Skip to main content
  • 224 Accesses

Abstract

Diabetes mellitus is characterized by fasting and postprandial hyperglycemia. Type 1 diabetes occurs secondary to autoimmune destruction of the insulin-secreting pancreatic β-cells, whereas type 2 diabetes results from a deficiency of insulin action secondary to a combination of insulin resistance and relative β-cell dysfunction. Familial clustering of type 1 and 2 diabetes has suggested a genetic contribution to the etiology of the diseases, but monozygotic twin and other studies have indicated that environmental factors also contribute to their etiology. Although relatively rare monogenic forms of diabetes have been described, type 1 and 2 diabetes are, in general, complex, polygenic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPAR-γ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 200026:76–80.

    Article  PubMed  CAS  Google Scholar 

  • Barrett TG. Mitochondrial diabetes, DIDMOAD and other inherited diabetes syndromes. Best Pract Res Clin Endocrinol Metab 2001;15:325–343.

    Article  PubMed  CAS  Google Scholar 

  • Barroso I. Genetics of type 2 diabetes. Diabet Med 2005;22:517–535.

    Article  PubMed  CAS  Google Scholar 

  • Bottini N, Musumeci L, Alons A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337, 338.

    Article  PubMed  CAS  Google Scholar 

  • Concannon P, Erlich HA, Julier C, et al. Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. Diabetes 2005;54:2995–3001.

    Article  PubMed  CAS  Google Scholar 

  • Cox NJ, Hayes MG, Roe CA, et al. Linkage of calpain 10 to type 2 diabetes: The biological rationale. Diabetes 2004;53:S19–S25.

    Article  PubMed  CAS  Google Scholar 

  • Devendra D, Liu E, Eisenbarth G. Type 1 diabetes: recent developments. Br Med J 2004;328:750–754.

    Article  Google Scholar 

  • Florez JC, Burtt N, de Bakker PIW, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004;53:1360–1368.

    Article  PubMed  CAS  Google Scholar 

  • Florez JC, Hirschhorn J, Altshuler D. The inherited basis of diabetes mel-litus: Implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 2003;4:257–291.

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Kaestner KH. HNF-4α: from MODY to late-onset type 2 diabetes. Trends Mol Med 2004;10:521–524.

    Article  PubMed  CAS  Google Scholar 

  • Hanis CL, Boerwinkle E, Chakraborty R, et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 1996;13:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Larsson K, Elding-Larsson H, Cederwall E, et al. Genetic and perinatal factors as risk for childhood type 1 diabetes. Diabetes Metab Res Rev 2004;20:429–437.

    Article  PubMed  Google Scholar 

  • Lehto M, Tuomi T, Mahtani MM, et al. Characterization of the MODY3 phenotype: early-onset diabetes caused by an insulin secretion defect. J Clin Invest 1997;99:582–591.

    Article  PubMed  CAS  Google Scholar 

  • Maassen JA, T Hart LM, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004;53: S103–S109.

    Google Scholar 

  • Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic beta-cells. Nature 2001;414:807–812.

    Article  PubMed  CAS  Google Scholar 

  • Minton JA, Rainbow LA, Ricketts C, Barrett TG. Wolfram syndrome. Rev Endocr Metab Disord 2003;4:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SMS, Frayling TM. The role of transcription factors in maturity-onset diabetes of the young. Mol Genet Metab 2002;77:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Notkins AL. Immunologic and genetic factors in type 1 diabetes. J Biol Chem 2002;277:43545–43548.

    Article  PubMed  CAS  Google Scholar 

  • Onengut-Gumuscu S, Concannon P. Mapping genes for autoimmunity in humans: type 1 diabetes as a model. Immunol Rev 2002;190:182–194.

    Article  PubMed  CAS  Google Scholar 

  • Permutt MA, Wasson J, Cox N. Genetic epidemiology of diabetes. J Clin Invest 2005;6:1431–1439.

    Article  CAS  Google Scholar 

  • Pugliese A, Zeller M, Fernandez A, Jr., et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997;15:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in type I diabetes and associated disorders. Diabetologia 2002;45:605–622.

    Article  PubMed  CAS  Google Scholar 

  • Riedel MJ, Steckley DC, Light PE. Current status of the E23K Kir6.2 polymorphism: implications for type 2 diabetes. Hum Genet 2005; 116:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Servitja JM, Ferrer J. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 2004;47:597–613.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds MJ, Gough SCL. Genetic insights into disease mechanisms of autoimmunity. Br Med Bull 2005;71:93–113.

    Article  PubMed  CAS  Google Scholar 

  • Stumvoll M, Haring H. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes 2002;51:2341–2347.

    Article  PubMed  CAS  Google Scholar 

  • Taylor SI. Lilly lecture: Molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 1992;41:1473–1490.

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Howson JMM, Esposito L, et al. Association of T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–511.

    Article  PubMed  CAS  Google Scholar 

  • Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15:289–292.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Lowe, W.L. (2006). Diabetes Mellitus. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics