Skip to main content

Fat-Induced Insulin Resistance and Atherosclerosis

  • Chapter
Principles of Molecular Medicine
  • 199 Accesses

Abstract

Physiological elevations of plasma free fatty acid (FFA) levels cause peripheral (muscle), hepatic, and vascular insulin resistance, whereas lowering of plasma FFA levels improves peripheral insulin sensitivity in diabetic and nondiabetic subjects. FFA-induced insulin resistance in muscle is produced by defects in insulin-stimulated glucose transport and/or phosphorylation and in glycogen synthesis, which develop over 2–6 h. Development of these defects is temporally associated with accumulation in liver and in muscle cells of diacylglycerol (DAG) and activation of serine/threonine kinases including protein kinase C (PKC) and inhibitor of κB-kinase. In nondiabetic, obese subjects, FFA-induced insulin resistance is fully or nearly fully compensated by FFA-mediated stimulation of insulin secretion. In patients with type 2 diabetes mellitus (T2DM), FFA-mediated stimulation of insulin secretion is impaired; hence, FFA-induced insulin resistance needs to be compensated by hype glycemia. Acute elevation of plasma FFA levels also activate the proinflammatory and proatherosclerotic inhibitor of κB/nuclear factor κB pathway in muscle and liver and this might play a role in the pathogenesis of atherosclerotic vascular disease and nonalcoholic fatty liver disease. Normalizing plasma FFA levels is, therefore, proposed as an approach to reduce insulin resistance and the risk for type 2 diabetes, atherosclerotic vascular diseases and nonalcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Barnes PJ, Karin M. Nuclear factor-κB-A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin SM, Valdez R, Geiss LS, et al. Estimated number of adults with prediabetes in the US in 2000: opportunities for prevention. Diabetes Care 2003;26:645–649.

    Article  PubMed  Google Scholar 

  • Bevilacqua S, Buzzigoli G, Bonadonna R, et al. Operation of Randle’s cycle in patients with NIDDM. Diabetes 1990;39:383-389. Boden G. Fuel metabolism in pregnancy and in gestational diabetes mel-litus. Obstet Gynecol Clin North Am 1996;23:1–10.

    Article  Google Scholar 

  • Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997;l46:3–10.

    Article  Google Scholar 

  • Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin dependent diabetes. J Clin Invest 1995;96:1261–1268.

    PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Iqbal N. Acute lowering of plasma fatty acids lowers basal insulin secretion in diabetic and nondiabetic subjects. Diabetes 1998;47:1609–1612.

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Rosner J et al. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes 1995;44:1239–1242.

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Ruiz J et al. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994;93:2438–2446.

    PubMed  CAS  Google Scholar 

  • Boden G, Cheung P, Stein TP, et al. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol 2002;283:E12–E19.

    CAS  Google Scholar 

  • Boden G, Jadali F, White J, et al. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991;88: 960–966.

    PubMed  CAS  Google Scholar 

  • Boden G, Lebed B, Schatz M, et al. Effects of acute changes of plasma FFA on intramuscular fat content and insulin resistance in healthy subjects. Diabetes 2001;50:1612–1617.

    Article  PubMed  CAS  Google Scholar 

  • Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes 2005;54:Dec.

    Google Scholar 

  • Borkman M, Storlien LH, Pan DA, et al. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospho lipids. N Engl J Med 1993;328:238–244.

    Article  PubMed  CAS  Google Scholar 

  • Crespin SR, Greenough WB, Steinberg D. Stimulation of insulin secretion by long-chain free fatty acids. J Clin Invest 1973;52:1979–1984.

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981;30: 1000–1007.

    PubMed  CAS  Google Scholar 

  • Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999;103:253–259.

    PubMed  CAS  Google Scholar 

  • Edgerton DS, Carin S, Emshwiller M, et al. Small increases in insulin inhibit hepatic glucose production solely caused by an effect of glycogen metabolism. Diabetes 2001;50:1872–1882.

    Article  PubMed  CAS  Google Scholar 

  • Fanelli C, Calderone S, Epifano L, et al. Demonstration of a critical role for free fatty acids in mediating counterregulatory stimulation of glu coneogenesis and suppression of glucose utilization in humans. J Clin Invest 1993;92:1617–1622.

    PubMed  CAS  Google Scholar 

  • Farese RV. Protein kinase C. In: Olefsky J, Taylor SE, LeRoit D, eds. Diabetes Mellitus: A Fundamental and Clinical Text. Philadelphia: Lippincott, 2000; pp. 239–251.

    Google Scholar 

  • Felber JP, Vanotti A. Effects of fat infusions on glucose tolerance and insulin plasma levels. Med Exp Int J Exp Med 1964;10:153–156.

    PubMed  CAS  Google Scholar 

  • Ferrannini E, Natali A, Bell P, et al. Insulin resistance and hypersecretion in obesity. J Clin Invest 1997;100:1166–1173.

    PubMed  CAS  Google Scholar 

  • Gastaldelli A, Toschi E, Pettiti M, et al. Effect of physiological hyperinsu linemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 2001;50:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  • Gorden ES. Non-esterified fatty acids in blood of obese and lean subjects. Am J Clin Nutr 1960;8:740–747.

    Google Scholar 

  • Greene MW, Sakue H, Wang L, Alessi DR, et al. Modulation of insulin stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 2003;278:8199–8211.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins M, Barzilai N, Liu R, et al. Role of the glucosamine pathway in fat-induced insulin resistance. J Clin Invest 1997;99:2173–2182.

    PubMed  CAS  Google Scholar 

  • Hirose H, Lee YH, Inman LR, et al. Defective fatty acid mediated β-cell compensation in Zucker diabetic fatty rats. J Biol Chem 1996; 271:5633–5637.

    Article  PubMed  CAS  Google Scholar 

  • Homko CJ, Cheung P, Boden G. Effects of free fatty acids on glucose uptake and utilization in healthy women. Diabetes 2003;487–491.

    Google Scholar 

  • Hu FB, Manson JA, Stampfer MJ, et al. Diet, lifestyle and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001;345:790–797.

    Article  PubMed  CAS  Google Scholar 

  • Inoguchi T, Fumio PL, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000;49:1939–1945.

    Article  PubMed  CAS  Google Scholar 

  • Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglyc erol, protein kinase C, and IκB-α. Diabetes 2002;51:2005–2011.

    Article  PubMed  CAS  Google Scholar 

  • Kelley DE, Mokan M, Simoneau J-A, Mandarino LJ. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 1993;92:91–98.

    PubMed  CAS  Google Scholar 

  • Lam TKT, Yoshi H, Haber A, et al. Free fatty acid-induced hepatic insulin resistance: A potential role for protein kinase C-δ. Am J Physiol 2002;283:E682–E691.

    CAS  Google Scholar 

  • Long SD, Pekala PH. Regulation of Glut4 gene expression by arachidonic acid: Evidence for multiple pathways, one of which requires oxidation to prostaglandin E2. J Biol Chem 1996;271:1138–1144.

    Article  PubMed  CAS  Google Scholar 

  • Mokdad AH, Serdula MK, Dietz WH, et al. The spread of the obesity epidemic in the United States, 1991-1998. JAMA 1999;282:1519–1522.

    Article  PubMed  CAS  Google Scholar 

  • Pascoe WS, Storlien LH. Inducement by fat feeding of basal hyperglycemia in rats with abnormal beta-cell function: model for study of etiology and pathogenesis of NIDDM. Diabetes 1990;39:226–223.

    Article  PubMed  CAS  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose-fatty acid cycle: Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785–789.

    Article  PubMed  CAS  Google Scholar 

  • Ravichandran LV, Esposito DL, Chen J, Quon MJ. Protein kinase C-ζ phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 2000;276:3543–3549.

    Article  PubMed  Google Scholar 

  • Reaven GM, Hollenbeck C, Jeng C-Y et al. Measurement of plasma glucose, free fatty acid, lactate and insulin for 24 h in patients with NIDDM. Diabetes 1988;37:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  • Reaven GM. Role of insulin resistance in human disease. Diabetes 1998; 37:1595–1607.

    Article  Google Scholar 

  • Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 34:115–120.

    Article  Google Scholar 

  • Santomauro A, Boden G, Silva M, et al. Overnight lowering of free fatty acids with acipimox improves insulin resistance and glucose tolerance in obese diabetic and non-diabetic subjects. Diabetes 1999;48: 1836–1841.

    Article  PubMed  CAS  Google Scholar 

  • Shah P, Vella A, Basu A, et al. Elevated free fatty acids impair glucose metabolism in women. Decreased stimulation of muscle glucose uptake and suppression of splanchnic glucose production during combined hyperinsulinemia and hyperglycemia. Diabetes 2003;52: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Sims EAH, Danforth E Jr, Horton ES, Bray GA, Glennon JA, Salans LB. Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horm Res 1973;29:457–496.

    PubMed  CAS  Google Scholar 

  • Sivan E, Homko CJ, Whittaker PG, et al. Free fatty acids and insulin resistance during pregnancy. J Clin Endocrinol Metab 1998;83: 2338–2342.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg HO, Brechtel G, Johnson A, et al. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. J Clin Invest 1994; 94: 1172–1179.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg HO, Paradisi G, Hook G, et al. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000;49:1231–1238.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997;100:1230–1239.

    PubMed  CAS  Google Scholar 

  • Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002;277:50,230–50,236.

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by Wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 1996;98:894–898.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Boden, G. (2006). Fat-Induced Insulin Resistance and Atherosclerosis. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_49

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics