Skip to main content

Disorders of Sex Determination and Differentiation

  • Chapter
  • 305 Accesses

Abstract

Abnormalities of sex determination and differentiation comprise two major clinical groups: disorders of gonadal development (i.e., disorders of sex determination: sex reversal, true hermaphroditism), swith secondary effects on genital development, and defects of genital development in the presence of normal gonads (disorders of sex differentiation: male and female “pseudohermaphroditism”). This chapter will review the embryology of normal sex determination and differentiation, the genetic basis of normal and abnormal sex determination and differentiation, and the approaches to diagnosis of disorders of sex determination and differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 1999;22(2):125, 126.

    Google Scholar 

  • Achermann JC, Meeks JJ, Jameson JL. Phenotypic spectrum of mutations in DAX-1 and SF-1. Mol Cell Endocrinol 2001;185(1,2):17–25.

    Article  Google Scholar 

  • Achermann JC, Ozisik G, Ito M, et al. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J Clin Endocrinol Metab 2002;87(4):1829–1833.

    Article  Google Scholar 

  • Ahmed SF, Hughes IA. The genetics of male undermasculinization. Clin Endocrinol (Oxf) 2002;56(1):1–18.

    Article  Google Scholar 

  • Auchus RJ. The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin North Am 2001; 30(1):101–119.

    Article  Google Scholar 

  • Belgorosky A, Pepe C, Marino R, et al. Hypothalamic-pituitary-ovarian axis during infancy, early and late prepuberty in an aromatase-deficient girl who is a compound heterocygote for two new point mutations of the CYP19 gene. J Clin Endocrinol Metab 2003;88:5127–5131.

    Article  PubMed  CAS  Google Scholar 

  • Birk OS, Casiano DE, Wassif CA, et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 2000;403(6772): 909–913.

    Google Scholar 

  • Boehmer ALM, Brinkmann AO, Sandkuijl LA, et al. 17â-Hydroxysteroid dehydrogenase-3 deficiency: diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations. J Clin Endocrinol Metab 1999;84:4713–4721.

    Article  PubMed  CAS  Google Scholar 

  • Bose HS, Sato S, Aisenberg J, Shalev SA, Matsuo N, Miller WL. Mutations in the steroidogenic acute regulatory protein (StAR) in 6 patients with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 2000;85:3636–3639.

    Article  PubMed  CAS  Google Scholar 

  • Bose HS, Sugawara T, Strauss JF 3rd, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996;335(25):1870–1878.

    Article  Google Scholar 

  • Bulun SE. Clinical review 78: Aromatase deficiency in women and men: would you have predicted the phenotypes? J Clin Endocrinol Metab 1996;81:867–871.

    Article  PubMed  CAS  Google Scholar 

  • Clark AM, Garland KK, Russell LD. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 2000;63(6):1825–1838.

    Article  Google Scholar 

  • Cotinot C, Pailhoux E, Jaubert F, Fellous M. Molecular genetics of sex determination. Semin Reprod Med 2002;20(3):157–168.

    Article  Google Scholar 

  • Fujieda K, Okuhara K, Abe S, Tajima T, Mukai T, Nakae J. Molecular pathogenesis of lipoid adrenal hyperplasia and adrenal hypoplasia congenita. J Steroid Biochem Mol Biol 2003;85(2-5):483–489.

    Article  CAS  Google Scholar 

  • Geley S, Kapelari K, Johrer K, et al. CYP11B1 mutations causing congenital adrenal hyperplasia due to 11-beta-hydroxylase deficiency. J Clin Endocrinol Metab 1996;81:2896–2901.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, Higgs DR. Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet 2000;97(3):204–212.

    Article  Google Scholar 

  • Goodfellow PN, Camerino G. DAX-1, an “antitestis” gene. EXS. 2001; (91):57–69.

    PubMed  CAS  Google Scholar 

  • Graves JA. Evolution of the testis-determining gene-the rise and fall of SRY. Novartis Found Symp 2002;244:86–97.

    PubMed  Google Scholar 

  • Guo JK, Hammes A, Chaboissier MC, et al. Early gonadal development: exploring Wt1 and Sox9 function. Novartis Found Symp 2002;244: 23–31.

    PubMed  CAS  Google Scholar 

  • Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 (SRY-Related High-Mobility Group [HMG] Box 9). Endocr Rev 2003;24:466–487.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila M, Peltoketo H, Vainio S. Wnts and the female reproductive system. J Exp Zool 2001;290(6):616–623.

    Article  Google Scholar 

  • Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mol Cell Endocrinol 2002; 198(1,2):51–59.

    Article  Google Scholar 

  • Jordan BK, Shen JH, Olaso R, Ingraham HA, Vilain E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc Natl Acad Sci USA 2003;100(19):10,866–10,871.

    Article  CAS  Google Scholar 

  • Josso N, di Clemente N, Gouedard L. Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol 2001;179(1,2):25–32.

    Article  Google Scholar 

  • Katsumata N, Ohtake M, Hojo T, et al. Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab 2002;87(8):3808–3813.

    Article  Google Scholar 

  • Kawamoto T, Mitsuuchi Y, Toda K, et al. Role of steroid 11-beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci USA 1992;89: 1458–1462.

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kettlewell JR, Anderson RC, Bardwell VJ, Zarkower D. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad. Gene Expr Patterns 2003;3(1):77–82.

    Article  Google Scholar 

  • Koopman P. Sry, Sox9 and mammalian sex determination. EXS 2001;(91):25–56.

    PubMed  CAS  Google Scholar 

  • Koopman P, Loffler KA. Sex determination: the fishy tale of Dmrt1. Curr Biol 2003;13(5):R177–R179.

    Article  Google Scholar 

  • Lin D, Sugawara T, Strauss JF III, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995;267:1828–1831.

    Article  PubMed  CAS  Google Scholar 

  • Lovell-Badge R, Canning C, Sekido R. Sex-determining genes in mice: building pathways. Novartis Found Symp 2002;244:4–18.

    PubMed  CAS  Google Scholar 

  • Luu-The V. Analysis and characteristics of multiple types of human 17beta-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 2001;76(1-5):143–151.

    Article  Google Scholar 

  • Merchant-Larios H, Moreno-Mendoza N. Onset of sex differentiation: dialog between genes and cells. Arch Med Res 2001;32(6):553–558.

    Article  Google Scholar 

  • Merke DP, Bornstein SR, Avila NA, Chrousos GP. NIH conference. Future directions in the study and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann Intern Med 2002;136(4): 320–334.

    Google Scholar 

  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development 1997;124(9):1653–1664.

    Google Scholar 

  • Muscatelli F, Strom TM, Walker AP, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic gonadism. Nature 1994;372:672–676.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig 2001;8(1 Suppl Proceedings):S17–S20.

    Article  PubMed  CAS  Google Scholar 

  • Parker KL, Schimmer BP. Genes essential for early events in gonadal development. Ann Med 2002;34(3):171–178.

    Article  Google Scholar 

  • Quigley CA, De Bellis A, Marschke KB, El-Awady MK, Wilson EM, French FS. Androgen receptor defects: Historical, clinical and molecular perspectives. Endocr Rev 1995;16:271–321.

    Article  PubMed  CAS  Google Scholar 

  • Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 2000;14(20):2587–2595.

    Article  Google Scholar 

  • Renfree MB, Wilson JD, Shaw G. The hormonal control of sexual development. Novartis Found Symp 2002;244:136–152.

    PubMed  CAS  Google Scholar 

  • Reutens AT, Achermann JC, Ito M, et al. Clinical and functional effects of mutations in the DAX-1 gene in patients with adrenal hypoplasia congenita. J Clin Endocrinol Metab 1999;84(2):504–511.

    Article  Google Scholar 

  • Richter-Unruh A, Martens JW, Verhoef-Post M, et al. Leydig cell hypoplasia: cases with new mutations, new polymorphisms and cases without mutations in the luteinizing hormone receptor gene. Clin Endocrinol (Oxf) 2002;56(1):103–112.

    Article  Google Scholar 

  • Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene 2001;273(2):141–161.

    Google Scholar 

  • Shawlot W, Behringer RR. Requirement for Lim1 in head-organizer function. Nature 1995;374(6521):425–430.

    Google Scholar 

  • Shen W-H, Moore CCD, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the Müllerian inhibiting substance gene: a link to the sex determination cascade. Cell 1994;77:651–661.

    Article  PubMed  Google Scholar 

  • Simard J, Moisan AM, Morel Y. Congenital adrenal hyperplasia due to 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase deficiency. Semin Reprod Med 2002;20(3):255–276.

    Article  Google Scholar 

  • Simpson JL, Rajkovic A. Ovarian differentiation and gonadal failure. Am J Med Genet 1999;89(4):186–200.

    Article  Google Scholar 

  • Sinclair A, Smith C, Western P, McClive P. A comparative analysis of vertebrate sex determination. Novartis Found Symp 2002;244:102–111.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Mizusaki H, Kawabe K, Kasahara M. Yoshioka H. Morohashi K. Concerted regulation of gonad differentiation by transcription factors and growth factors. Novartis Found Symp 2002;244:68–77.

    PubMed  CAS  Google Scholar 

  • Teixeira J, Maheswaran S, Donahoe PK. Müllerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev 2001;22(5):657–674.

    Article  Google Scholar 

  • Tilmann C, Capel B. Cellular and molecular pathways regulating mammalian sex determination. Recent Prog Horm Res 2002;57:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay JJ, Viger RS. Transcription factor GATA-4 enhances Müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol 1999;13(8): 1388–1401.

    Article  Google Scholar 

  • Tremblay JJ, Viger RS. Novel roles for GATA transcription factors in the regulation of steroidogenesis. J Steroid Biochem Mol Biol 2003;85(2-5):291–298.

    Article  CAS  Google Scholar 

  • Yao HH, Tilmann C, Zhao GQ, Capel B. The battle of the sexes: opposing pathways in sex determination. Novartis Found Symp 2002;244:187–198.

    Article  PubMed  Google Scholar 

  • Yao HH, Whoriskey W, Capel B. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 2002;16(11):1433–1440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Quigley, C.A. (2006). Disorders of Sex Determination and Differentiation. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_41

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics