Skip to main content

The Age-Related Proinflammatory State and Eye Disease

  • Chapter
Handbook of Nutrition and Ophthalmology

Part of the book series: Nutrition and Health ((NH))

  • 1466 Accesses

Abstract

A low-grade inflammatory state is common among older adults and has been linked to a variety of common aging-related processes such as insulin resistance, dyslipidemia, coagulation, lymphocyte activation, and increased catabolism, with increased risk of atherosclerosis, sarcopenia, osteoporosis, frailty, disability, cognitive impairment, and mortality. Inflammation has been associated with some eye diseases such as age-related macular degeneration, cataract, and diabetic retinopathy and is likely part of more widespread dysregulation that involves multiple systems. Nutrition plays an important role in the pathogenesis of the proinflammatory state, as antioxidant nutrients such as the plant polyphenols, carotenoids, tocopherols, ascorbate, tocopherols, selenium and other antioxidants are involved in maintaining redox balance. Both dietary and endogenous advanced glycation end products can increase oxidative stress and inflammation. The underlying triggers for the proinflammatory state include reactive oxygen species (ROS), and ROS can damage biomolecules directly and also activate transcriptional factors that are central in the upregulation of inflammatory cytokines. Although much work has focused on nutrients and eye diseases, further insight is needed to examine the relationship between antioxidant nutrients, oxidative stress, systemic inflammation, and eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morley JE, Baumgartner RN. Cytokine-related aging process. J Gerontol A Biol Sci Med Sci 2004;59:M924–M929.

    Google Scholar 

  2. Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp Gerontol 2004;39:687–699.

    CAS  Google Scholar 

  3. Ferrucci L, Corsi A, Lauretani F, et al. The origins of age-related proinflammatory state. Blood 2005;105:2294–2299.

    CAS  Google Scholar 

  4. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000;117:1162–1172.

    CAS  Google Scholar 

  5. Watkins LR, Hansen MK, Nguyen KT, Lee JE, Maier SF. Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for non-molecular biologists. Life Sci 1999;65:449–481.

    CAS  Google Scholar 

  6. Wilson CJ, Finch CE, Cohen HJ. Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 2002;50:2041–2056.

    Google Scholar 

  7. Griffin WST, Mrak RE. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 2002;72:233–238.

    CAS  Google Scholar 

  8. Di Iorio A, Ferrucci L, Sparvieri E, et al. Serum IL-1β levels in health and disease: a population-based study. ‘The InCHIANTI study’. Cytokine 2003;22:198–205.

    Google Scholar 

  9. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 2005;115:1–20.

    CAS  Google Scholar 

  10. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296:1634–1635.

    CAS  Google Scholar 

  11. Holtmann MH, Schuchmann M, Zeller G, Galle PR, Neurath MF. The emerging distinct role of TNF-receptor 2 (p80) signaling in chronic inflammatory disorders. Arch Immunol Ther Exp 2002;50:279–288.

    CAS  Google Scholar 

  12. Rusten LS, Jacobsen SEW. Tumor necrosis factor (TNF)-α directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood 1995;85:989–996.

    CAS  Google Scholar 

  13. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SEW. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 2001;98:1782–1791.

    CAS  Google Scholar 

  14. Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res 1998;18:555–559.

    CAS  Google Scholar 

  15. Doganay S, Evereklioglu C, Er H, et al. Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6, and IL-8 levels with grades of retinopathy in patients with diabetic retinopathy. Eye 2002;16:163–170.

    CAS  Google Scholar 

  16. Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 2000;51:245–270.

    CAS  Google Scholar 

  17. Hurst SM, Wilkinson TS, McLoughlin RM, et al. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001;14:705–714.

    CAS  Google Scholar 

  18. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 2001;15:43–58.

    CAS  Google Scholar 

  19. Seddon JM, George S, Rosner B, Rifai N. Progression of age-related macular degeneration. Prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol 2005;123:774–782.

    Google Scholar 

  20. Shimizu E, Funatsu H, Yamashita H, Yamashita T, Hori S. Plasma level of interleukin-6 is an indicator for predicting diabetic macular edema. Jpn J Ophthalmol 2002;46:78–83.

    CAS  Google Scholar 

  21. Meleth AD, Agrón E, Chan CC, et al. Serum inflammatory markers in diabetic retinopathy. Invest Ophthalmol Vis Sci 2005;46:4295–4301.

    Google Scholar 

  22. Reddy P. Interleukin-18: recent advances. Curr Opin Hematol 2004;11:405–410.

    CAS  Google Scholar 

  23. Skurk T, Kolb H, Müller-Scholze S, Röhrig K, Hauner H, Herder C. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol 2005;152:863–868.

    CAS  Google Scholar 

  24. Chandrasekar B, Colston JT, de la Rosa SD, Rao PP, Freeman GL. TNF-α and H2O2 induce IL-18 and IL-18Rβ expression in cardiomyocytes via NF-κB activation. Biochem Biophys Res Comm 2003;303:1152–1158

    CAS  Google Scholar 

  25. Olusi SO, Al-Awadhi A, Abraham M. Relations of serum interleukin 18 levels to serum lipid and glucose concentrations in an apparently healthy adult population. Horm Res 2003;60:29–33.

    CAS  Google Scholar 

  26. Fischer CP, Perstrup LB, Berntsen A, Eskildsen P, Pedersen BK. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol 2005;Aug 17 [E-pub ahead of print].

    Google Scholar 

  27. Hung J, McQuillan BM, Chapman CML, Thompson PL, Beilby JP. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. Arterioscler Thromb Vasc Biol 2005;25:1268–1273.

    CAS  Google Scholar 

  28. Esposito K, Pontillo A, Ciotola M, et al. Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 2002;87:3864–3866.

    CAS  Google Scholar 

  29. Esposito K, Marfella R, Giugliano D. Plasma interleukin-18 concentrations are elevated in type 2 diabetes. Diabetes Care 2004;27:272.

    Google Scholar 

  30. Esposito K, Nappo F, Giugliano F, et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr 2003;78:1135–1140.

    CAS  Google Scholar 

  31. Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002;106:2067–2072.

    CAS  Google Scholar 

  32. Blankenberg S, Tiret L, Bickel C, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 2002;106:24–30.

    CAS  Google Scholar 

  33. Blankenberg S, Luc G, Ducimetière P, et al. Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 2003;108:2453–2459.

    CAS  Google Scholar 

  34. Tiret L, Godefroy T, Lubos E, et al. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 2005;112:643–650.

    CAS  Google Scholar 

  35. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem 2004;279:48487–48490.

    CAS  Google Scholar 

  36. Ble A, Windham BG, Bandinelli S, et al. Relation of plasma leptin to C-reactive protein in older adults (from the InCHIANTI Study). Am J Cardiol 2005;96:991–995.

    CAS  Google Scholar 

  37. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice. A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003;107:499–511.

    Google Scholar 

  38. Pai JK, Pischon T, Ma J, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 2004;351:2599–2610.

    CAS  Google Scholar 

  39. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary artery disease. N Engl J Med 2004;350:1387–1397.

    CAS  Google Scholar 

  40. Kuo HK, Yen CJ, Chang CH, Kuo CK, Chen JH, Sorond F. Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis. Lancet Neurol 2005;4:371–380.

    CAS  Google Scholar 

  41. Ferrucci L, Guralnik JM, Woodman RC, et al. Proinflammatory state in and circulating erythropoietin in persons with and without anemia. Am J Med 2005;118:1288.e11–1228.e19.

    Google Scholar 

  42. Anand IS, Kuskowski MA, Rector TS, et al. Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure. Results from the Val-HeFT. Circulation 2005;112:1121–1127.

    CAS  Google Scholar 

  43. McGwin G, Hall TA, Xie A, Owsley C. The relation between C reactive protein and age related macular degeneration in the Cardiovascular Health Study. Br J Ophthalmol 2005;89:1166–1170.

    CAS  Google Scholar 

  44. Lowe GDO, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem 2004;41:430–440.

    CAS  Google Scholar 

  45. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary artery disease: meta-analyses of prospective studies. JAMA 1998;279:1477–1482.

    CAS  Google Scholar 

  46. Maresca G, Di Blasio A, Marchioli R, Di Minno G. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol 1999;19:1368–1377.

    CAS  Google Scholar 

  47. Tracy RP, Arnold AM, Ettinger W, Fried L, Meilahn E, Savage P. The relationship of fibrinogen and factors VII and VIII to incident cardiovascular disease and death in the elderly: results from the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 1999;19:1776–1783.

    CAS  Google Scholar 

  48. Yano K, Grove JS, Chen R, Rodriguez BL, Curb JD, Tracy RP. Plasma fibrinogen as a predictor of total and cause-specific mortality in elderly Japanese-American men. Arterioscler Thromb Vasc Biol 2001;21:1065–1070.

    CAS  Google Scholar 

  49. Bruno G, Merletti F, Biggeri A, et al. Fibrinogen and AER are major independent predictors of 11-year cardiovascular mortality in type 2 diabetes: the Casale Monferrato Study. Diabetologia 2005;48:427–434.

    CAS  Google Scholar 

  50. Macció A, Madeddu C, Massa D, et al. Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: role of inflammation in cancer-related anemia. Blood 2005;106:362–367.

    Google Scholar 

  51. McMillan DE, Malone JI, Rand LJ, Steffes M. Hemorheological plasma proteins predict future retinopathy and nephropathy in the DCCT. Diabetologica 1986;29:23–29.

    Google Scholar 

  52. McMillan DE, Malone JI, Rand LJ. Progression of diabetic retinopathy is linked to rheologic plasma proteins in the DCCT. Diabetes 1995;44:54A.

    Google Scholar 

  53. Vekasi J, Marton Z, Kesmarky G, Cser A, Russai R, Horvath B. Hemorheological alterations in patients with diabetic retinopathy. Clin Hemorheol Microcirc 2001;24:59–64.

    CAS  Google Scholar 

  54. Bae SH, Lee J, Roh KH, Kim J. Platelet activation in patients with diabetic retinopathy. Korean J Ophthalmol 2003;17:140–144.

    Google Scholar 

  55. Klein RL, Hunter SJ, Jenkins AJ, et al. Fibrinogen is a marker for nephropathy and peripheral vascular disease in type 1 diabetes: studies of plasma fibrinogen and fibrinogen gene polymorphism in the DCCT/EDIC cohort. Diabetes Care 2003;26:1439–1448.

    CAS  Google Scholar 

  56. Chaturvedi N, Sjoelie AK, Porta M, et al. Markers of insulin resistance are strong risk factors for retinopathy incidence in type 1 diabetes. The EURODIAB Prospective Complications Study. Diabetes Care 2001;24:284–289.

    CAS  Google Scholar 

  57. Asakawa H, Tokunaga K, Kawakami F. Elevation of fibrinogen and thrombin-antithrombin III complex levels of type 2 diabetes mellitus patients with retinopathy and nephropathy. J Diabetes Complications 2000;14:121–126.

    CAS  Google Scholar 

  58. Smith W, Mitchell P, Leeder SR, Wang JJ. Plasma fibrinogen levels, other cardiovascular risk factors, and age-related maculopathy: the Blue Mountains Eye Study. Arch Ophthalmol 1998;116:583–587.

    CAS  Google Scholar 

  59. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-β)? Brit Assoc Plastic Surgeons 2004;57:215–221.

    Google Scholar 

  60. Grainger DJ. Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol 2004;24:399–404.

    CAS  Google Scholar 

  61. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.

    CAS  Google Scholar 

  62. Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 2002;13:323–340.

    CAS  Google Scholar 

  63. Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 1998;16:27–55.

    CAS  Google Scholar 

  64. Granowitz EV, Santos AA, Poutsiaka DD, et al. Production of interleukin-1 receptor antagonist during experimental endotoxaemia. Lancet 1991;338:1423–1424.

    CAS  Google Scholar 

  65. Gabay C, Gigley J, Sipe J, Arend WP, Fantuzzi G. Production of IL-1 receptor antagonist by hepatocytes is regulated as an acute-phase protein in vivo. Eur J Immunol 2001;31:490–499.

    CAS  Google Scholar 

  66. Waugh J, Perry CM. Anakinra: a review of its use in the management of rheumatoid arthritis. BioDrugs 2005;19:189–202.

    CAS  Google Scholar 

  67. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.

    CAS  Google Scholar 

  68. Pajkrt D, Camoglio L, Tiel-van Buul MCM, et al. Attenuation of proinflammatory response by recombinant human IL-10 in human endotoxemia. Effect of timing of recombinant human IL-10 administration. J Immunol 1997;158:3971–3977.

    CAS  Google Scholar 

  69. Olszyna DP, Pajkrt D, Lauw FN, van Deventer SJH, van der Poll T. Interleukin 10 inhibits the release of CC chemokines during human endotoxemia. J Infect Dis 2000;181:613–620.

    CAS  Google Scholar 

  70. Smith DA, Irving SD, Sheldon J, Cole D, Kaski JC. Serum levels of the anti-inflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation 2001;104:746–749.

    CAS  Google Scholar 

  71. Anguera I, Miranda-Guardiola F, Bosch X, et al. Elevation of serum levels of the anti-inflammatory cytokine interleukin-10 and decreased risk of coronary events in patients with unstable angina. Am Heart J 2002;144:811–817.

    Google Scholar 

  72. Heeschen C, Dimmeler S, Hamm CW, et al. Serum level of the anti-inflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation 2003; 107:2109–2114.

    CAS  Google Scholar 

  73. Jankord R, Jemiolo B. Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc 2004;36:960–964.

    CAS  Google Scholar 

  74. Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 2005;100:93–99.

    Google Scholar 

  75. Ferrucci L, Ble A, Bandinelli S, Lauretani F, Suthers K, Guralnik JM. A flame burning within. Aging Clin Exp Res 2004;16:240–243.

    Google Scholar 

  76. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004;122:339–352.

    CAS  Google Scholar 

  77. Thomas JA. Oxidative stress and oxidant defense. In: Shils ME, Olson JA, Shike M, Ross AC. Modern Nutrition in Health and Disease. Ninth edition. Baltimore, Williams & Wilkins: 1999; pp. 751–760.

    Google Scholar 

  78. Sies H. Oxidative stress. Introductory remarks. In: Sies H (ed). Oxidative Stress. London, Academic: 1985; pp. 1–8.

    Google Scholar 

  79. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    CAS  Google Scholar 

  80. Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, Reepschläger N, Hornig B, Drexler H, Harrison DG. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 2003;107:1383–1389.

    CAS  Google Scholar 

  81. Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 2005;37:2478–2503.

    CAS  Google Scholar 

  82. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–844.

    CAS  Google Scholar 

  83. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharm Sci 2005;26:190–195.

    CAS  Google Scholar 

  84. Alberg AJ. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 2002;180:121–137

    CAS  Google Scholar 

  85. Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002;27:63–68.

    CAS  Google Scholar 

  86. Čejková J, Štípek S, Crkovská J, Ardan T, Pláteník J, Čejka Č, Midelfart A. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res 2004;53:10–19.

    Google Scholar 

  87. Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 2004;104:1287–1291.

    CAS  Google Scholar 

  88. Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 2005;83:876–886.

    CAS  Google Scholar 

  89. Jakuš V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 2004;53:131–142.

    Google Scholar 

  90. Lin RY, Reis ED, Dore AT, et al. Lowering of dietary advanced glycation endproducts (AGE) reduces neointimal formation after arterial injury in genetically hypercholesterolemic mice. Atherosclerosis 2002;163:303–311.

    CAS  Google Scholar 

  91. Hofmann SM, Dong JH, Li Z, et al. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002;51:2082–2089.

    CAS  Google Scholar 

  92. Pachydaki SI, Tari SR, Lee SE, et al. Upregulation of RAGE and its ligands in proliferative retinal disease. Exp Eye Res 2005;[Epub in advance of publication]

    Google Scholar 

  93. Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiography. Proc Natl Acad Sci USA 2002;99:15596–15601.

    CAS  Google Scholar 

  94. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 2003;35:236–256.

    CAS  Google Scholar 

  95. Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000;267:6102–6109.

    Google Scholar 

  96. Comhair SAA, Erzurum SC. The regulation and role of extracellular glutathione peroxidase. Antioxid Redox Signal 2005;7:72–79.

    CAS  Google Scholar 

  97. McEligot AJ, Yang S, Meyskens FL Jr. Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Annu Rev Nutr 2005;25:261–295.

    CAS  Google Scholar 

  98. Walston JD, Xue QL, Semba RD, et al. Serum antioxidants, inflammation, and mortality in older women. Am J Epidemiol 2006;163:18–26.

    CAS  Google Scholar 

  99. Semba RD, Bartali B, Zhou J, Blaum C, Ko CW, Fried LP. Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Med Sci Biol Sci 2006;61:594–599.

    Google Scholar 

  100. Ray AL, Semba RD, Walston J, et al. Low serum selenium and total carotenoids predict mortality among older women living in the community: The Women’s Health and Aging Studies. J Nutr 2006;136:172–176.

    CAS  Google Scholar 

  101. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press, Washington, D.C., 2000.

    Google Scholar 

  102. Liu S, Manson JE, Lee IM, et al. Fruit and vegetable intake and risk of cardiovascular disease: the Women’s Health Study. Am J Clin Nutr 2000;72:922–928.

    CAS  Google Scholar 

  103. Bazzano LA, He J, Ogden LG, et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr 2002;76:93–99.

    CAS  Google Scholar 

  104. Steffen LM, Jacobs DR Jr, Stevens J, Shahar E, Carithers T, Folsom AR. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 2003;78:383–390.

    CAS  Google Scholar 

  105. Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington Country, Maryland. Am J Epidemiol 2004;160:1223–1233.

    Google Scholar 

  106. Lopez-Garcia E, Schulze MB, Fung TT, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 2004;80:1029–1035.

    CAS  Google Scholar 

  107. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997;336:1117–1124.

    CAS  Google Scholar 

  108. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER III, Simons-Morton DG, Karanja N, Lin PH, DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344:3–10.

    CAS  Google Scholar 

  109. John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW, Oxford Fruit and Vegetable Study Group. Effects of fruits and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet 2002;359:1969–1974.

    CAS  Google Scholar 

  110. Lopes HF, Martin KL, Nashar K, Morrow JD, Goodfriend TL, Egan BM. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003;41:422–430.

    CAS  Google Scholar 

  111. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the Atttica Study. J Am Coll Cardiol 2004;44:152–158.

    Google Scholar 

  112. Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 2004;292:1440–1446.

    CAS  Google Scholar 

  113. Klein EA. Selenium: epidemiology and basic science. J Urol 2004;171:S50–S53.

    CAS  Google Scholar 

  114. Chen XS, Yang GL, Chen JO, Chen XC, Wen ZM, Ge KY. On the relations of selenium and Keshan disease. Biol Tr Elem Res 1980;2:91–107.

    CAS  Google Scholar 

  115. Niskar AS, Paschal DC, Kieszak SM, et al. Serum selenium levels in the US population: Third National Health and Nutrition Examination Survey, 1988–1994. Biol Trace Elem Res 2003;91:1–10.

    CAS  Google Scholar 

  116. Sauberlich HE. Laboratory Tests for the Assessment of Nutritional Status. Second edition. Boca Raton, CRC Press, 1999.

    Google Scholar 

  117. Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003;22:18–35.

    CAS  Google Scholar 

  118. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000;130:2073S–2085S.

    CAS  Google Scholar 

  119. Manach C, Mazur A, Scalbert A. Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 2005;16:77–84.

    CAS  Google Scholar 

  120. Arts ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005;81(suppl):317S–325S.

    CAS  Google Scholar 

  121. Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63:1035–1042.

    CAS  Google Scholar 

  122. Cao Y, Cao R, Bråkenhielm E. Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 2002;13:380–390.

    CAS  Google Scholar 

  123. Stoclet JC, Chataigneau T, Ndiaye M, et al. Vascular protection by dietary polyphenols. Eur J Pharmacol 2004;500:299–313.

    CAS  Google Scholar 

  124. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structureactivity relationships. J Nutr Biochem 2002;13:572–584.

    CAS  Google Scholar 

  125. Vivekanathan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomized trials. Lancet 2003;361:2017–2023.

    Google Scholar 

  126. Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: highdosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005;142:37–46.

    CAS  Google Scholar 

  127. McGill CR, Green NR, Meadows MC, Gropper SS. Beta-carotene supplementation decreases leukocyte superoxide dismutase activity and serum glutathione peroxidase concentration in humans. J Nutr Biochem 2003;14:656–662.

    CAS  Google Scholar 

  128. Palozza P, Serini S, Di Nicuolo F, Piccioni E, Calviello G. Prooxidant effects of β-carotene in cultured cells. Mol Aspects Med 2003;24:353–362.

    CAS  Google Scholar 

  129. Palozza P. Evidence for pro-oxidant effects of carotenoids in vitro and in vivo: implications in health and disease. In: Krinsky NI, Mayne ST, Sies H (eds). Carotenoids in Health and Disease. New York, Marcel Dekker: 2004; pp. 127–149.

    Google Scholar 

  130. Tibaduiza EC, Fleet JC, Russell RM, Krinsky NI. Excentric cleavage products of β-carotene inhibit estrogen receptor positive and negative breast tumor cell growth in vitro and inhibit activator protein-1-mediated transcriptional activation. J Nutr 2002;132:1368–1375.

    CAS  Google Scholar 

  131. Siems W, Sommerburg O, Schild L, Augustin W, Langhans CD, Wiswedel I. β-carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. FASEB J 2002;16:1289–1291.

    CAS  Google Scholar 

  132. Siems W, Wiswedel I, Salerno C, et al. β-carotene breakdown products may impair mitochondrial functions—potential side effects of high dose β-carotene supplementation. J Nutr Biochem 2005;16:385–397.

    CAS  Google Scholar 

  133. Janssen-Heininger YMW, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB. Free Rad Biol Med 2000;28:1317–1327.

    CAS  Google Scholar 

  134. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 2005;7:395–403.

    CAS  Google Scholar 

  135. Karin M, Takahashi T, Kapahi P, et al. Oxidative stress and gene expression: the AP-1 and NF-κB connections. Biofactors 2001;15:87–89.

    CAS  Google Scholar 

  136. Shaulian E, Kairn M. AP-1 as a regulator of cell life and death. Nature Cell Biol 2002;4:E131–E136

    CAS  Google Scholar 

  137. Sumbayev VV, Yasinska IM. Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 2005;436:406–412.

    CAS  Google Scholar 

  138. József L, Filep JG. Selenium-containing compounds attenuate peroxynitrite-mediated NF-κB and AP-1 activation and interleukin-8 gene and protein expression in human leukocytes. Free Rad Biol Med 2003;35:1018–1027.

    Google Scholar 

  139. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004;142:231–255.

    CAS  Google Scholar 

  140. Kirkwood TBL. Molecular gerontology. J Inherit Metab Dis 2002;25:189–196.

    CAS  Google Scholar 

  141. Von Zglinicki T, Bürkle A, Kirkwood TBL. Stress, DNA damage and ageing—an integrative approach. Exp Gerontol 2001;36:1049–1062.

    Google Scholar 

  142. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. BioEssays 2004;26:533–542.

    CAS  Google Scholar 

  143. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetes. Clin Chim Acta 2004;339:1–9.

    CAS  Google Scholar 

  144. Collins AR. The comet assay for DNA damage and repair. Mol Biotechnol 2004;26:249–261.

    CAS  Google Scholar 

  145. Tice RR, Agurell E, Anderson D, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutag 2000;35:206–221.

    CAS  Google Scholar 

  146. Chiou CC, Chang PY, Chan EC, Wu TL, Tsao KC, Wu JT. Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clin Chim Acta 2003;334:87–94.

    CAS  Google Scholar 

  147. Nishikawa T, Sasahara T, Kiritoshi S, et al. Evaluation of urinary 8-hydroxydeoxy-guanosine as a novel biomarker of macrovascular complications in type 2 diabetes. Diabetes Care 2003;26:1507–1512.

    CAS  Google Scholar 

  148. Prieme H, Loft S, Klarlund M, Gronbaek K, Tonnesen P, Poulsen HE. Effect of smoking cessation on oxidative DNA modification estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion. Carcinogenesis 1998;19:347–351.

    CAS  Google Scholar 

  149. Kristenson M, Kucinskiené Z, Schäfer-Elinder L, Leanderson P, Tagesson C. Lower serum levels of β-carotene in Lithuanian men are accompanied by higher urinary excretion of the oxidative DNA adduct, 8-hydroxydeoxyguanosine: the LiVicordia Study. Nutrition 2003;19:11–15.

    CAS  Google Scholar 

  150. Barnett YA, King CM. An investigation of antioxidant status, DNA repair capacity and mutation as a function of age in humans. Mutat Res 1995;338:115–128.

    CAS  Google Scholar 

  151. Betti C, Davini T, Giannessi L, Loprieno N, Barale R. Comparative studies by comet test and SCE analysis in human lymphocytes from 200 healthy subjects. Mutat Res 1995;343:201–207.

    CAS  Google Scholar 

  152. Diem E, Ivancsits S, Rüdiger HW. Basal levels of DNA strand breaks in human leukocytes determined by comet assay. J Toxicol Environ Health A 2002;65:641–648.

    CAS  Google Scholar 

  153. Lam TH, Zhu CQ, Jiang CQ. Lymphocyte DNA damage in elevator manufacturing workers in Guangzhou, China. Mutat Res 2002;515:147–157.

    CAS  Google Scholar 

  154. Barnett YA, Barnett CR. DNA damage and mutation: contributors to the age-related alterations in T cell-mediated immune repsonses? Mech Ageing Dev 1998;102:165–175.

    CAS  Google Scholar 

  155. Mendoza-Nuñez VM, Sánchez-Rodríguez MA, Retana-Ugalde R, Vargas-Guadarrama LA, Altamirano-Lozano MA. Total antioxidant levels, gender, and age as risk factors for DNA damage in lymphocytes of the elderly. Mech Ageing Dev 2001;122:835–847.

    Google Scholar 

  156. Collins AR, Horváthová E. Oxidative DNA damage, antioxidants and DNA repair: applications of the comet assay. Biochem Soc Trans 2001;29:337–341.

    CAS  Google Scholar 

  157. Møller P, Loft S. Oxidative DNA damage in human white blood cells in dietary antioxidant intervention studies. Am J Clin Nutr 2002;76:303–310.

    Google Scholar 

  158. Mutlu-Türkoglu Ü, Ilhan E, Öztezcan S, Kuru A, Aykaç-Toker G, Uysal M. Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem 2003;36:397–400.

    Google Scholar 

  159. Møller P, Knudsen LE, Loft S, Wallin H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 2000;9:1005–1015.

    Google Scholar 

  160. Sul D, Lee D, Im H, Oh E, Kim J, Lee E. Single strand DNA breaks in T-and B-lymphocytes and granulocytes in workers exposed to benzene. Toxicol Lett 2002;134:87–95.

    CAS  Google Scholar 

  161. Garaj-Vrhovac V, Kopjar N. The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis 2003;18:265–271.

    CAS  Google Scholar 

  162. Kopjar N, Garaj-Vrhovac V, Milas I. Assessment of chemotherapy-induced DNA damage in peripheral blood leukocytes of cancer patients using the alkaline comet assay. Teratogenesis Carcinog Mutagen 2002;22:13–30.

    CAS  Google Scholar 

  163. Møller P, Loft S, Lundby C, Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J 2001;15:1181–1186.

    Google Scholar 

  164. Basaran N, Shubair M, Ündeger Ü, Kars A. Monitoring of DNA damage in foundry and pottery workers exposed to silica by the alkaline comet assay. Am J Ind Med 2003;43:602–610.

    CAS  Google Scholar 

  165. Gambelunghe A, Piccinini R, Ambrogi M, et al. Primary DNA damage in chrome-plating workers. Toxicology 2003;188:187–195.

    CAS  Google Scholar 

  166. Ündeger Ü, Basaran N. Assessment of DNA damage in workers occupationally exposed to pesticide mixtures by the alkaline comet assay. Arch Toxicol 2002;76:430–436.

    Google Scholar 

  167. Frenzilli G, Betti C, Davini T, et al. Evaluation of DNA damage in leukocytes of ex-smokers by single cell gel electrophoresis. Mutat Res 1997;375:117–123.

    CAS  Google Scholar 

  168. Piperakis SM, Visvardis EE, Sagnou M, Tassiou AM. Effects of smoking and aging on oxidative DNA damage of human lymphocytes. Carcinogenesis 1998;19:695–698.

    CAS  Google Scholar 

  169. Botto N, Masetti S, Petrozzi L, et al. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coronary Artery Dis 2002;13:269–274.

    Google Scholar 

  170. Demirbag R, Yilmaz R, Kocyigit A. Relationship between DNA damage, total antioxidant capacity and coronary artery disease. Mutat Res 2005;570:197–203.

    CAS  Google Scholar 

  171. Blasiak J, Arabski M, Krupa R, et al. DNA damage and repair in type 2 diabetes mellitus. Mutat Res 2004;554:297–304.

    CAS  Google Scholar 

  172. Mecocci P, Polidori MC, Ingegni T, et al. Oxidative damage to DNA in lymphocytes from AD patients. Neurology 1998;51:1014–1017.

    CAS  Google Scholar 

  173. Kadioglu E, Sardas S, Aslan S, Isik E, Karakaya AE. Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer’s disease. Biomarkers 2004;9:203–209.

    CAS  Google Scholar 

  174. Schabath MB, Spitz MR, Grossman HB, et al. Genetic instability in bladder cancer assessed by the comet assay. J Natl Cancer Inst 2003;95:540–547.

    CAS  Google Scholar 

  175. Smith TR, Miller MS, Lohman KK, Case LD, Hu JJ. DNA damage and breast cancer risk. Carcinogenesis 2003;24:883–889.

    CAS  Google Scholar 

  176. Singh NP, Danner DB, Tice RR, Brant L, Schneider EL. DNA damage and repair with age in individual human lymphocytes. Mutat Res 1990;237:123–130.

    CAS  Google Scholar 

  177. Dennog C, Gedik C, Wood S, Speit G. Analysis of oxidative DNA damage and HPRT mutations in humans after hyperbaric oxygen treatment. Mutat Res 1999;431:351–359.

    CAS  Google Scholar 

  178. Menéndez D, Rojas E, Herrera LA, et al. DNA breakage due to metronidazole treatment. Mutat Res 2001;478:153–158.

    Google Scholar 

  179. Duthie SJ, Ma A, Ross MA, Collins AR. Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Res 1996;56:1291–1295.

    CAS  Google Scholar 

  180. Kan E, Ündeger Ü, Bali M, Basaran N. Assessment of DNA strand breakage by the alkaline COMET assay in dialysis patients and the role of vitamin E supplementation. Mutat Res 2002;520:151–159.

    CAS  Google Scholar 

  181. Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 2003;24:511–515.

    CAS  Google Scholar 

  182. Porrini M, Riso P. Lymphocyte lycopene concentrations and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr 2000;130:189–192.

    CAS  Google Scholar 

  183. Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli F. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves antioxidant protection. Br J Nutr 2005;93:93–99.

    CAS  Google Scholar 

  184. Harangi M, Seres I, Varga Z, et al. Atorvastatin effect on high-density lipoprotein-associated paraoxonoase activity and oxidative DNA damage. Eur J Clin Pharmacol 2004;60:685–691.

    CAS  Google Scholar 

  185. Haendeler J, Hoffmann J, Zeiher AM, Dimmeler S. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins. Circulation 2004;110:856–861.

    CAS  Google Scholar 

  186. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 1998;30:225–243.

    CAS  Google Scholar 

  187. Traverso N, Menini S, Maineri EP, et al. Malondialdehyde, a lipoperoxidation-dervied aldehyde, can bring about secondary oxidative damage to proteins. J Gerontol Biol Sci 2004;59A:890–895.

    CAS  Google Scholar 

  188. Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res 2000;33:S99–S108.

    CAS  Google Scholar 

  189. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002;32:797–803.

    CAS  Google Scholar 

  190. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003;329:23–38.

    CAS  Google Scholar 

  191. Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 1990;9:315–325.

    CAS  Google Scholar 

  192. Berlett BS, Levine RL, Stadtman ER. Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc Natl Acad Sci USA 1998;95:2784–2789.

    CAS  Google Scholar 

  193. Davies KJA, Lin SW, Pacifici RE. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem 1987;262:9914–9920.

    CAS  Google Scholar 

  194. Agarwal S, Sohal RS. Differential oxidative damage to mitochondrial proteins during aging. Mech Ageing Dev 1995;85:59–63.

    Google Scholar 

  195. Grune T, Shringarpure R, Sitte N, Davies K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol Biol Sci 2001;56A:B459–B467.

    CAS  Google Scholar 

  196. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 2000;32:307–326.

    CAS  Google Scholar 

  197. Mercier S, Breuillé D, Mosoni L, Obled C, Mirand PP. Chronic inflammation alters protein metabolism in several organs of adult rats. J Nutr 2002;132:1921–1928.

    CAS  Google Scholar 

  198. Romero-Ramos M, Venero JL, Garcia-Rodriguez S, Ayala A, Machado A, Cano J. Semichronic inhibition of glutathione reductase promotes oxidative damage to proteins and induces both transcription and translation of tyrosine hydroxylase in the nigrostriatal system. Free Radic Res 2003;37:1003–1012.

    CAS  Google Scholar 

  199. Kannan M, Wang L, Kang YJ. Myocardial oxidative stress and toxicity induced by acute ethanol exposure in mice. Exp Biol Med 2004;229:553–559.

    CAS  Google Scholar 

  200. Luczaj W, Waszkiewicz E, Skrzydlewska E, Roszkowska-Jakimiec W. Green tea protection against age-dependent ethanol-induced oxidative stress. J Toxicol Environ Health A 2004;67:595–606.

    CAS  Google Scholar 

  201. Sohal RS, Agarwal S, Dubey A, Orr WC. Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 1993;90:7255–7259.

    CAS  Google Scholar 

  202. Ishii N. Oxidative stress and aging in Caenorhabditis elegans. Free Radic Res 2000;33:857–864.

    CAS  Google Scholar 

  203. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA 2001;98:12920–12925.

    CAS  Google Scholar 

  204. Kasapoglu M, Özben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 2001;36:209–220.

    CAS  Google Scholar 

  205. Domínguez C, Gartner S, Liñán S, Cobos N, Moreno A. Enhanced oxidative damage in cystic fibrosis patients. Biofactors 1998;8:149–153.

    Google Scholar 

  206. Back EI, Frindt C, Nohr D, Frank J, Ziebach R, Stern M, Ranke M, Biesalski HK. Antioxidant deficiency in cystic fibrosis: when is the right time to take action? Am J Clin Nutr 2004;80:374–384.

    CAS  Google Scholar 

  207. Himmelfarb J, McMonagle E, Freedman S, Klenzak J, McMenamin E, Le P, Pupim LB, Ikizler TA, and the PICARD Group. Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 2004;15:2449–2456.

    CAS  Google Scholar 

  208. Choi J, Malakowsky CA, Talent JM, Conrad CC, Gracy RW. Identification of oxidized plasma proteins in Alzheimer’s disease. Biochem Biophys Res Commun 2002;293:1566–1570.

    CAS  Google Scholar 

  209. Miyata T. Alterations of non-enzymatic biochemistry in uremia, diabetes, and atherosclerosis (“carbonyl stress”). Bull Mem Acad R Med Belg 2002;157:189–196

    CAS  Google Scholar 

  210. Agarwal R. Chronic kidney disease is associated with oxidative stress independent of hypertension. Clin Nephrol 2004;61:377–383.

    CAS  Google Scholar 

  211. Domínguez C, Gussinye M, Ruiz E, Carrascosa A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 1998;21:1736–1742.

    Google Scholar 

  212. Martín-Gallán P, Carrascosa A, Gussinyá M, Domínguez C. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 2003;34:1563–1574.

    Google Scholar 

  213. Kalogerakis G, Baker AM, Christov S, et al. Oxidative stress and high-density lipoprotein function in type 1 diabetes and end-stage renal disease. Clin Sci 2005;108:497–506.

    CAS  Google Scholar 

  214. Rutkowska M, Strzyżewski K, Iskra M, Pioruńska-Stolzmann M, Majewski W. Increased protein carbonyl groups in the serum of men with chronic arterial occlusion and the effect of postoperative treatment. Med Sci Monit 2005;11:CR79–CR83.

    CAS  Google Scholar 

  215. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med 2003;9:169–176.

    CAS  Google Scholar 

  216. Anraku M, Kitamura K, Shinohara A, et al. Intravenous iron administration induces oxidation of serum albumin in hemodialysis patients. Kidney Int 2004;66:841–848.

    CAS  Google Scholar 

  217. Carty JL, Bevan R, Waller H, et al. The effects of vitamin C supplementation on protein oxidation in healthy volunteers. Biochem Biophys Res Commun 2000;273:729–735.

    CAS  Google Scholar 

  218. O’Byrne DJ, Devaraj S, Grundy SM, Jialal I. Comparison of the antioxidant effects of Concord grape juice flavonoids and α-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr 2002;76:1367–1374.

    CAS  Google Scholar 

  219. Roberts LJ, Morrow JD. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000;28:505–513.

    CAS  Google Scholar 

  220. Basu S. Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic Res 2004;38:105–122.

    CAS  Google Scholar 

  221. Lawson JA, Rokach J, FitzGerald GA. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J Biol Chem 1999;274:24441–24444.

    CAS  Google Scholar 

  222. Mayne ST. Antioxidant nutrients and chronic disease: us of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr 2003;133:933S–940S.

    CAS  Google Scholar 

  223. Dotan Y, Lichtenberg D, Pinchuk I. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 2004;43:200–227.

    CAS  Google Scholar 

  224. Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 2005;25:279–286.

    CAS  Google Scholar 

  225. Schwedhelm E, Bartling A, Lenzen H, et al. Urinary 8-iso-prostaglandin F as a risk marker in patients with coronary heart disease: a matched case-control study. Circulation 2004;109:843–848.

    CAS  Google Scholar 

  226. Wolfram R, Oguogho A, Palumbo B, Sinzinger H. Enhanced oxidative stress in coronary heart disease and chronic heart failure as indicated by an increased 8-epi-PGF. Eur J Heart Failure 2005;7:167–172.

    CAS  Google Scholar 

  227. Davi G, Ciabattoni G, Consoli A, et al. In vivo formation of 8-iso-prostaglandin F and platelet activation in diabetes mellitus. Effects of improved metabolic control and vitamin E supplementation. Circulation 1999;99:224–229.

    CAS  Google Scholar 

  228. Flores L, Rodela S, Abian J, Claria J, Esmatjes E. F2 isoprostane is already increased at the onset of type 1 diabetes mellitus: effect of glycemic control. Metabolism 2004;53:1118–1120.

    CAS  Google Scholar 

  229. Polidori MC, Pratico D, Savino K, Rokach J, Stahl W, Mecocci P. Increased F2 isoprostane plasma levels in patients with congestive heart failure are correlated with antioxidant status and disease severity. J Card Fail 2004;10:334–338.

    CAS  Google Scholar 

  230. Keaney JF Jr, Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress. Clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2003;23:434–439.

    CAS  Google Scholar 

  231. Morrow JD, Frei B, Longmire AW, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers: smoking as a cause of oxidative damage. N Engl J Med 1995;332:1198–1203.

    CAS  Google Scholar 

  232. Harman SM, Liang L, Tsitouras PD, et al. Urinary excretion of three nucleic acid oxidation adducts and isoprostane F2α measured by liquid chromatography-mass spectrometry in smokers, ex-smokers, and nonsmokers. Free Radic Biol Med 2004;35:1301–1309.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

(2007). The Age-Related Proinflammatory State and Eye Disease. In: Handbook of Nutrition and Ophthalmology. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-979-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-979-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-196-7

  • Online ISBN: 978-1-59259-979-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics