Skip to main content

Tissue Reaction to Prosthetic Materials

  • Chapter
The Bionic Human

Abstract

Prostheses are manmade materials to replace or augment diseased or damaged body parts in a safe, reliable, economical, and physiologically acceptable manner. This chapter is restricted to materials that remain in intimate contact with blood, tissue, or body fluids for a prolonged time (weeks to years). Eyeglasses, hearing aids, wearable artificial limbs, and so on, although very important to rehabilitation, are not covered. Tissue reactions to disposable devices, such as contact lenses, or extracorporeal materials that are used briefly (dialysis equipment, etc.) are also outside the scope of this discussion. In addition, no particular distinction between blood vs tissue biocompatibility is made, as the molecular events in both are similar and assumed to be a part of the same physiological continuum. This chapter focuses on recent literature (1990 to present) that primarily deals with histopathological investigations of implants in human subjects. Because the interplay between tissues and prostheses involves various aspects of chemical, physical, and biological sciences, some basic concepts that will be useful to both the surgeon and the materials scientist are first introduced. These concepts are subsequently integrated to address the complex interplay between molecular and cellular reactions that occur when a foreign object is placed in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bronzino JD. (ed.). The biomedical engineering handbook. Boca Raton, FL: CRC Press, 1995.

    Google Scholar 

  2. Gristina AG, Giridhar G, Gabriel BL, Naylor PT, Myrvik QN. Cell biology and molecular mechanisms in artificial device infections. Int J Artif Organs 1993;16:755–763.

    CAS  Google Scholar 

  3. Jozefowicz J, Jozefowicz M. Interactions of biospecific functional polymers with blood proteins and cells. J Biomater Sci Polym Ed 1990;1:147–165.

    Google Scholar 

  4. Andrade JD. Needs, problems, and opportunities in biomaterials and biocompatibility. Clinical Materials 1992;11:19–23.

    Article  CAS  Google Scholar 

  5. Pourbaix M. Electrochemical corrosion of metallic. Biomaterials 1984;5:122–134.

    Article  CAS  Google Scholar 

  6. Zimmerman MC, Alexander H, Parsons JR, Bajpai PK. The design and analysis of laminated degradable composite bone plates for fracture fixation. In: TL Vigo and AF Turbak, eds. High-tech textiles. ACS Symposium Series 457. American Chemical Society, Washington DC. 1999:132–148.

    Google Scholar 

  7. Aklonis, JJ. Introduction to polymer viscoelasticity. New York, NY: Wiley, 1983.

    Google Scholar 

  8. Ferry JD. Viscoelastic properties of polymers. New York, NY: Wiley, 1980.

    Google Scholar 

  9. Fung YC. Biomechanics. Mechanical properties of living tissues. New York, NY: Springer, 1993.

    Google Scholar 

  10. Goodwin JW, Hughes RW. Rheology for chemists: an introduction. Royal Society of Chemists, UK, 2000.

    Google Scholar 

  11. Riande E, Diaz-Calleja R, Drolongo MG, Masegosa C, Salom C. Polymer viscoelasticity: stress and strain in practice. New York, NY: Marcel Dekker, 2000.

    Google Scholar 

  12. Yang M, Taber LA. The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 1991;24:587–597

    Article  CAS  Google Scholar 

  13. Simon BR, Kaufmann MV, McAfee MA, Baldwin AL. Finite element models for arterial wall mechanics. J Biomech Eng 1993;115:489–496.

    CAS  Google Scholar 

  14. Konofagou EE, Harrigan TP, Ophir J, Krouskop TA. Poroelastography: imaging the poroelastic properties of tissues. Ultrasound Med Biol 2001;27:1387–1397.

    Article  CAS  Google Scholar 

  15. Scott GC, Korostoff E. Oscillatory and step response electromechanical phenomena in human and bovine bone. J Biomech 1990;23:127–143.

    Article  CAS  Google Scholar 

  16. Roitt I, Brostoff J, Male D. Immunology (5th ed.) St. Louis, MO: Mosby, 1998.

    Google Scholar 

  17. Cotran RS, Kumar V, Collins T. Robbins pathological basis of diseases. Philadelphia, PA: W. B. Saunders, 1999.

    Google Scholar 

  18. Piattelli A, Scarano A, Piattelle M. Histological observations on 230 retrieved dental implants: 8 years experience (1989–1996). J Periodontol 1998;69:178–184.

    CAS  Google Scholar 

  19. Tal H, Dayan D. Spontaneous early exposure of submerged implants: III. Histopathology of perforated mucosa covering submerged implants. J Periodontol 2000;71:1231–1235.

    Article  CAS  Google Scholar 

  20. Schliephake H, Schmelzeisen R, Maschek H, Haese M. Int J Oral Maxillofac Surg 1999;28:323–329.

    Article  CAS  Google Scholar 

  21. National Eye Institute Summary http://www.nei.nih.gov/resources/strategicplans/neiplan/frm./.5Flens.htm

  22. Beasley AN, Auffarth GU, Von Recum AF. Intraocular lens implants: A biocompatibility review. J Inves Surg 1996;9:399–413.

    CAS  Google Scholar 

  23. Hollick EJ, Spalton DJ, Ursell PG, Pande MV. Biocompatibility of poly(methyl methacrylates), silicone, and AcrySof intraocular lenses; randomized comparison of the cellular reaction on the anterior lens surface. J Cataract Refract Surg 1998;24:361–366.

    CAS  Google Scholar 

  24. Saika S, Miyamoto T, Yamanaka A, et al. Immunohistochemical evaluation of cellular deposits on posterior chamber intraocular lenses. Graefes Arch Clin Exp Ophthalmol 1998;236:758–765.

    Article  CAS  Google Scholar 

  25. Abbas AK, Lichtman AH. Basic immunology: the functions and disorders of the immune system (2nd ed.). Philadelphia, PA: W. B. Saunders, 2004.

    Google Scholar 

  26. Amon M, Menapace R. In vivo observation of surface precipitates of 200 consecutive hydrogel intraocular lenses. Ophthalmologica 1992;204:13–18.

    Article  CAS  Google Scholar 

  27. Amon M, Menapace R, Radax U, Freyler H. In vivo study of cell reactions on poly(methyl methacrylate) intraocular lenses with different surface properties. J Cataract Refract Surg 1996;22Suppl 1:825–829.

    Google Scholar 

  28. Mullner-Eidenbock A, Amon M, Schauersberger J, et al. Cellular reaction on the anterior surface of four types of intraocular lenses. J Cataract Refract Surg 2001;27:734–740.

    Article  CAS  Google Scholar 

  29. D’Hermies F, Korobelnik JF, Chauvaud D, Pouliquen Y, Parel JM, Renard G. Scleral and episcleral histological changes related to encircling explants in 20 eyes. Acta Ophthalmol Scand 1999;77:279–285.

    Article  CAS  Google Scholar 

  30. Butnay J, de Sa Mauro, Feindel M, David TE. The Toronto SPV Bioprosthesis: Review of morphological findings in eight valves. Semin Thorac Cardiovasc Surg 1999:11:157–162.

    Google Scholar 

  31. Grabenwoger M, Grimm M, Eybl E, et al. New aspects of the degeneration of bioprosthetic heart valves after long-term implantation. J Thorac Cardiovac Surg 1992;104:14–21.

    CAS  Google Scholar 

  32. Grabenwoger M, Fitzal F, Gross C, et al. Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis 2000;9(1):104–111.

    CAS  Google Scholar 

  33. Edelman ER, Campbell R, Pathobiologic responses to stenting. Am J Cardiol 1998;81:4E–6E.

    Article  CAS  Google Scholar 

  34. Virmani R, Farb A. Pathology of in-stent restenosis. Curr Opin Lipid 1999;10:499–506.

    Article  CAS  Google Scholar 

  35. Von Segesser LK, Olah A, Leskosek B, et al. Coagulation patterns in bovine left heart bypass with phospholipid versus heparin surface coating. ASAIO J 1993;39:43–46.

    Article  Google Scholar 

  36. Campbell EJ, O’Byrne V, Stratford PW, et al. Biocompatible surfaces using methacrylolphosphorylcholine laurylmethacrylate copolymer. ASAIO J 1994;40:M853–M857.

    Article  CAS  Google Scholar 

  37. Whelan DM, van der Giessen WJ, Krabbendam SC, et al. Biocompatibility of phosphorylcholine coated stents in normal procine coronary arteries. Heart 2000;83:338–345.

    Article  CAS  Google Scholar 

  38. Thomas WO, Harper LL, Wong SW, et al. Explantation of silicone breast implants. Am Surg 1997;63:421–429.

    Google Scholar 

  39. Hameed MR, Erlandson R, Rosen PP. Capsular synovial-like hyperplasia around mammary implants similar to detritic synovitis. A morphologic and immunohistochemical study of 15 cases. Am J Surg Pathol 1995;19:433–438.

    CAS  Google Scholar 

  40. Rosa DS, Greene WB. Silicone breast implants: Pathology. Ultrastructural Pathology 1997;21:263–271.

    Google Scholar 

  41. Mena EA, Kossovsky N, Chu C, Hu C. Inflammatory intermediates produced by tissue encasing silicone breast prosthesis. J Invest Surg 1995;8:31–42.

    CAS  Google Scholar 

  42. Abbondanzo SL, Young VL, Wei MQ, Miller FW. Silicone gel-filled breast and testicular implant capsules: a histologic and immunophenotypic study. Mod Pathol 1999;12:706–713.

    CAS  Google Scholar 

  43. Boynton EL, Henry M, Morton J, Waddell JP. The inflammatory response to particulate wear debris in total hip arthroplasty. Can J Surg 1995;38:507–515.

    CAS  Google Scholar 

  44. Sanatavirta S, Gristina, A, Knottinen YT. Cemented versus cementless hip arthroplasty. A review of prosthetic biocompatibility. Acta Orthop Scand 1992;63:225–232.

    Google Scholar 

  45. Korovessis P, Repanti M. Evolution of aggressive granulomatous periprosthetic lesions in cemented hip arthroplasties. Clin Orthop 1994;300:155–161.

    Google Scholar 

  46. Van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand 2001;72:557–571.

    Article  Google Scholar 

  47. Chiba J, Schwendeman LJ, Booth RE Jr, Crossett LS, Rubash HE. A biochemical, histologic, and immunohistologic analysis of membranes obtained from failed cemented and cementless total knee arthroplasty. Clin Orthop 1994;299:114–124.

    Google Scholar 

  48. Urban RM, Jacobs JJ, Gilbert JL, Galante JO. Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J Bone Joint Surg Am 1994;76:1345–1359.

    CAS  Google Scholar 

  49. Trindade MC, Schurman DJ, Maloney WJ, Goodman SB, Smith RL. G-protein activity requirement for olymethylmethacrylate and titanium particle-induced fibroblast interleukin-6 and monocyte chemoattractant protein-1 release in vitro. J Biomed Mater Res 2000;51(3):360–368.

    Article  CAS  Google Scholar 

  50. Bostman OM, Philajamaki HK. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop 2000;(371):217–227.

    Google Scholar 

  51. Bostman O, Pihlajanmaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 2000;21:2615–2621.

    Article  CAS  Google Scholar 

  52. Neale SD, Athanasou NA. Cytokine receptor profile of arthroplasty macrophages, foreign body giant cells and mature osteoclasts. Acta Orthop Scand 1999;70:452–458.

    Article  CAS  Google Scholar 

  53. Bauer JJ, Harris MT, Kreel I, Gelernt IM. Twelve-year experience with expanded polytetrafluoroethylene in the repair of abdominal wall defects. Mt Sinai J Med 1999;66:20–25.

    CAS  Google Scholar 

  54. Kennedy GM, Matyas JA. Use of expanded polytetrafluoroethylene prosthetic patches in repair of the difficult hernia. Am J Surg 1994;168:304–306.

    Article  CAS  Google Scholar 

  55. Horikoshi M, Macaulay W, Booth RE, Crossett LS, Rubash HE. Comparison of interface membranes obtained from failed cemented and cement less hip and knee prostheses. Clin Orthop 1994;309:69–87.

    Google Scholar 

  56. Tucci M, Tsao A, Hughes J, Jr. Analysis of capsular tissue from patients undergoing primary and revision total hip arthroplasty. Biomed Sci Instrum 1996;32:119–125.

    CAS  Google Scholar 

  57. El-Seifi A, Fouad B. Long-term fate of Plastipore in the middle ear. ORL J Otorhinolaryngol Relat Spec 1998;60:198–201.

    CAS  Google Scholar 

  58. Kerr AG, Riley DN. Disintegration of porous polyethylene prostheses. Clin Otolaryngol 1999;24:168–170.

    Article  CAS  Google Scholar 

  59. Soliman HE, Milad MF, Ayyat FM, Zein TA, Hussein ES. Penile implants in the treatment of organic impotence. Saudi Med J 2001;22:30–33.

    CAS  Google Scholar 

  60. Greenland S, Finkle WD. A retrospective cohort study of implanted medical devices and selected chronic diseases in Medicare claims data. Ann Epidemiol 2000;10:205–213.

    Article  CAS  Google Scholar 

  61. Mulcahy JJ. Long-term experience with salvage of infected penile implants. J Urol 2000;163:481–482.

    Article  CAS  Google Scholar 

  62. Anderson JM. Inflammatory responses to implants. Trans Am Soc Artif Organs 1988;34:101–107.

    CAS  Google Scholar 

  63. Anderson JM. Inflammation and the foreign body response. Problems Gen Surg 1994;11:147–160.

    Google Scholar 

  64. Jenny CR, DeFife KM, Colton E, Anderson JM. Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfaces in vitro. J Biomat Sci 1998;171–184.

    Google Scholar 

  65. Jenny CR, Anderson JM. Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res 1999;44:206–216.

    Article  Google Scholar 

  66. Kao WJ, Zhao QH, Hiltner A, Anderson JM. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane, low density polyethylene and polyetherurethanes. J Biomed Mater Res 1994;28:73–79.

    Article  CAS  Google Scholar 

  67. Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen G and Payet CR. Foreign-body giant cells and polyurethane biostability; in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 1991;25:177–183.

    Article  CAS  Google Scholar 

  68. Rosales C, Julia RL. Signal transduction by cell adhesion receptors in leukocytes. J Leukocyte Biol 1995;57:189–198.

    CAS  Google Scholar 

  69. Ruoslahti E and Pierschbacher MD. New perpectives in cell adhesion: RGD and intergrins. Science 1987:238;491–497.

    Article  CAS  Google Scholar 

  70. Jenny CR, Anderson JM. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 2000;49:435–447.

    Article  Google Scholar 

  71. Jenny CR, Anderson JM. Adsorbed IgG: A potent adhesive substrate for human macrophages. J Biomed Mater Res 2000;50:281–290.

    Article  Google Scholar 

  72. Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA 1998;95:8841–8846.

    Article  CAS  Google Scholar 

  73. Tang L, Eaton JW. Tissue engineering of vascular grafts. Zilla PP, Greisler HP, eds. Georgetown, TX: Landes; 1998.

    Google Scholar 

  74. Audran R, Lesimlple T, Delamaire M, Picot C, Van Damme J, Toujas L. Adhesion molecule expression and response to chemotactic agents of human monocyte-derived macrophages. Clin Exp Immunol 1996;103:155–160.

    Article  CAS  Google Scholar 

  75. Naif HM, Li S, HoShon M, Mathijs J, Williamson P, Cunningham AL. The state of maturation of monocytes into macrophages determines the effects of IL-4 and IL-13 on HIV replication. J Immunol 1997;158:501–511.

    CAS  Google Scholar 

  76. Athanasou NA, Quinn J, Bulstode DJK. Resorption of bone by inflammatory cells derived from the joint capsule of hip arthroplasties. J Bone Joint Surg 1992;74:57–62.

    CAS  Google Scholar 

  77. Holtrop ME, Cox KA, Glowacki J. Cells of the mononuclear phagocyte system resorb implanted bone matrix: a histological and ultrastructural study. Calcif Tissue Int 1982;34:488–494.

    Article  CAS  Google Scholar 

  78. Murray DW, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg 1990;72:988–992.

    CAS  Google Scholar 

  79. Sutherland K, Mahoney JR, Coury AJ, Eaton JW. Degradation of biomaterials by phagocyte-derived oxidants. J Clin Invest 1993;92:2360–2367.

    CAS  Google Scholar 

  80. Chan SC, Birdsell DC, Gradeen CY. Urinary excretion of free toluene diamines in a patient with polyurethane-covered breast implants. Clin Chem 1991;37:756–758.

    CAS  Google Scholar 

  81. Picha GJ, Goldstein JA, Store E. Analysis of the soft-tissue response to components used in the manufacture of breast implants. Plast Reconstr Surg 1990;85:903–916.

    Article  CAS  Google Scholar 

  82. Stark GB, Gobel M, Jaeger K. Intraluminal cyclosporin A reduces capsular thickness around silicone implants. Ann Plast Surg 1990;24:156–161.

    Article  CAS  Google Scholar 

  83. McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Am J Pathol 1995;147:1487–1499.

    CAS  Google Scholar 

  84. Most J, Neumayer HP, Dierich MP. Cytokine-induced generation of multinucleated giant cells in vitro requires interferon and expression of LFA-1. Eur J Immunol 1990;20:1661–1667.

    Article  CAS  Google Scholar 

  85. Kazazi F, Chang J, Lopez A, Vadas M, Cunningham AL. Interleukin-4 and immunodeficiency virus stimulate LFA-1-ICAM-1-mediated aggregation of monocytes and subsequent giant cell formation. J Gen Virol 1994;75:2795–2802.

    Article  CAS  Google Scholar 

  86. Tananka H, Shinki T, Ttakito J, Jim CH and Suda T. Trans-glutaminase is involved in the fusion of mouse alveolar macrophages induced by 1,25-dihydroxyvitamin D3. Exp Cell Res 1991;192:165–172.

    Article  Google Scholar 

  87. Smenta K, Jr., Multinucleate foreign-body giant cell formation. Exp Mol Pathol 1987;46:258–265.

    Article  Google Scholar 

  88. Kao WJ. Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials 1999;20:2213–2221.

    Article  CAS  Google Scholar 

  89. Flory PJ. Principles of polymer chemistry. New York, NY: Cornell University Press; 1953.

    Google Scholar 

  90. Lappin-Scott HM, Costerton JW, eds. Microbial Biofilms. New York, NY: Cambridge University Press; 1995.

    Google Scholar 

  91. Habash M, Reid, G. Therapeutic Review. Microbial biofilms: Their development and significance for medical device-related infections. J Clin Pharmacol 1999;39:887–898.

    Article  CAS  Google Scholar 

  92. Costerton JW, Stewart PS. Battling biofilms. Sci Am 2001;285:74–81.

    Article  CAS  Google Scholar 

  93. Derjaguin BV, Landau L. Theory of the stability of strongly charged lyophobic soils on the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim 1941;14:633–662.

    Google Scholar 

  94. Verwey EWJ, Overbeek JTG. Theory of the solubility of lyophilic colloids. Amsterdam: Elsiever, 1948.

    Google Scholar 

  95. Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW. Surface thermodymanics of bacterial adhesion. Appl Environ Micrbiol 1983;46:90–97.

    CAS  Google Scholar 

  96. Busscher HJ, Weerkamp AH, van der MeiHC, van Pelt AWJ, de Jong HP, Arends J. Measurements of the surface free energy of bacterial cell surfaces and its relevance in adhesion. Appl Environ Microbiol 1984;48:980–983.

    CAS  Google Scholar 

  97. Udipi K, Ornberg RL, Thurmond KB, Settle SL, Forster D, Riley D. Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J Biomed Mater Res 2000;51:549–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ravi, N., Aliyar, H.A. (2006). Tissue Reaction to Prosthetic Materials. In: Johnson, F.E., Virgo, K.S., Lairmore, T.C., Audisio, R.A. (eds) The Bionic Human. Humana Press. https://doi.org/10.1007/978-1-59259-975-2_8

Download citation

Publish with us

Policies and ethics