scholar 

  74. Miceli MV, Tate DJ Jr, Alcock NW, Newsome DA. Zinc deficiency and oxidative stress in the retina of pigmented rats. Invest Ophthalmol Vis Sci 1999;40:1238–1244.

    CAS  Google Scholar 

  75. Wu SM, Qiao X, Noebels JL, Yang XL. Localization and modulatory actions of zinc in vertebrate retina. Vision Res 1993;33:2611–2616.

    CAS  Google Scholar 

  76. Qian H, Li L, Chappell RL, Ripps H. GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. J Neurophysiol 1997;78:2402–2412.

    CAS  Google Scholar 

  77. Gottschall-Pass KT, Grahn BH, Gorecki DKJ, Paterson PG. Oscillatory potentials and light microscopic changes demonstrate an interaction between zinc and taurine in the developing rat retina. J Nutr 1997;127:1206–1213.

    CAS  Google Scholar 

  78. Gottschall-Pass KT, Grahn BH, Gorecki DKJ, Semple HA, Paterson PG. Depression of the electroretinogram in rats deficient in zinc and taurine during prenatal and postnatal life. J Nutr Biochem 1998; 9:621–628.

    CAS  Google Scholar 

  79. Leure-Dupree AE, Bridges DB. Changes in retinal morphology and vitamin A metabolism as a consequence of decreased zinc availability. Retina 1982;4:294–302.

    Google Scholar 

  80. Ketola HG. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J Nutr 1979;109: 965–969.

    CAS  Google Scholar 

  81. Murata T, Okazawa Y, Hinokuma R. Studies on the trace elements in the crystalline lens. Folia Ophthalmol (Japan) 1972;23:648–652.

    Google Scholar 

  82. Murata T, Taura Y. Study of trace metallic elements in the lens. Ophthalmol Res 1975;7:8–14.

    Google Scholar 

  83. Baldwin GF, Bentley PJ. The zinc metabolism of the amphibian lens. Exp Eye Res 1980;30:333–343.

    CAS  Google Scholar 

  84. Heinitz M. Klinisch-biochemische Aspekte einer Prophylaxe und Therapie der senilen Katarakt mit Zinkaspartat. Klin Monatsbl Augenheilk 1978;172:778–783.

    CAS  Google Scholar 

  85. Berman MD, Manabe R. Corneal collagenases: evidence for zinc metalloenzymes. Ann Ophthalmol 1973;5:1193–1209.

    CAS  Google Scholar 

  86. Hubbard GB, Herron BE, Andrews JS, Elliott JH. Influence of topical and oral zinc upon corneal wound healing. Br J Ophthalmol 1969;53:407–411.

    CAS  Google Scholar 

  87. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molbdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, National Academy Press, 2001.

    Google Scholar 

  88. Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD. Zinc intake of the U.S. population: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 2000;130:1367S–1373S.

    CAS  Google Scholar 

  89. Sandstead HH. Is zinc deficiency a public health problem? Nutrition 1995;11:87–92.

    CAS  Google Scholar 

  90. Vallee BL, Wacker WEC, Bartholomay AF, Robin ED. Zinc metabolism in hepatic dysfunction. I. Serum zinc concentrations in Laínnec’s cirrhosis and their validation by sequential analysis. N Engl J Med 1956; 255:403–408.

    CAS  Google Scholar 

  91. Wood RJ. Assessment of marginal zinc status in humans. J Nutr 2000;130:1350S–1354S.

    CAS  Google Scholar 

  92. Sauberlich HE. Laboratory Tests for the Assessment of Nutritional Status. Second edition. Boca Raton, CRC, 1999.

    Google Scholar 

  93. Brown KH, Lanata CF, Yuen ML, Peerson JM, Butron B, Lönnerdal B. Potential magnitude of the misclassification of a population’s trace element status due to infection: example from a survey of young Peruvian children. Am J Clin Nutr 1993;58:549–554.

    CAS  Google Scholar 

  94. Ruz M, Solomons NW, Mejia LA, Chew F. Alterations of circulating micronutrients with overt and occult infections in anaemic Guatemalan preschool children. Int J Food Sci Nutr 1995;46:257–265.

    CAS  Google Scholar 

  95. Friis H, Ndhlovu P, Kaondera K, et al. Serum concentration of micronutrients in relation to schistosomiasis and indicators of infection: a cross-sectional study among rural Zimbabwean school children. Eur J Clin Nutr 1996;50:386–391.

    CAS  Google Scholar 

  96. Brown KH. Effect of infections on plasma zinc concentrations and implications for zinc status assessment in low-income countries. Am J Clin Nutr 1998;68(suppl):425S–429S.

    CAS  Google Scholar 

  97. Caulfield LE, Zavaleta N, Shankar AH, Merialdi M. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am J Clin Nutr 1998;68:499S–508S.

    CAS  Google Scholar 

  98. Jameson S. Zinc status in pregnancy: the effect of zinc therapy on perinatal mortality, prematurity, and placental ablation. Ann NY Acad Sci 1993;678:178–192.

    CAS  Google Scholar 

  99. Black MM. Zinc deficiency and child development. Am J Clin Nutr 1998;68:464S–469S.

    CAS  Google Scholar 

  100. Danbolt N, Closs K. Akrodermatitis enteropathica. Acta Derm Venerol 1943;23:127–169.

    Google Scholar 

  101. Wende GW. Epidermolysis bullosa hereditaria: report of a case presenting unusual features. J Cut Genito-Urin Dis 1902;20:537–547.

    Google Scholar 

  102. Dillaha CJ, Lorincz AL. Enteropathic acrodermatitis (Danbolt): successful treatment with Diodoquin? (diiodohydroxyquinoline). Arch Dermatol Syphil 1953;67:324–326.

    CAS  Google Scholar 

  103. Lindström B. Familial acrodermatitis enteropathica in an adult. Acta Derm Venerol 1963;43:522–527.

    Google Scholar 

  104. Tompkins RR, Livingood CS. Acrodermatitis enteropathica persisting into adulthood. Arch Dermatol 1969;99:190–195.

    CAS  Google Scholar 

  105. Van Balen AT. Toxic damage to the optic nerve caused by iodochlorhydroxyquinoline (enterovioform). Ophthalmologica 1971;163:8–9.

    Google Scholar 

  106. Hache JC, Woillez M, Breuillard F, Desmons F. La névrite optique des iodo-quinoléines. A propos d’un cas d’acrodermatite entéropathique. Bull Soc Ophtal Fran 1973;73:501–503.

    CAS  Google Scholar 

  107. Barnes PM, Moynahan EJ. Zinc deficiency in acrodermatitis enteropathica: multiple dietary intolerance treated with synthetic diet. Proc Roy Soc Med 1973;66:327–329.

    CAS  Google Scholar 

  108. Moynahan EJ. Acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet 1974;2:399–400.

    CAS  Google Scholar 

  109. Neldner KH, Hambidge KM. Zinc therapy of acrodermatitis enteropathica. N Engl J Med 1975;292: 879–882.

    CAS  Google Scholar 

  110. Julius R, Schulkind M, Sprinkle T, Rennert O. Acrodermatitis enteropathica with immune deficiency. J Pediatr 1973;83:1007–1011.

    CAS  Google Scholar 

  111. Endre L, Katona Z, Gyurkovits K. Zinc deficiency and cellular immune deficiency in acrodermatitis enteropathica. Lancet 1975;1:1196.

    CAS  Google Scholar 

  112. Oleske JM, Westphal ML, Shore S, Gorden D, Bogden JD, Nahmias A. Zinc therapy of depressed cellular immunity in acrodermatitis enteropathica: its correction. Am J Dis Child 1979;133:915–918.

    CAS  Google Scholar 

  113. Wang K, Pugh EW, Griffen S, et al. Homozygosity mapping places the acrodermatitis enteropathica gene on chromosomal region 8q24.3. Am J Hum Genet 2001;68:1055–1060.

    CAS  Google Scholar 

  114. Bleck O, Ashton GH, Mallipeddi R, et al. Genomic localization, organization and amplification of the human zinc transporter gene, ZNT4, and exclusion as a candidate gene in different clinical variants of acrodermatitis enteropathica. Arch Dermatol Res 2001;293:392–396.

    CAS  Google Scholar 

  115. Kury S, Devilder MC, Avet-Loiseau H, Dreno B, Moisan JP. Expression pattern, genomic structure and evaluation of the human SLC30A4 gene as a candidate for acrodermatitis enteropathica. Hum Genet 2001;109:178–185.

    CAS  Google Scholar 

  116. López-Linares M, Villar M, Muñoz G. Acrodermatitis enteropatica (Nota sobre un nuevo caso). Rev Clin Esp 1962;87:157–160.

    Google Scholar 

  117. Wirsching L Jr. Eye symptoms in acrodermatitis enteropathica. A description of a brother and sister, with corneal changes. Acta Ophthalmol 1962;40:567–574.

    Google Scholar 

  118. Matta CS, Felker GV, Ide CH. Eye manifestations in acrodermatitis enteropathica. Arch Ophthalmol 1975;93:140–142.

    CAS  Google Scholar 

  119. Cameron JD, McClain CJ. Ocular histopathology of acrodermatitis enteropathica. Br J Ophthalmol 1986; 70:662–667.

    CAS  Google Scholar 

  120. Warshawsky RS, Hill CW, Doughman DJ, Harris JE. Acrodermatitis enteropathica. Corneal involvement with histochemical and electron micrographic studies. Arch Ophthalmol 1975;93:194–197.

    CAS  Google Scholar 

  121. Racz P, Kovacs B, Varga L, Ujlaki E, Zombai E, Karbuczky S. Bilateral cataracts in acrodermatitis enteropathica. J Pediatr Ophthalmol Strab 1979;16:180–182.

    CAS  Google Scholar 

  122. Feldberg R, Yassur Y, Ben-Sira I, Varsano I, Zelikovitz I. Keratomalacia in acrodermatitis enteropathica (AE). Metabol Pediatr Ophthalmol 1981;5:207–211.

    CAS  Google Scholar 

  123. Moynahan EJ. Zinc deficiency and disturbances of mood and visual behaviour. Lancet 1976;1:91.

    CAS  Google Scholar 

  124. Leopold IH. Zinc deficiency and visual impairment? Am J Ophthalmol 1978;85:871–875.

    CAS  Google Scholar 

  125. Arakawa T, Tamura T, Igarashi Y, Suzuki H, Sandstead HH. Zinc deficiency in two infants during total parenteral alimentation for diarrhea. Am J Clin Nutr 1976;29:197–204.

    CAS  Google Scholar 

  126. Kay RG, Tasman-Jones C, Pybus J, Whiting R, Black H. A syndrome of acute zinc deficiency during total parenteral alimentation in man. Ann Surg 1976;183:331–340.

    CAS  Google Scholar 

  127. Kay RG, Tasman-Jones C. Acute zinc deficiency in man during intravenous alimentation. Aust N Z J Surg 1975;45:325–330.

    CAS  Google Scholar 

  128. Tucker SB, Schroeter AL, Brown PW Jr, McCall JT. Acquired zinc deficiency: cutaneous manifestations typical of acrodermatitis enteropathica. JAMA 1976;235:2399–2402.

    CAS  Google Scholar 

  129. Weismann K, Hjorth N, Fischer A. Zinc depletion syndrome with acrodermatitis during longterm intravenous feeding. Clin Exp Dermatol 1976;1:237–242.

    CAS  Google Scholar 

  130. Weismann K, Fischer A, Hjorth N. Zink-depleteringssyndrom med acrodermatitis under langvarig parenteral ernæring: To tilfælde behandlet med oral og intravenø zink. Ugeskr Laeger 1976;138:1403–1406.

    CAS  Google Scholar 

  131. Sturniolo GC, Molokhia MM, Shields R, Turnberg LA. Zinc absorption in Crohn’s disease. Gut 1980; 21:387–391.

    CAS  Google Scholar 

  132. Solomons NW, Rosenberg IH, Sandstead HH, Vo-Khactu KP. Zinc deficiency in Crohn’s disease. Digestion 1977;16:87–95.

    CAS  Google Scholar 

  133. McClain C, Soutor C, Zieve L. Zinc deficiency: a complication of Crohn’s disease. Gastroenterology 1980;78:272–279.

    CAS  Google Scholar 

  134. Knox DL, Snip RC, Stark WJ. The keratopathy of Crohn’s disease. Am J Ophthalmol 1980;90:862–865.

    CAS  Google Scholar 

  135. Smith JC Jr, McDaniel EG, Fan FF, Halsted JA. Zinc: a trace element essential in vitamin A metabolism. Science 1973;181:954–955.

    CAS  Google Scholar 

  136. Christian P, West KP Jr. Interactions between zinc and vitamin A: an update. Am J Clin Nutr 1998;68(suppl):435S–441S.

    CAS  Google Scholar 

  137. Huber AM, Gershoff SN. Effects of zinc deficiency on the oxidation of retinol and ethanol in rats. J Nutr 1975;105:1486–1490.

    CAS  Google Scholar 

  138. Morrison SA, Russell RM, Carney EA, Oaks EV. Failure of cirrhotics with hypovitaminosis A to achieve normal dark adaptation performance on vitamin A replacement [abstract]. Gastroenterology 1976;71:922.

    Google Scholar 

  139. Morrison SA, Russell RM, Carney EA, Oaks EV. Zinc deficiency: a cause of abnormal dark adaptation in cirrhotics. Am J Clin Nutr 1978;31:276–281.

    CAS  Google Scholar 

  140. Patek AJ Jr, Haig C. The occurrence of abnormal dark adaptation and its relation to vitamin A metabolism in patients with cirrhosis of the liver. J Clin Invest 1939;18:609–616.

    CAS  Google Scholar 

  141. Russell RM, Morrison SA, Smith FR, Oaks EV, Carney EA. Vitamin-A reversal of abnormal dark adaptation in cirrhosis: study of effects on the plasma retinol transport system. Ann Intern Med 1978;88:622–626.

    CAS  Google Scholar 

  142. McClain CJ, Van Thiel DH, Parker S, Badzin LK, Gilbert H. Alterations in zinc, vitamin A, and retinol-binding protein in chronic alcoholics: a possible mechanism for night blindness and hypogonadism. Alcoholism Clin Exp Res 1979;3:135–141.

    CAS  Google Scholar 

  143. McClain CJ, Su LC, Gilbert H, Cameron D. Zinc-deficiency-induced retinal dysfunction in Crohn’s disease. Dig Dis Sci 1983;28:85–87.

    CAS  Google Scholar 

  144. Christian P, Khatry SK, Yamini S, et al. Zinc supplementation might potentiate the effect of vitamin A in restoring night vision in pregnant Nepalese women. Am J Clin Nutr 2001;73:1045–1051.

    CAS  Google Scholar 

  145. Udomkesmalee E, Dhanamitta S, Sirisinha S, et al. Effect of vitamin A and zinc supplementation on the nutriture of children in northeast Thailand. Am J Clin Nutr 1992;56:50–57.

    CAS  Google Scholar 

  146. Allen LH. Zinc and micronutrient supplements for children. Am J Clin Nutr 1998;68(suppl 2):495S–498S.

    CAS  Google Scholar 

  147. Ruel MT, Bouis HE. Plant breeding: a long-term strategy for the control of zinc deficiency in vulnerable populations. Am J Clin Nutr 1998;68(suppl 2):488S–494S.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

(2007). Zinc and Eye Health. In: Handbook of Nutrition and Ophthalmology. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-979-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-979-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-196-7

  • Online ISBN: 978-1-59259-979-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics