Skip to main content

Case Studies in Natural-Product Optimization

Novel Antitumor Agents Derived From Taxus brevifolia and Catharanthus roseus

  • Chapter

Abstract

Taxus brevifolia is a Pacific yew tree that produces Taxol. Catharanthus roseus is one of the most well-studied plants in the world, and has provided a large number of alkaloids, including the clinically important antitumor agents vinblastine and vincristine. Both classes of antitumor agents interfere with tubulin-microtubule dynamics through opposite modes of action. They are the most renowned natural products, have been successfully brought to market, and have also served as leads for further optimization. This review highlights the chemical modification of Taxus diterpenoids and bisindole Catharanthus alkaloids, with an emphasis on structure-activity relationship studies and analog optimizations, leading to the discovery of a new generation of antitumor drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyams JS, Lloyd CW (eds). Microtubules. Wiley-Liss Inc.: New York, 1994.

    Google Scholar 

  2. Nicolaou KC, Hepworth D, King NP, Finlay MRV. Chemistry, biology and medicine of selected tubulin polymerizing agents. Pure Appl Chem 1999;71:989–997.

    Article  CAS  Google Scholar 

  3. Brossi A, Suffness M (eds), The Alkaloids: Antitumor Bisindole Alkaloids From Catharanthus roseus. Academic Press, Inc.: 1990; Vol. 37.

    Google Scholar 

  4. Sapi J, Massiot G. Bisindole alkaloids. In Saxton JE (ed), The Monoterpenoid Indole Alkaloids. John Wiley & Sons, Ltd.: 1994, 523–646.

    Google Scholar 

  5. Noble RL, Beer CT, Cutts JH. Further biological activities of vincaleukoblastine-an alkaloid isolated from vinca rosea (L.). Biochem Pharmacol 1958;1:347–348.

    Article  Google Scholar 

  6. Noble RL, Beer CT, Cutts JH. Role of chance observations in chemotherapy: vinca rosea. Ann NY Acad Sci 1958;76:882–894.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson IS, Wright HF, Svoboda GH. Experimental basis for clinical evaluation of antitumor principles derived from vinca rosea linn. J Lab Clin Med 1959;54:830.

    Google Scholar 

  8. Johnson IS, Wright HF, Svoboda GH, Vlantis J. Antitumor principles derived from vinca rosea Linn. I. Vincaleukoblastine and leurosine. Cancer Res 1960;20:1016–1022.

    PubMed  CAS  Google Scholar 

  9. Svoboda GH. Alkaloids of vinca rosea (Catharanthus roseus). IX. Extraction and characterization of leurosidine and leurocristine. Lloydia 1961;24:173–178.

    CAS  Google Scholar 

  10. Svoboda GH. A note on several new alkaloids from vinca rosea Linn. I. Leurosine, virosine, perivine. J Am Pharm Ass, Sc Ed 1958;47:834.

    Article  PubMed  CAS  Google Scholar 

  11. Svoboda GH, Johnson IS, Gorman M, Neuss N. Current status of research on the alkaloids of vinca rosea Linn. (Catharanthus roseus G. Don). J Pharm Sci 1962;51:707–720.

    Article  PubMed  CAS  Google Scholar 

  12. Jordan A, Hadfield JA, Lawrence NJ, McGown AT. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 1998;18:259–296.

    Article  PubMed  CAS  Google Scholar 

  13. Hamel E. Antimitotic natural products and their interactions with tubulin. Med Res Rev 1996;16:207–231.

    Article  PubMed  CAS  Google Scholar 

  14. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod 1997;60:52–60.

    Article  PubMed  CAS  Google Scholar 

  15. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003;66:1022–1037.

    Article  PubMed  CAS  Google Scholar 

  16. Tietze LF, Bell HP, Chandrasekhar S. Natural product hybrids as new leads for drug discovery. Angew Chem Int Ed 2003;42:3996–4028.

    Article  CAS  Google Scholar 

  17. Wani MC, Taylor HL, Wall ME, Coggon P, McPhall A T. Plant antitumor agents. VI. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93:2325.

    Article  PubMed  CAS  Google Scholar 

  18. Rowinsky EK. The development and clinical utility of the Taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 1997;48:353–374.

    Article  PubMed  CAS  Google Scholar 

  19. Venook AP, Egorin MJ, Rosner GL, et al. Phase I and pharmacokinetic trial of paclitaxel in patients with hepatic dysfunction: Cancer and Leukemia Group B 9264. J Clin Oncol 1998;16:1811–1819.

    PubMed  CAS  Google Scholar 

  20. Schiff PB, Horwitz S B. Taxol stabilizes microtubules in mouse fibroblast cells. PNAS 1980;77:1561–1565.

    Article  PubMed  CAS  Google Scholar 

  21. Kingston DGI, Molinero AA, Rimoldi JM. The taxane diterpenoids. In: Progress in the Chemistry of Organic Natural Products. Springer: New York, 1993, 1–206.

    Google Scholar 

  22. Chen SH, Farina V. Paclitaxel chemistry and structure-activity relationships. In: Farina V (ed), The Chemistry and Pharmacology of Taxol and its Derivatives. Elsevier Science: Amsterdam, 1995, 165–254.

    Chapter  Google Scholar 

  23. Gueritte-Voegelein F, Guenard D, Lavelle F, Le Goff M T, Mangatal L, Potier P. Relationships between the structure of taxol analogs and their antitumor activity. J Med Chem 1991;34:992–998.

    Article  PubMed  CAS  Google Scholar 

  24. Bissery M-C, Guenard D, Gueritte-Voegelein F, Lavelle F. Experimental antitumor activity of Taxotere, a taxol analog. Cancer Res 1991;51:4845–4852.

    PubMed  CAS  Google Scholar 

  25. Rowinsky EK, Onetto N, Canetta RM, Arbuck SG. Taxol: the first of the taxanes, an important new class of antitumor agents. Sem Oncol 1992;19:646–662.

    CAS  Google Scholar 

  26. Chen SH, Kant J, Member SW, et al. Taxol structutre-activity relationships: Synthesis and biological evaluation of Taxol analogs modified at C-7. Bioorg Med Chem Lett 1994;4:2223–2228.

    Article  CAS  Google Scholar 

  27. Klein LL. Synthesis of 9-dihydrotaxol: a novel bioactive taxane. Tetrahedron Lett 1993;34: 2047–2050.

    Article  CAS  Google Scholar 

  28. Pulicani JP, Bourzat J-D, Bouchard H, Commercon A. Electrochemical reduction of taxoids: selective preparation of 9-dihydro-, 10-deoxy-and 10-deacetoxy-taxoids. Tetrahedron Lett 1994;35:4999–5002.

    Article  CAS  Google Scholar 

  29. Ishiyama T, Iimura S, Yoshino T, et al. New highly active taxoids from 9?-dihydrobaccatin-9,10-acetals. Part 2. Bioorg Med Chem Lett 2002;12:2815–2819.

    Article  PubMed  CAS  Google Scholar 

  30. Kant J, O’Keeffe WS, Chen SH, et al. A Chemoselective approach to functionalize the C-10 position of 10-deacetylbaccatin III. Synthesis and biological properties of novel C-10 taxol analogues. Tetrahedron Lett 1994;35:5543–5546.

    Article  CAS  Google Scholar 

  31. Ojima I, Slater JC, Michaud E, et al. Syntheses and SAR of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem 1996;39:3889–3896.

    Article  PubMed  CAS  Google Scholar 

  32. Chen SH, Wei J-M, Farina V. Taxol SAR: synthesis and biological evaluation of 2-deoxytaxol. Tetrahedron Lett 1993;34:3205–3206.

    Article  CAS  Google Scholar 

  33. Chen S H, Farina V, Wei J-M, et al. Structure-activity relationships of taxol: synthesis and biological evalaution of C-2 taxol analogs. Bioorg Med Chem Lett 1994;4:479–482.

    Article  CAS  Google Scholar 

  34. Chaudhary AG, Gharpure MM, Rimoldi JM, et al. Unexpectedly facile hydrolysis of the C-2 benzoate group of taxol and syntheses of analogs with increased activities. J Am Chem Soc 1994;116:4097–4098.

    Article  CAS  Google Scholar 

  35. Kingston DGI, Chaudhary AG, Chordia MD, et al. Synthesis and biological evaluation of 2-acyl analogues of paclitaxel (taxol). J Med Chem 1998;41:3715–3726.

    Article  PubMed  CAS  Google Scholar 

  36. Boge TC, Himes RH, Vander Velde D G, Georg GI. The effect of the aromatic rings of taxol on biological activity and solution conformation: Synthesis and evalaution of saturated taxol and taxotere analogues. J Med Chem 1994;37:3337–3343.

    Article  PubMed  CAS  Google Scholar 

  37. Duclos O, Zucco M, Ojima I, Bissery M-C, Lavelle F. Structure-activity relationship study on new taxoids. 207th National Meeting of the American Chemical Society; San Diego, CA, American Chemical Society: Washington, DC, 1994; Abstract MEDI 86.

    Google Scholar 

  38. Bristol-Myers Squibb PCT patent application entitled “Ortho-ester analogs of paclitaxol” WO 98/00419 (Jan. 8, 1998).

    Google Scholar 

  39. Chordia MD, Kingston DGI. Synthesis and biological evaluation of 2-epi-paclitaxel. J Org Chem 1996;61:799–801.

    Article  PubMed  CAS  Google Scholar 

  40. Fang W-S, Liu Y, Liu H-Y, Xu S-F, Wang L, Fang Q-C. Synthesis and cytotoxicity of 2?-Amino decetaxel analogs. Bioorg Med Chem Lett 2002;12:1543–1546.

    Article  PubMed  CAS  Google Scholar 

  41. Chen SH, Kadow JF, Farina V, Fairchild CR, Johnston KA. First syntheses of novel paclitaxel (taxol) analogs modified at the C-4 position. J Org Chem 1994;59:6156–6158.

    Article  CAS  Google Scholar 

  42. Chen SH, Wei J-M, Long BH, et al. Novel C-4 paclitaxel (taxol) analogs: potent antitumor agents. Bioorg Med Chem Lett 1995;5:2741–2746.

    Article  CAS  Google Scholar 

  43. Chen SH, Fairchild C, Long BH. Synthesis and biological evaluation of novel C-4 aziridinebearing paclitaxel (taxol) analogs. J Med Chem 1995;38:2263–2267.

    Article  PubMed  CAS  Google Scholar 

  44. Chen SH. First syntheses of C-4 methyl ether paclitaxel analogs and the unexpected reactivity of 4-deacetyl-4-methyl ether baccatin III. Tetrahedron Lett 1996;37:3935–3938.

    Article  CAS  Google Scholar 

  45. Datta A, Jayasinghe LR, Georg GI. 4-Deacetyltaxol and 10-acetyl-4-deacetyltaxotere: Synthesis and biological evaluation. J Med Chem 1994;37:4258–4260.

    Article  PubMed  CAS  Google Scholar 

  46. Chen SH, Farina V, Vyas DM, Doyle TW. Synthesis of a paclitaxel isomer: C-2-acetoxy-C-4-benzoate paclitaxel. Bioorg Med Chem Lett 1998;8:2227–2230.

    Article  PubMed  CAS  Google Scholar 

  47. Samaranayake G, Magri NF, Jitrangsri C, Kingston DGI. Modified taxol. 5. Reaction of taxol with electrophilic reagents and preparation of a rearranged taxol derivative with tubulin assembly activity. J Org Chem 1991;56:5114–5119.

    Article  CAS  Google Scholar 

  48. Chen SH, Huang S, Wei J-M, Farina V. The chemistry of taxanes: reaction of taxol and baccatin derivatives with Lewis acids in aprotic and protic media. Tetrahedron 1993;49:2805–2828.

    Article  CAS  Google Scholar 

  49. Marder-Karsenti R, Dubois J, Bricard L, Guenard D, Gueritte-Voegelein F. Synthesis and biological evaluation of D-ring-modified taxanes: 5(20)-azadocetaxel analogs. J Org Chem 1997;62:6631–6637.

    Article  CAS  Google Scholar 

  50. Gunatilaka AAL, Ramdayal FD, Sarragiotto MH, Kingston DGI. Synthesis and biological evaluation of novel paclitaxel (taxol) D-ring modified analogues. J Org Chem 1999;64:2694–2703.

    Article  PubMed  CAS  Google Scholar 

  51. Merckle L, Dubois J, Place E, et al. Semisynthesis of D-ring modified taxoids: novel thia derivative of docetaxel. J Org Chem 2001;66:5058–5065.

    Article  PubMed  CAS  Google Scholar 

  52. Yuan H, Kingston DGI, Long BH, Fairchild CA, Johnston KA. Synthesis and biological evaluation of C-1 and ring modified A-norpaclitaxel. Tetrahedron 1999;55:9089–9100.

    Article  CAS  Google Scholar 

  53. Altstadt TJ, Fairchild CA, Golik J, et al. Synthesis and antitumor activity of novel C-7 paclitaxel ethers: discovery of BMS-184476. J Med Chem 2001;44:4577–4583.

    Article  PubMed  CAS  Google Scholar 

  54. Kadow JF, Alstadt T, Chen SH, et al. Discovery of more efficacious analogs of paclitaxel (Taxol) for human clinical evaluation, in Anticancer Agents, Ojima I, Vite GD, Altmann K-H (eds). ACS Symposium Ser. 796; American Chemical Society: Washington, DC, 2001; pp 43–58.

    Google Scholar 

  55. Poss MA, Moniot JL, Trifunovich ID, et al. US Patents 5,808,102 (Sep. 15, 1998) and 6,090,951 (Jul. 18, 2000).

    Google Scholar 

  56. Chen SH. Discovery of a novel C-4 modified 2nd generation paclitaxel analog BMS-188797. In: Guo M, Chen SH, Reiner J, Zhao K (eds), Frontiers of Biotechnology & Pharmaceuticals, Vol. 3. Science Press, New York: 2002; 157–171.

    Google Scholar 

  57. Distefano M, Scambia G, Ferlini C, et al. Anti-proliferative activity of a new class of taxanes (14?-hydroxy-10-deacetylbaccatin III derivatives) on multidrug-resistance-positive human cancer cells. Int J Cancer 1997;72:844.

    Article  PubMed  CAS  Google Scholar 

  58. Iimura S, Uoto K, Ohsuki S, et al. Orally active docetaxel analogue: synthesis of 10-deoxy-10-C-morpholinoethyl docetaxel analogues. Bioorg Med Chem Lett 2001;11:407–410.

    Article  PubMed  CAS  Google Scholar 

  59. Ojima I, Duclos O, Kuduk S D, et al. Synthesis and biological activity of 3′-alkyl-and 3′-alkenyl-3′-dephenyldocetaxels. Bioorg Med Chem Lett 1994;4:2631–2634.

    Article  CAS  Google Scholar 

  60. Georg GI, Harriman GCB, Hepperle M, et al. Heteroaromatic taxol analogs: the chemistry and biological activities of 3′-furyl and 3′-pyridyl substituted taxanes. Bioorg Med Chem Lett 1994;4:1381–1384.

    Article  CAS  Google Scholar 

  61. Maring CJ, Grampovnik DJ, Yeung CM, et al. C-3′-N-acyl analogs of 9(R)-dihydrotaxol: synthesis and structure-activity relationships. Bioorg Med Chem Lett 1994;4:1429–1432.

    Article  CAS  Google Scholar 

  62. Baloglu E, Hoch JM, Chatterjee SK, Ravindra R, Bane S, Kingston DGI. Synthesis and biological evaluation of C-3′NH/C-10 and C-2/C-10 modified paclitaxel analgues. Bioorg Med Chem 2003;11:1557–1568.

    Article  PubMed  CAS  Google Scholar 

  63. Nicolaou KC, Renaud J, Nantermet PG, Couladouros EA, Guy RK, Wrasidlo W. Chemical synthesis and biological evaluation of C-2 taxoids. J Am Chem Soc 1995;117:2409–2420.

    Article  CAS  Google Scholar 

  64. Chen SH, Xue M, Huang S, et al. SAR study at the 3′-N position of paclitaxel. Part 1: synthesis and biological evaluation of the 3′ (t)-butylaminocarbonyloxy bearing paclitaxel analogs. Bioorg Med Chem Lett 1997;7:3057–3062.

    Article  CAS  Google Scholar 

  65. Xue M, Long BH, Fairchild CA, et al. SAR study at the 3′-N position of paclitaxel. Part 2: synthesis and biological evaluation of 3′-N-thiourea-and 3′-N-thiocarbamate-bearing paclitaxel analogues. Bioorg Med Chem Lett 2000;10:1327–1331.

    Article  PubMed  CAS  Google Scholar 

  66. Rose WC Fairchild CA, Lee F. Preclinical antitumor activity of two novel taxanes. Canc Chemother Pharmacol 2001;47:97.

    Article  CAS  Google Scholar 

  67. Elmarakby SA, Duffel MW, Rosazza PN. In vitro metabolic transformations of vinblastine: oxidations catalyzed by human ceruloplasmin. J Med Chem 1989;32:2158–2162.

    Article  PubMed  CAS  Google Scholar 

  68. Noble RL. The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochemistry and cell biology 1990;68:1344–1351.

    Article  PubMed  CAS  Google Scholar 

  69. Neuss N. Therapeutic use of bisindole alkaloids from Catharanthus. In: Brossi A, Suffness M (eds), The Alkaloids, Vol. 37. Academic: 1990;229–240.

    Google Scholar 

  70. Pearce HL. Medicinal chemistry of bisindole alkaloids from Catharanthus. In: Brossi A, Suffness M (eds), The Alkaloids, Vol. 37. Academic: 1990; 145–204.

    Google Scholar 

  71. Johnson IS, Cullinan GJ, Boder GB, Grindey CB, Laguzza BC. Structural modification of the vinca alkaloids. Cancer Treat Rev 1987;14:407–410.

    Article  PubMed  CAS  Google Scholar 

  72. Miller JC, Gutowski GE, Poore GA, Boder GB. Alkaloids of vinca rosea L. (Catharanthus roseus G. Don). 38. 4′-Dehydrated derivatives. J Med Chem 1977;20:409–413.

    Article  PubMed  CAS  Google Scholar 

  73. Mangeney P, Andriamialisoa RZ, Lallemand JY, Langlois N, Langlois Y, Potier P. 5′-Nor anhydrovinblastine. Tetrahedron 1979;35:2175–2179.

    Article  CAS  Google Scholar 

  74. Potier P. Search and discovery of new antitumor compounds. Chem Soc Rev 1992;113–119.

    Google Scholar 

  75. Gueritte F, Pouilhes A, Mangeney P, et al. Composes antitumoraux du groupe de la vinblastine: derives de la nor-5′ anhydrovinblastine. Eur J Med Chem 1983;18:419–424.

    CAS  Google Scholar 

  76. Fahy J, Duflos A, Ribet JP, et al. Vinca alkaloids in superacidic media: a method for creating a new family of antitumor derivatives. J Am Chem Soc 1997;119:8576–8577.

    Article  CAS  Google Scholar 

  77. Duflos A, Kruczynski A, Barret J-M. Noval aspects of natural and modified vinca alkaloids. Curr Med Chem-Anti-Cancer Agents 2002;2;55–70.

    Article  CAS  Google Scholar 

  78. Fahy J, du Boullay VT, Bigg DCH. New method of synthesis of vinca alkaloid derivatives. Bioorg Med Chem Lett 2002;12;505–507.

    Article  PubMed  CAS  Google Scholar 

  79. Thompson GL, Boder GB, Bromer WW, Grindey GB, Poore GA. LY 119863, A novel potent vinca analog with unique biological properties. Proc Am Assoc Cancer Res 1982;73:792.

    Google Scholar 

  80. Boder GB, Bromer WW, Poore GA, Thompson GL, Williams DC. Comparative cellular responses to semisynthetic and natural vinca alkaloids. Proc Am Assoc Cancer Res 1982;73;793.

    Google Scholar 

  81. Conrad RA. Method of preparing vincristine. US 4375432 (Eli Lilly Co., 1983).

    Google Scholar 

  82. Szantay C, Szabo L, Honty K, et al. Leurosine-type alkaloids. HU 24149 (Richter, 1982).

    Google Scholar 

  83. Palyi I. Survival responses to new cytostatic hexitols of P388 mouse and K562 leukemia cells in vitro. Cancer Treat Rep 1986;70:279–284.

    PubMed  CAS  Google Scholar 

  84. Szantay C, Szabo L, Honty K, et al. Bis-indole derivatives, their preparation and pharmaceutical compositions. EP 205169 (Richter, 1986).

    Google Scholar 

  85. Barnett CJ, Cullinan GJ, Gerzon K, et al. Structure-activity relationships of dimeric Catharanthus alkaloids. 1. Deacetylvinblastine amide (vindesine) sulfate. J Med Chem 1978;21;88–96.

    Article  PubMed  CAS  Google Scholar 

  86. Conrad RA, Cullinan GJ, Gerzon K, Poore GA. Structure-activity relationships of dimeric Catharanthus alkaloids. 2. Experimental antitumor activities of N-substituted deacetylvinblastine amide (vindesine) sulfates. J Med Chem 1979;22:391–400.

    Article  PubMed  CAS  Google Scholar 

  87. Bhushana Rao KSP, Collard MPM, Dejonghe JP, Atassi G, Hannart JA, Trouet A. Vinblastin-23-oyl amino acid derivatives: chemistry, physicochemical data, toxicity, and antitumor activities against P338 and L1210 leukemias. J Med Chem 1985;28:1079–1088.

    Article  PubMed  CAS  Google Scholar 

  88. Bhushana Rao KSP, Collard MPM, Trouet A. Vinca-23-oyl amino acid derivatives: as new anticancer agents. Anticancer Res 1985;5;379–386.

    PubMed  CAS  Google Scholar 

  89. Lavielle G, Hautefaye P, Schaeffer C, Boutin JA, Cudennec CA, Pierre A. New α-amino phosphonic acid derivatives of vinblastine: chemistry and antitumor activity. J Med Chem 1991;34:1998–2003.

    Article  PubMed  CAS  Google Scholar 

  90. Jungheim LN, Shepherd TA, Meyer DL. Synthesis of acylhydrazido-substituted cephems. Design of cephalosporin-vinca alkaloid prodrugs: substrates for an antibody-targeted enzyme. J Org Chem 1992;57:2334–2340.

    Article  CAS  Google Scholar 

  91. Johnson IS, Spearman ME, Todd GC, Zimmerman JL, Bumol TF. Monoclonal antibody drug conjugates for site-directed cancer chemotherapy: preclinical pharmacology and toxicology studies. Cancer Treat Rev 1987;14:193–196.

    Article  PubMed  CAS  Google Scholar 

  92. Nasioulas G, Grammbitter K, Gerzon K, Ponstingl H. Synthesis of napavin, a new photoreactive derivative of vinblastine. Tetrahedron Lett 1989;30:5881–5882

    Article  CAS  Google Scholar 

  93. Miller JC, Gutowski GE. Vinca alkaloid derivatives. DE 2753791 (Eli Lilly Co., 1978).

    Google Scholar 

  94. Gerzon K, Miller JC. Oxazolidinedione sulfide compounds. EP 55602 (Eli Lilly Co., 1982).

    Google Scholar 

  95. De Bruyn A, Verzele M, Dejonghe J-P, et al. Modification of Catharanthus roseus alkaloids: a lactone derived from 17-deacetylvinblastine. Planta Medica 1989;55:364–366.

    Article  PubMed  Google Scholar 

  96. Orosz F, Comin B, Rais B, et al. New semisynthetic vinca alkaloids: chemical, biochemical and cellular studies. British J Cancer 1999;79(9/10):1356–1365.

    Article  CAS  Google Scholar 

  97. Johnson IS, Hargrove WW, Harris PN, Wright HF, Boder GB. Preclinical studies with vinglycinate, one of a series of chemically derived analogs of vinblastine. Cancer Res 1966;26:2431–2436

    PubMed  CAS  Google Scholar 

  98. Laguzza BC, Nicoles CL, Briggs SL, et al. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem 1989;32;548–555.

    Article  PubMed  CAS  Google Scholar 

  99. Brady SF, Pawluczyk JM, Lumma PK, et al. Design and synthesis of a pro-drug of vinblastine targeted at treatment of prostate cancer with enhanced efficacy and reduced systemic toxicity. J Med Chem 2002;45:4706–4715.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hong, J., Chen, SH. (2005). Case Studies in Natural-Product Optimization. In: Zhang, L., Demain, A.L. (eds) Natural Products. Humana Press. https://doi.org/10.1007/978-1-59259-976-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-976-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-383-1

  • Online ISBN: 978-1-59259-976-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics