Skip to main content

Metabolic and Molecular Aspects of Sarcopenia

  • Chapter
Principles of Molecular Medicine

Abstract

Sarcopenia refers to the loss of skeletal muscle protein mass and function that occurs with advancing age. Sarcopenia impairs motor function, and is associated with dysregulated substrate metabolism and reduced quality of life in the elderly. This chapter outlines several phenotypic alterations that are associated with sarcopenia, and considers several physiological processes and molecular level signaling pathways that may be dysregulated and involved in the pathogenesis of sarcopenia. The pathogenesis is complex and multifactorial. A better understanding of the underlying mechanisms will help identify potential therapeutic targets, and lead to better treatments for sarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Aiken J, Bua E, Cao Z, et al. Mitochondrial DNA deletion mutations and sarcopenia. Ann N Y Acad Sci USA 2002;959:412–423.

    Article  CAS  Google Scholar 

  • Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 1997;273:E790–E800.

    PubMed  CAS  Google Scholar 

  • Balagopal P, Schimke JC, Ades P, Adey D, Nair KS. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab 2001;280:E203–E208.

    PubMed  CAS  Google Scholar 

  • Baumgartner RN, Stauber PM, McHugh D, Koehler KM, Garry PJ. Cross sectional age differences in body composition in persons 60+years of age. J Gerontol A Biol Sci Med Sci 1995;50:M307–M316.

    PubMed  CAS  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294:1704–1708.

    Article  PubMed  CAS  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001;3:1014–1019.

    Article  PubMed  CAS  Google Scholar 

  • Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1994;1226:73–82.

    PubMed  CAS  Google Scholar 

  • Campbell MJ, McComas AJ, Petito F. Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 1973;36:174–182.

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Wanagat J, McKiernan SH, Aiken JM. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 2001;29:4502–4508.

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM, Faulkner JA. The regeneration of noninnervated muscle grafts and marcaine-treated muscles in young and old rats. J Gerontol A Biol Sci Med Sci 1996;51:B43–B49.

    PubMed  CAS  Google Scholar 

  • Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 2000;89:1365–1379.

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.

    PubMed  CAS  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 1998;12:2499–2509.

    PubMed  CAS  Google Scholar 

  • Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292:1728–1731.

    Article  PubMed  CAS  Google Scholar 

  • Cohn SH, Vartsky D, Yasumura S, et al. Compartmental body composition based on total-body nitrogen, potassium, and calcium. Am J Physiol 1980;239:E524–E530.

    PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996;65:801–847.

    Article  PubMed  CAS  Google Scholar 

  • Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 1994;369:418–420.

    Article  PubMed  CAS  Google Scholar 

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 1997;8:1429–1438.

    Article  PubMed  CAS  Google Scholar 

  • DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 1990;259:E89–E95.

    PubMed  CAS  Google Scholar 

  • Dupont-Versteegden EE, Knox M, Gurley CM, Houle JD, Peterson CA. Maintenance of muscle mass is not dependent on the calcineurin NFAT pathway. Am J Physiol Cell Physiol 2002;282:C1387–C1395.

    PubMed  CAS  Google Scholar 

  • Ferrington DA, Krainev AG, Bigelow DJ. Altered turnover of calcium regulatory proteins of the sarcoplasmic reticulum in aged skeletal muscle. J Biol Chem 1998;273:5885–5891.

    Article  PubMed  CAS  Google Scholar 

  • Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC. Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 1982;28:44–53.

    PubMed  CAS  Google Scholar 

  • Fluckey JD, Vary TC, Jefferson LS, Evans WJ, Farrell PA. Insulin stimulation of protein synthesis in rat skeletal muscle following resistance exercise is maintained with advancing age. J Gerontol A Biol Sci Med Sci 1996;51:B323–B330.

    PubMed  CAS  Google Scholar 

  • Gibson MC, Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 1983;6:574–580.

    Article  PubMed  CAS  Google Scholar 

  • Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 2003;5:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 1999;13:3244–3258.

    Article  PubMed  CAS  Google Scholar 

  • Greenlund LJ, Nair KS. Sarcopenia-consequences, mechanisms, and potential therapies. Mech Ageing Dev 2003;124:287–299.

    Article  PubMed  CAS  Google Scholar 

  • Greiwe JS, Cheng B, Rubin DC, Yarasheski KE, Semenkovich CF. Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J 2001; 15:475–482.

    Article  PubMed  CAS  Google Scholar 

  • Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr. NF kappa B-induced loss of MyoD messenger RNA: Possible role in muscle decay and cachexia. Science 2000;289:2363–2366.

    Article  PubMed  CAS  Google Scholar 

  • Haq S, Kilter H, Michael A, et al. Deletion of cytosolic phospholipase A(2) promotes striated muscle growth. Nat Med 2003;9:944–951.

    Article  PubMed  CAS  Google Scholar 

  • Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds. Am J Physiol Endocrinol Metab 2000;278: E620–E626.

    PubMed  CAS  Google Scholar 

  • Hinkle RT, Hodge KM, Cody DB, Sheldon RJ, Kobilka BK, Isfort RJ. Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the beta2-adrenergic receptor. Muscle Nerve 2002;25: 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 2002;16:529–538.

    Article  PubMed  CAS  Google Scholar 

  • Jagoe RT, Goldberg AL. What do we really know about the ubiquitin proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 2001;4:183–190.

    Article  PubMed  CAS  Google Scholar 

  • Kimball SR, Farrell PA, Jefferson LS. Invited review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 2002;93:1168–1180.

    PubMed  CAS  Google Scholar 

  • Kopsidas G, Kovalenko SA, Heffernan DR, et al. Tissue mitochondrial DNA changes. A stochastic system. Ann NY Acad Sci 2000;908:226–243.

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Goldberg AL. Slowing muscle atrophy: putting the brakes on protein breakdown. J Physiol 2002;545:729.

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Weindruch R, Aiken JM. Age-associated alterations of the mitochondrial genome. Free Radic Biol Med 1997;22:1259–1269.

    Article  PubMed  CAS  Google Scholar 

  • Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci 1988;84:275–294.

    Article  PubMed  CAS  Google Scholar 

  • Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB. TNF alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 2003;17:1048–1057.

    Article  PubMed  CAS  Google Scholar 

  • Lindle RS, Metter EJ, Lynch NA, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J Appl Physiol 1997;83:1581–1587.

    PubMed  CAS  Google Scholar 

  • McKenzie D, Bua E, McKiernan S, Cao Z, Aiken JM. Mitochondrial DNA deletion mutations: a causal role in sarcopenia. Eur J Biochem 2002;269:2010–2015.

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Shoffner JM, Kaufman A, Wallace DC. Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 1995;23:4122–4126.

    Article  PubMed  CAS  Google Scholar 

  • Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 1996;335:1897–1905.

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia.J Lab Clin Med 2001;137:231–243.

    Article  CAS  Google Scholar 

  • Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001;27:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Nader GA, Hornberger TA, Esser KA. Translational control: implications for skeletal muscle hypertrophy. Clin Orthop 2002:S178–S187.

    Google Scholar 

  • Proctor DN, Balagopal P, Nair KS. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr 1998;128:351S–355S.

    PubMed  CAS  Google Scholar 

  • Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988;85: 6465–6467.

    Article  PubMed  CAS  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/ GSK3 pathways. Nat Cell Biol 2001;3:1009–1013.

    Article  PubMed  CAS  Google Scholar 

  • Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 1996;93:15, 364–15,369.

    Article  CAS  Google Scholar 

  • Roth SM, Martel GF, Ivey FM, et al. Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J Gerontol A Biol Sci Med Sci 2001;56: B240–B247.

    PubMed  CAS  Google Scholar 

  • Solomon V, Baracos V, Sarraf P, Goldberg AL. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway. Proc Natl Acad Sci USA 1998;95: 12,602–12,607.

    Article  PubMed  CAS  Google Scholar 

  • United States Census Bureau. Projections of the total resident population by 5-year age groups and sex with special age categories: Middle series, 2006-2010. Information and Research Services Internet Staff (Population Division), Washington, D.C. 2000.

    Google Scholar 

  • Vandervoot AA, Symons TB. Functional and metabolic consequences of sarcopenia. Can J Appl Physiol 2001;26:90–101.

    PubMed  CAS  Google Scholar 

  • Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA 2001;286:1206–1212.

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283:1482–1488.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Michikawa Y, Mallidis C, et al. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 2001;98:4022–4027.

    Article  PubMed  CAS  Google Scholar 

  • Yarasheski KE, Zachwieja JJ, Bier DM. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol 1993;265:E210–E214.

    PubMed  CAS  Google Scholar 

  • Yarasheski KE, Zachwieja JJ, Campbell JA, Bier DM. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol 1995;268:E268–E276.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Cade, W.T., Yarasheski, K.E. (2006). Metabolic and Molecular Aspects of Sarcopenia. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_50

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics