Skip to main content

Theories of Stone Formation

  • Chapter
Urinary Stone Disease

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Water is a pivotal element in digestion, circulation, elimination, and regulation of body temperature. A critical function of the urinary system is the maintenance of normal composition and volume of body fluid; this is accomplished by glomerular filtration, tubular reabsorption, and tubular secretion of soluble and filterable plasma components. By such means, urine contains water, electrolytes, minerals, hydrogen ions, end products of protein metabolism, and other compounds not useful to the metabolism, energy requirements, or structure of the body. Under normal circumstances, urine will not contain solid particles (stones).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Menon M, Resnick MI: Urinary lithiasis: etiology, diagnosis, and medical management. In: Campbell’s Urology, 8th Ed., vol. 4, (Walsh PC, Retik AB, Vaughan ED, Jr, et al., eds.). Saunders, Philadelphia, PA, 2002; pp. 3229–3305.

    Google Scholar 

  2. Dickerson RE, Gray HB, Darensbourg MY, et al. Chemical Principles, 4th Ed. Benjamin/Cummings, Menlo Park, CA, 1984; pp. 158–212.

    Google Scholar 

  3. Randolph AD, Drach GW. A proposal of standardized nomenclature in the study of crystallization in biological systems, e.g. urolithiasis. Presented at the Proceedings of the Fourth International Symposium on Urolithiasis Research, Williamsburg, VA, 1980.

    Google Scholar 

  4. Worcester EM. Inhibitors of stone formation. Semin Nephrol 1996; 16:474.

    PubMed  CAS  Google Scholar 

  5. Finlayson B. Calcium stones: Some physical and clinical aspects. In: Calcium Metabolism in Renal Failure and Nephrolithiasis, (David D, ed.). John Wiley, New York, NY, 1977; pp. 337–382.

    Google Scholar 

  6. Finlayson B. Physicochemical aspects of urolithiasis. Kidney Int 1978; 13: 344.

    Article  PubMed  CAS  Google Scholar 

  7. Werness PG, Brown CM, Smith LH, et al. EQUIL2:aB ASIC computer program for the calculation of urinary saturation. J Urol 1985; 134: 1242.

    PubMed  CAS  Google Scholar 

  8. Tiselius HG. Solution chemistry of supersaturation. In: Kidney Stones: Medical and Surgical Management. (Coe FL, Favus MJ, Pak CYC, et al., eds.) Lippincott-Raven, Philadelphia, 1996; pp. 33–64.

    Google Scholar 

  9. Cifuentes Delatte L. Crystalluria. In: Stones: Clinical Management of Urolithiasis. (Roth RA, Finlayson B, eds.) Williams & Wilkins, Baltimore, MD, 1983; pp. 23–52.

    Google Scholar 

  10. Werness P G, Bergert JH, Smith LH. Crystalluria. J Crystal Growth 1981; 53: 166.

    Article  Google Scholar 

  11. Robertson WG, Peacock M. Calcium oxalate crystalluria and inhibitors of crystallization in recurrent renal stone-formers. Clin Sci 1972; 43: 499.

    PubMed  CAS  Google Scholar 

  12. Robertson WG, Peacock M, Nordin BE. Calcium crystalluria in recurrent renal-stone formers. Lancet 1969; 2: 21.

    Article  PubMed  CAS  Google Scholar 

  13. Elliot JS, Rabinowitz IN, Silvert M. Calcium oxalate crystalluria. J Urol 1976; 116: 773.

    PubMed  CAS  Google Scholar 

  14. Elliot JS, Rabinowitz IN. Calcium oxalate crystalluria: crystal size in urine. J Urol 1980; 123: 324.

    PubMed  CAS  Google Scholar 

  15. Fleisch H. Inhibitors and promoters of stone formation. Kidney Int 1978; 13: 361.

    Article  PubMed  CAS  Google Scholar 

  16. Gardner GL. Kinetics of the dehydration of calcium oxalate trihydrate crystals in aqueous solution. J Colloid Interface Sci 1976; 54: 298.

    Article  CAS  Google Scholar 

  17. Tomazic BB. Nancollas GH. A study of the phase transformation of calcium oxalate trihydratemonohydrate. Invest Urol 1979; 16: 329.

    PubMed  CAS  Google Scholar 

  18. Tomazic BB, Nancollas GH. Crystal growth of calcium oxalate hydrate: a comparative kinetic study. J Colloid Interface Sci 1980; 75: 149.

    Article  CAS  Google Scholar 

  19. Nakai H, Yanagawa M, Kameda K, et al. Transformation of calcium oxalate dihydrate crystals in solution: why is not calcium oxalate dihydrate detected in urinary calculi? Presented at the Proceedings of the Eighth International Symposium on Urolithiasis, Dallas, TX, 1996.

    Google Scholar 

  20. Hesse A, Berg W, Schneider HJ, et al.: A contribution to the formation mechanism of calcium oxalate urinary calculi. II. In vitro experiments concerning the theory of the formation of Whewellite and Weddellite urinary calculi. Urol Res 1976; 4: 157.

    Article  PubMed  CAS  Google Scholar 

  21. Berg W, Hesse A, Schneider HJ. A contribution to the formation mechanism of calcium oxalate urinary calculi. III. On the role of magnesium in the formation of oxalate calculi. Urol Res 1976; 4: 161.

    Article  PubMed  CAS  Google Scholar 

  22. Wesson JA, Worcester EM, Kleinman JG, et al. Inhibitor proteins in urine favor formation of calcium oxalate dihydrate crystals, which have a smaller affinity for renal tubule cells than monohydrate. Presented at the Proceedings of the Eighth International Symposium on Urolithiasis, Dallas, TX, 1996.

    Google Scholar 

  23. Garten VA, Head RB. Homogeneous nucleation and phenomenon of crystallo luminescence. Phil Mag 1966; 14: 1243.

    Article  CAS  Google Scholar 

  24. Kok DJ. The role of crystallization processes in calcium oxalate urolithiasis: University of Leiden 1991.

    Google Scholar 

  25. Mandel NS, Mandel GS. Physicochemistry of urinary stone formation. In: Renal Stone Disease. (Pak CYC, ed.) Martinus Nijhoff, Boston, MA, 1987; pp. 1–24.

    Google Scholar 

  26. Prien EL. Studies in urolithiasis: II. relationships between pathogenesis, structure, and composition and calculi. J Urol 1949; 61: 821.

    CAS  PubMed  Google Scholar 

  27. Sutor DJ, Wooley SE. Composition of urinary calculi by x-ray diffraction: collected data from various localities. IX-XI. Br J Urol 1971; 43: 268.

    CAS  Google Scholar 

  28. Brien G, Schubert G, Bick C. 10,000 analyses of urinary calculi using X-ray diffraction and polarizing microscopy. Eur Urol 1982; 8: 251.

    PubMed  CAS  Google Scholar 

  29. Pak CY. Physicochemical basis for formation of renal stones of calcium phosphate origin: calculation of the degree of saturation of urine with respect to brushite. J Clin Invest 1969; 48: 1914.

    PubMed  CAS  Google Scholar 

  30. Lanzalaco AC, Singh RP, Smesko SA, et al. The influence of urinary macromolecules on calcium oxalate monohydrate crystal growth. J Urol 1988; 139: 190.

    PubMed  CAS  Google Scholar 

  31. Baumann JM. Can the formation of calcium oxalate stones be explained by crystallization processes in urine? Urol Res 1985; 13: 267.

    PubMed  CAS  Google Scholar 

  32. Meyer JL, Bergert JH, Smith LH. Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate-hydroxyapatite system. Clin Sci Mol Med 1975; 49: 369.

    PubMed  CAS  Google Scholar 

  33. Nancollas GH, Mohan MS. The growth of hydroxyapatite crystals. Arch Oral Biol 1970; 15: 731.

    Article  PubMed  CAS  Google Scholar 

  34. Berg C, Tiselius HG. The effects of citrate on hydroxyapatite induced calcium oxalate crystallization and on the formation of calcium phosphate crystals. Urol Res 1989; 17: 167.

    Article  PubMed  CAS  Google Scholar 

  35. Meyer, J. L., Bergert, J. H., Smith, L. H.: Epitaxial relationships in urolithiasis: the brushitewhewellite system. Clin Sci Mol Med 1977; 52: 143.

    PubMed  CAS  Google Scholar 

  36. Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol 1978; 15: 442.

    PubMed  CAS  Google Scholar 

  37. Coe F, Parks JH. Defenses of an unstable compromise: crystallization inhibitors and the kidney’s role in mineral regulation. Kid Int 1990; 38: 625.

    Article  CAS  Google Scholar 

  38. Luptak J, Bek-Jensen H, Fornander A-M, et al. Crystallization of calcium oxalate and calcium phosphate at supersaturation levels corresponding to those in different parts of the nephron. Scanning Microsc 1994; 8: 47.

    CAS  Google Scholar 

  39. Boeve ER, Cao LC, De Bruijn WC, et al. Zeta potential distribution on calcium oxalate crystal and Tamm-Horsfall protein surface analyzed with Doppler electrophoretic light scattering. J Urol 1994; 152:531.

    PubMed  CAS  Google Scholar 

  40. Curreri P, Onoda GY, Finlayson B. An electrophoretic study of calcium oxalate mono hydrate. J Colloid Interface Sci 1979; 69: 170.

    Article  CAS  Google Scholar 

  41. Hess B, Kok DJ. Nucleation, growth, and aggregation of stone-forming crystals. In: Kidney Stones: Medical and Surgical Management. (Coe FL, Favus MJ, Pak CYC, et al., eds.). Lippincott-Raven, Philadelphia, PA, 1996; pp. 3–32.

    Google Scholar 

  42. Blomen LJMJ. Growth and agglomeration of calcium oxalate crystals, [dissertation] University of Leiden, 1982.

    Google Scholar 

  43. Iwata H, Nishio S, Wakatsuki A, et al. Architecture of calcium oxalate monohydrate urinary calculi. J Urol 1985; 133: 334.

    PubMed  CAS  Google Scholar 

  44. Khan SR, Hackett RL. Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol 1993; 150: 239.

    PubMed  CAS  Google Scholar 

  45. Kok DJ, Papapoulos SE, Bijvoet OL. Crystal agglomeration is a major element in calcium oxalate urinary stone formation. Kid Int 1990; 37: 51.

    Article  CAS  Google Scholar 

  46. Wiggins RC. Uromucoid (Tamm-Horsfall glycoprotein) forms different polymeric arrangements on a filter surface under different physicochemical conditions. Clin Chim Acta 1987; 162: 329.

    Article  PubMed  CAS  Google Scholar 

  47. Hess B, Nakagawa Y, Parks JH, et al. Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol 1991; 260: F569.

    PubMed  CAS  Google Scholar 

  48. Burns JR, Finlayson B, Gauthier J. Calcium oxalate retention in subjects with crystalluria. Urol Int 1984; 39: 36.

    PubMed  CAS  Google Scholar 

  49. Mandel NS, Mandel GS. Epitaxis in renal stones. In: Renal Tract Stone: Metabolic Basis and Clinical Practice. (Wickham JEA, Colin Buck A, eds.). Churchill Livingstone, Edinburgh, UK, 1990; pp. 87–101.

    Google Scholar 

  50. Coe FL, Raisen L. Allopurinol treatment of uric-acid disorders in calcium-stone formers. Lancet 1973; 1: 129.

    Article  PubMed  CAS  Google Scholar 

  51. Coe FL, Kavalach AG. Hypercalciuria and hyperuricosuria in patients with calcium nephrolithiasis. N Engl J Med 1974; 291: 1344.

    Article  PubMed  CAS  Google Scholar 

  52. Pak CY, Waters O, Arnold L, et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J Clin Invest 1977; 59: 426.

    PubMed  CAS  Google Scholar 

  53. Coe FL, Strauss AL, Tembe V, et al. Uric acid saturation in calcium nephrolithiasis. Kid Int 1980; 17: 662.

    Article  CAS  Google Scholar 

  54. Lonsdale K. Epitaxy as a growth factor in urinary calculi and gallstones. Nature 1968; 217: 56.

    Article  PubMed  CAS  Google Scholar 

  55. Coe FL. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann Intern Med 1977; 87: 404.

    PubMed  CAS  Google Scholar 

  56. Smith MJ. Placebo versus allopurinol for renal calculi. J Urol 1977; 117: 690.

    PubMed  CAS  Google Scholar 

  57. Boyce W, King J, Jr. Crystal-matrix interrelations in calculi. J Urol 1959; 81: 351.

    PubMed  CAS  Google Scholar 

  58. Allen TD, Spence HM. Matrix stones. J Urol 1966; 95: 284.

    PubMed  CAS  Google Scholar 

  59. Mall JC, Collins PA, Lyon ES. Matrix calculi. Br J Radiol 1975; 48: 807.

    Article  PubMed  CAS  Google Scholar 

  60. Warpehoski MA, Buscemi PJ, Osborn DC, et al. Distribution of organic matrix in calcium oxalate renal calculi. Calcif Tissue Int 1981; 33: 211.

    Article  PubMed  CAS  Google Scholar 

  61. Boyce WH. Organic matrix of human urinary concretions. Am J Med 1968; 45: 673.

    Article  PubMed  CAS  Google Scholar 

  62. Boyce WH, King JS, Jr, Fielden ML. Total nondialyzable solids (TNDS) in human urine. VIII. Immunological detection of a component peculiar to renal calculous matrix and to urine of calculous patients. J Clin Invest 1962; 41: 1180.

    PubMed  CAS  Google Scholar 

  63. Lian JB, Prien EL, Jr, Glimcher MJ, et al. The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J Clin Invest 1977; 59: 1151.

    PubMed  CAS  Google Scholar 

  64. Nakagawa Y, Ahmed M, Hall SL, et al. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid. J Clin Invest 1987; 79: 1782.

    PubMed  CAS  Google Scholar 

  65. Grant AM, Baker LR, Neuberger A. Urinary Tamm-Horsfall glycoprotein in certain kidney diseases and its content in renal and bladder calculi. Clin Sci 1973; 44: 377.

    PubMed  CAS  Google Scholar 

  66. Verdier JM, Dussol B, Casanova P, et al. [Renal lithostathine: a new protein inhibitor of lithogenesis]. Nephrologie 1993; 14: 261.

    PubMed  CAS  Google Scholar 

  67. Roberts SD, Resnick MI. Glycosaminoglycans content of stone matrix. J Urol 1986; 135: 1078.

    PubMed  CAS  Google Scholar 

  68. Nishio S, Abe Y, Wakatsuki A, et al. Matrix glycosaminoglycan in urinary stones. J Urol 1985; 134: 503.

    PubMed  CAS  Google Scholar 

  69. Yamaguchi S, Yoshioka T, Utsunomiya M, et al. Heparin sulfate in the stone matrix and its inhibitory effect on calcium oxalate crystallization. Urol Res 1993; 21: 187.

    Article  PubMed  CAS  Google Scholar 

  70. King JS, Boyce WH. Amino acid and carbohydrate composition of the mucoprotein matrix in various calculi. Proc Soc Exp Biol Med 1957; 95: 183.

    PubMed  CAS  Google Scholar 

  71. Frost HM. The Physio logy of Cartilaginous, Fibrous, and Bony Tissue. Charles C Thomas, Springfield, OH, 1972.

    Google Scholar 

  72. Roberts SR, Resnick MI. Urinary stone matrix. In: Renal tract stone: metabolic basis and clinical practice. Wickham JEA, Colin Buck A. Churchill Livingstone, Edinburgh, OH, 1990; 59–70.

    Google Scholar 

  73. Kimura Y, Kisaki N, Ise K. The role of the matrix substance in formation of urinary stones. Urol Int 1976; 31: 355.

    Article  PubMed  CAS  Google Scholar 

  74. Leal JJ, Finlayson B. Adsorption of naturally occurring polymers onto calcium oxalate crystal surfaces. Invest Urol 1977; 14: 278.

    PubMed  CAS  Google Scholar 

  75. Khan SR, Finlayson B, Hackett RL. Stone matrix as proteins adsorbed on crystal surfaces: a microscopic study. Scan Electron Microsc 1983; 379–385.

    Google Scholar 

  76. Randall A. Etiology of primary renal calculus. Int Abst Surg 1940; 71: 209.

    Google Scholar 

  77. Stoller ML, Low RK, Shami GS, et al. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 1996; 156: 1263.

    Article  PubMed  CAS  Google Scholar 

  78. Low RK, Stoller ML. Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 1997; 158: 2062.

    Article  PubMed  CAS  Google Scholar 

  79. Gill WB, Ruggiero KJ, Fromes MC. Elevation of the metastable limits and absence of container surface nucleation for calcium oxalate crystallization in a urothelial-lined system as compared to glass containers. Invest Urol 1980; 18: 158.

    PubMed  CAS  Google Scholar 

  80. Gill WB, Ruggiero K, Straus FH, 2nd. Crystallization studies in a urothelial-lined living test tube (the catheterized female rat bladder). I. Calcium oxalate crystal adhesion to the chemically injured rat bladder. Invest Urol 1979; 17: 257.

    PubMed  CAS  Google Scholar 

  81. Gill WB, Jones KW, Ruggiero KJ. Protective effects of heparin and other sulfated glycosaminoglycans on crystal adhesion to injured urothelium. J Urol 1982; 127: 152.

    PubMed  CAS  Google Scholar 

  82. Parsons CL, Greenspan C, Mulholland SG. The primary antibacterial defense mechanism of the bladder. Invest Urol 1975; 13: 72.

    Article  PubMed  CAS  Google Scholar 

  83. Parsons CL, Greenspan C, Moore SW, et al. Role of surface mucin in primary antibacterial defense of bladder. Urology 1977; 9: 48.

    Article  PubMed  CAS  Google Scholar 

  84. Parsons CL, Mulholland SG, Anwar H. Antibacterial activity of bladder surface mucin duplicated by exogenous glycosaminoglycan (heparin). Infect Immun 1979; 24: 552.

    PubMed  CAS  Google Scholar 

  85. Pantazopoulos D, Karagiannakos P, Sofras F, et al. Effect of drugs on crystal adhesion to injured urothelium. Urology 1990; 36: 255.

    Article  PubMed  CAS  Google Scholar 

  86. Asselman M, Verkoelen CF. Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 2002; 12:271.

    Article  PubMed  Google Scholar 

  87. Bigelow MW, Wiessner JH, Kleinman JG, et al. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol 1997; 272: F55.

    PubMed  CAS  Google Scholar 

  88. Wiessner JH, Hasegawa AT, Hung LY, et al. Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kid Int 2001; 59: 637.

    Article  CAS  Google Scholar 

  89. Lieske JC, Leonard R, Swift H, et al. Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol 1996; 270: F192.

    PubMed  CAS  Google Scholar 

  90. Kohri K, Kodama M, Ishikawa Y, et al. Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 1991; 19: 249.

    PubMed  CAS  Google Scholar 

  91. Yamate T, Kohri K, Umekawa T, et al. Interaction between osteopontin on madin darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 1999; 62: 81.

    Article  PubMed  CAS  Google Scholar 

  92. Lieske JC, Toback FG. Interaction of urinary crystals with renal epithelial cells in the pathogenesis of nephrolithiasis. Semin Nephrol 1996; 16: 458.

    PubMed  CAS  Google Scholar 

  93. Lieske JC, Spargo BH, Toback FG. Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol 1992; 148: 1517.

    PubMed  CAS  Google Scholar 

  94. Lieske JC, Toback FG. Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol 1993; 264: F800.

    PubMed  CAS  Google Scholar 

  95. Lieske JC, Walsh-Reitz MM, Toback FG. Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 1992; 262: F622.

    PubMed  CAS  Google Scholar 

  96. Tamura M, Kohjimoto Y, Ebisuno S, et al. The effects of human urine on the adhesion of calcium oxalate crystals to MDCK cells. Presented at the Proceedings of the Eighth International Symposium on Urolithiasis, Dallas, TX, 1996.

    Google Scholar 

  97. Bigelow MW, Kleinman JG, Wiessner JH, et al. Calcium oxalate crystal attachment to IMCD membranes: dependence on membrane composition and structure. Presented atthe Proceedings of the Eighth International Symposium on Urolithiasis, Dallas, TX, 1996.

    Google Scholar 

  98. Lieske JC, Leonard R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol 1995; 268: F604.

    PubMed  CAS  Google Scholar 

  99. Kok DJ. Intratubular crystallization events. World J Urol 1997; 15: 219.

    Article  PubMed  CAS  Google Scholar 

  100. Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 1994; 46: 847.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Chung, HJ., Abrahams, H.M., Meng, M.V., Stoller, M.L. (2007). Theories of Stone Formation. In: Stoller, M.L., Meng, M.V. (eds) Urinary Stone Disease. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-59259-972-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-972-1_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-219-3

  • Online ISBN: 978-1-59259-972-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics